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hyperrectangular confidence regions having a

minimal volume
Titre: Procédures de tests multiples puissantes dérivées de régions de confiances hyperrectangulaires de

volume minimal

Patrick J.C. Tardivel 1 , Rémi Servien 2 and Didier Concordet 2

Abstract: We study the control of the FamilyWise Error Rate (FWER) in the linear Gaussian model when the n× p
design matrix is of rank p. Single step multiple testing procedures controlling the FWER are derived from hyperrect-
angular confidence regions. In this study, we aim to construct procedure derived from hyperrectangular confidence
region having a minimal volume. We show that minimizing the volume seems a fair criterion to improve the power of
the multiple testing procedure. Numerical experiments demonstrate the performance of our approach when compared
with the state-of-the-art single step and sequential procedures. We also provide an application to the detection of
metabolites in metabolomics.

Résumé : Nous étudions le contrôle de la probabilité d’obtenir un ou plusieurs faux-positifs dans le cadre du modèle
linéaire gaussien lorsque la matrice de planification n× p est de rang p. Les procédures de tests multiples non-
séquentielles contrôlant cette probabilité sont dérivées de régions de confiance hyperrectangulaires. Dans cet article,
nous construisons une procédure basée sur une région de confiance hyperrectangulaires de volume minimal. Nous
montrons que la minimisation du volume est un critère judicieux pour augmenter la puissance d’une procédure de
tests multiples. Des expériences numériques montrent que notre démarche fournit une procédure plus performante
que les procédures séquentielles et non-séquentielles de l’état de l’art. Enfin, nous appliquons cette procédure à la
détection de métabolites en métabolomique.

Keywords: family wise error rate, multiple testing procedure, confidence region, linear model
Mots-clés : probabilité d’avoir un ou plusieurs faux-positifs, procédure de tests multiples, region de confiance, modèle
linéaire
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1. Introduction

Let us consider the linear Gaussian model

Y = Xβ + ε, (1)

where X is an n× p design matrix of rank p with p < n, ε ∼N (0,σ2Idn), and β ∈ Rp is an
unknown parameter. We aim to test the hypotheses Hi : βi = 0, with 1 ≤ i ≤ p. Several type
I errors can be controlled in such multiple testing procedures. In this study, we focus on the
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Powerful multiple testing procedures 3

Familywise Error Rate (FWER), defined as the probability of wrongly rejecting at least one
hypothesis Hi. Let β̂ mle := (X ′X)−1X ′Y be the maximum likelihood estimator of the model (1).
The usual multiple testing procedures are based on the maximum likelihood estimator and reject
Hi : βi = 0 when |β̂ mle

i |/se(β̂ mle
i )> s, where s≥ 0 is the same threshold as that for the hypotheses

H1, . . . ,Hp. Let ζ be a random vector having the same distribution as(
β̂

mle
1 /se(β̂ mle

1 ), . . . , β̂ mle
p /se(β̂ mle

p )
)

when β = 0. We observe that ζ is a Gaussian vector or a multivariate student, depending on
whether the standard errors se(β̂ mle

1 ), . . . ,se(β̂ mle
p ) are known or estimated (thus, σ is known or

estimated). There are several ways to choose such a threshold s, assuring control of the FWER
at a significance level α ∈ (0,1). For example, s can be chosen according to correlation-free in-
equalities such as the Bonferroni inequality (Dunn, 1959) or the Gaussian correlation inequality 1

(Royen, 2014; Šidák, 1967)

P

( ⋃
1≤i≤p

{|ζi| ≥ s}

)
≤

p

∑
i=1

P(|ζi| ≥ s) and P(|ζ1| ≤ s, . . . , |ζp| ≤ s)≥
p

∏
i=1

P(|ζi| ≤ s).

The inequality given on the left is available for Gaussian vector and multivariate student; the
one on the right is available for Gaussian vector and for some particular cases of multivariate
student (Sidak et al., 1971). These inequalities are extremely convenient and provide a threshold
for controlling the FWER at the significance level α . The first and second inequalities, respec-
tively, provide the thresholds sbonf := q1−α/2p and ssidak := q(1+ p√1−α)/2, where qη denotes the η

quantile of a ζ1. By taking into account the correlation, a smaller threshold smax (thus, a better
power) is given by setting smax as the 1−α quantile of max{|ζ1|, . . . , |ζp|}.

Confidence regions and testing procedures are closely related (see e.g. (Lehmann and Ro-
mano, 2005) page 72). Historically, the famous Bonferroni and Dunn-Šidák corrections for mul-
tiple testing procedures (Dunn, 1959; Šidák, 1967) originated from the construction of hyper-
rectangular confidence regions (also called simultaneous confidence intervals). Actually, taking
s ∈ {sbonf,ssidak,smax} gives the hyperrectangular confidence region [β̂ mle

1 ± s× se(β̂ mle
1 )]×·· ·×

[β̂ mle
p ± s× se(β̂ mle

p )] which contains β with a probability larger than 1−α . Conversely, given
a hyperrectangular confidence region [β̂ mle

1 ± s1× se(β̂ mle
1 )]× ·· ·× [β̂ mle

p ± sp× se(β̂ mle
p )] con-

taining β with a probability larger than 1−α one may derive a multiple testing procedure which
controls the FWER at significance level α . Specifically, for any i ∈ {1, . . . , p}, this procedure
rejects Hi : βi = 0 if 0 /∈ [β̂ mle

i ± si× se(β̂ mle
i )]. Of course, when p = 1, the classical confidence

interval [β̂ mle
1 ± smax× se(β̂ mle

1 )] = [β̂ mle
1 ±q1−α/2× se(β̂ mle

1 )] has a minimal length. Otherwise,
when p≥ 2, we claim that none of the thresholds sbonf,ssidak and smax provides a hyperrectangu-
lar confidence region with the smallest volume. It is natural to attempt minimizing the volume
for a confidence region. To our knowledge, such a minimization has never been studied in the
multivariate case (in the univariate case, the minimization of the expected length of a confidence

1 The inequality P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp)≥∏
p
i=1P(|ζi| ≤ si) already proved in Šidák (1967) is a particular case of

the Gaussian correlation inequality P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp)≥ P(|ζi| ≤ s1, . . . , |ζi| ≤ sk)P(|ζi| ≤ sk+1, . . . , |ζi| ≤
sp). Recently, the Gaussian correlation inequality was proved by Royen (2014).
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4 Tardivel, Servien and Concordet

interval has been studied by Pratt (1961)). Another theoretical justification for the volume mini-
mization is the following:

Let A ⊂ Rp be an acceptance region defined as Pβ=0(β̂
mle ∈ A) = 1−α. We consider the

procedure rejecting the null hypothesis β = 0 against the alternative β 6= 0 when β̂ mle /∈ A. The
power (and type II error) of this procedure depends on β in the alternative. We would like to
control some kind of “average” power that would not depend on a specific value of β . To this
end, we define an “average” type II error by integrating the type II error Pβ (β̂

mle ∈ A) over all
the possible values of β 6= 0. Let f be the density of β̂ mle when β = 0, by proceeding so and by
using Fubini-Tonelli theorem, we obtained the following identity∫

Rp\{0}
Pβ (β̂

mle ∈ A)dβ =
∫
Rp\{0}

(∫
Rp

f (x−β )1(x ∈ A)dx
)

dβ

=
∫
Rp

(∫
Rp\{0}

f (x−β )dβ

)
1(x ∈ A)dx

=
∫
Rp

1(x ∈ A)dx = vol(A).

Therefore, a procedure having an acceptance region with a small volume has globally a small
type II error. Consequently, comparatively to classical single step multiple testing procedures
(which are also derived from hyperrectangular confidence regions), our procedure derived from
a hyperrectangular confidence region having a minimal volume is globally better to detect that
the parameter β is not null when actually β 6= 0.

Theoretical results showing that a multiple testing procedure has an optimal power are quite
rare (Fromont et al., 2016; Lehmann et al., 2012; Romano et al., 2011). For example, in the
particular case where the covariance of β̂ mle is a scalar matrix then, the procedure described
in section 4 of Romano et al. (2011) has a maximal power for a specific class of alternatives.
However, in the general setting, we are not aware of the existence of an optimal testing procedure.

We illustrate that deriving a multiple testing procedure from a hyperrectangular confidence
region having a minimal volume is an intuitive way to improve power. In addition, we present a
new operational procedure through a numerical method for volume minimization. This article is
organized as follows.
Section 2 contains some basic properties about the optimal hyperrectangular confidence region.
We exhibit some cases in which it is convenient to perform the computation of the optimal hy-
perrectangular confidence region.
Section 3 presents a method to numerically minimize the volume of the hyperrectangular confi-
dence region.
Section 4 is devoted to simulation experiments: we compare our multiple testing procedure with
the state-of-the-art single step and sequential procedures.
Section 5 details the analysis of metabolomic data, which motivated this study.

We use the following notations:
— The zero in bold 0 represents the null vector of Rn for some n≥ 2, the transpose matrix of

A is denoted by A′ and Idp represents the p× p identity matrix.
— The sets A0 and A1 are, respectively, A0 := {i ∈ {1, . . . , p} | βi = 0} and A1 := {i ∈
{1, . . . , p} | βi 6= 0}.
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Powerful multiple testing procedures 5

— The matrix Mp(a,b) is a p× p matrix for which the diagonal elements are a and the non-
diagonal elements are b.

— Given a random vector V := (V1, . . . ,Vp), var(V ) denotes the covariance matrix of V and
var(Vi) denotes the marginal variance of Vi.

— The matrix Σ is a p× p positive definite matrix and C is a p× p ‘correlation’ matrix,
namely, C is a positive definite matrix, such that C11 = · · ·=Cpp = 1.

— The covariance matrix of β̂ mle is σ2(X ′X)−1 thus, for i ∈ {1, . . . , p}, the standard error of
β̂ mle

i is equal to σ
√

[(X ′X)−1]ii. When σ is not known an estimator of the standard error is

σ̂
√

[(X ′X)−1]ii where σ̂ :=
(
‖Y −X β̂ mle‖2/(n− p)

)1/2
. For i ∈ {1, . . . , p}, let us define

se(β̂ mle
i ) as follows

se(β̂ mle
i ) :=

{
σ
√

[(X ′X)−1]ii when σ is known
σ̂
√
[(X ′X)−1]ii when σ is estimated

.

— The random vector ζ has the same distribution as
(

β̂ mle
1 /se(β̂ mle

1 ), . . . , β̂ mle
p /se(β̂ mle

p )
)

when β = 0. Consequently, depending on whether σ is known or estimated, ζ ∼N (0,C)
or ζ ∼ tn−p(0,C) where C is a ‘correlation’ matrix.

2. Minimization of volume

We aim to construct a multiple testing procedure derived from a hyperrectangular confidence
region for β having the following expression: [β̂ mle

1 ±s1×se(β̂ mle
1 )]×·· ·× [β̂ mle

p ±sp×se(β̂ mle
p )].

To guarantee a significance level of 1−α (with α ∈ (0,1)) the thresholds s1, . . . ,sp must satisfy
the following equality:

P(β ∈ [β̂ mle
1 ± s1× se(β̂ mle

1 )]×·· ·× [β̂ mle
p ± sp× se(β̂ mle

p )]) = 1−α

⇔ P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1−α.

Among these hyperrectangular confidence containing β with a probability 1−α , we aim to pick
one for which the expected value of the volume 2 2ps1 . . .spE(se(β̂ mle

1 ) . . .se(β̂ mle
p )) is minimal,

which leads to the following optimisation problem:

minimize
p

∏
i=1

si subject to P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1−α. (2)

Note that, when p = 1, the optimal threshold is s∗1 = q1−α/2, the 1−α/2 quantile of ζ1, which
yields to the confidence interval [β̂ mle

1 ± q1−α/2× se(β̂ mle
1 )]. This optimization problem has at

least one minimizer as proved in Proposition 3 given in appendix. We do not need the unique-
ness of the minimizer of (2), but only pick a particular optimal threshold s∗. In the Gaussian
framework, given a minimizer s∗, the following proposition holds:

2 Let us notice that the volume is not random when σ is known.
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6 Tardivel, Servien and Concordet

Proposition 1. Let us consider the case where ζ has a Gaussian distribution. Let C be the
invertible correlation matrix of ζ , s∗ =

(
s∗1, . . . ,s

∗
p
)

be a solution of the optimisation problem
(2) and T s∗ denote the truncated Gaussian vector on S∗ = [−s∗1,s

∗
1]×·· ·× [−s∗p,s

∗
p] having the

following density:

fT s∗ (u) =
1

(1−α)
√
(2π)p det(C)

exp
(
−1

2
u′C−1u

)
1(u ∈ S∗)

then all the diagonal coefficients of C−1var(T s∗) are equal.

Assuming that the covariance matrix of T s∗ (here denoted by var(T s∗)) was equal to C, all
the diagonal coefficients of C−1var(T s∗) would be equal, indicating that s∗ is a solution of (2).
Because the diagonal terms of var(T s∗) are always smaller than the diagonal terms of C, var(T s∗)
cannot be equal to C. However, the condition given by Proposition 1 can be intuitively inter-
preted. The optimal (with respect to the volume) hyperrectangular should be such that the co-
variance of the truncated Gaussian vector ζ restrained to [−s∗1,s

∗
1]× ·· · × [−s∗p,s

∗
p] is as close

as possible to the non-constraint covariance of the random vector ζ . The Gaussian framework
has some simple yet interesting cases where the computation of the optimal thresholds s∗1, . . . ,s

∗
p

can be performed by hand. Note that in the special case p = 2 (i.e. where β̂ mle has only two
components), basic algebra shows that s∗1 = s∗2. This property does not hold true when p > 2.

According to Proposition 1, diagonal coefficients of C−1var(T s∗) are equal is a necessary
condition for s∗ to be a minimizer of (2). We aim to illustrate this condition on the following three
examples. For convenience, we denote Mp(a,b), a p× p matrix whose diagonal coefficients are
equal to a and whose non-diagonal coefficients are equal to b.

1) In the independent case: Let us set C = Idp and s ∈ Rp where s1 = · · · = sp > 0 then
diagonal coefficients of C−1var(T s) are equal. This equality suggests (but does not prove)
that components of s∗, minimizer of (2), are all equal.

2) In the equicorrelated case: Let us set C = Mp(1,ρ) and s ∈ Rp where s1 = · · ·= sp > 0.
It follows that C−1 = Mp(a,b) for some a and b and var(T s) = M(c,d) for some c and
d. Consequently all the diagonal coefficients of C−1var(T s) = M(a,b)M(c,d) are equal.
Again, this equality suggests that components of s∗ are all equal.

3) In the block diagonal equicorrelated case: Let us set C = diag(Mk(1,ρ),Mp−k(1,ρ ′)).
It follows that C−1 is block diagonal with C−1 = diag(Mk(a,b),Mp−k(a′,b′)) for some
a,b,a′,b′. Let s ∈ Rp where s1 = · · ·= sk = c1 and sk+1 = · · ·= sp = c2, one deduces that
var(T s) is block diagonal with var(T s) = diag(Mk(c,d),Mp−k(c′,d′)) for some c,d,c′,d′.
Consequently, whatever c1 and c2, the k first diagonal coefficients of C−1var(T s) are equal
and the p−k last diagonal coefficients of C−1var(T s) are equal. We only need to tune c1,c2
such that all diagonal coefficients of C−1var(T s) become equal. This equality suggests that
s∗1 = · · ·= s∗k and s∗k+1 = · · ·= s∗p.

According to Proposition 2, when correlation coefficients are non-negative, it is actually true
that in settings 1) and 2) components of s∗ are all equals and in setting 3) that s∗1 = · · ·= s∗k and
s∗k+1 = · · ·= s∗p.

Proposition 2. Let us consider the case where ζ has a Gaussian distribution. Let C, the corre-
lation matrix of ζ , be the block diagonal matrix C = diag(Mk1(1,ρ1),Mk2(1,ρ2), . . . ,Mkl (1,ρl))
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Powerful multiple testing procedures 7

where k1 + · · ·+ kl = p and ρ1, . . . ,ρl ∈ [0,1) and let α ∈ [0,1). The optimisation problem (2)
has a minimizer s∗ which satisfies

s∗ = ( c1, . . . ,c1︸ ︷︷ ︸
k1 components

, . . . , cl, . . . ,cl︸ ︷︷ ︸
kl components

).

Except for the particular cases mentioned above, we do not have a closed form for the opti-
mal thresholds. Therefore, we develop a numerical method to compute these optimal thresholds
efficiently.

3. Numerical solver for the optimal thresholds

The optimal thresholds are provided by the solution of the following problem (equivalent to (2))

ming(s) =
p

∑
i=1

ln(si) subject to F(s) = P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1−α.

Let u ∈ (0,+∞)p, the notation 1/u denotes (1/u1, . . . ,1/up). The Lagrange multiplier theorem
assures that at s∗, the minimizer of (2), the vector ∇g(s∗) is collinear to ∇F(s∗), where ∇ denotes
the gradient. Consequently, the following equivalences hold:

1
s∗

∝ ∇F(s∗)⇔ s∗ ∝
1

∇F(s∗)
⇔ s∗ ∝ s∗+

1
∇F(s∗)

where u ∝ v means that u is collinear to v.

Let us notice that whatever s ∈ [0,+∞)p the components of ∇F(s) are strictly positive. This
collinearity motivates us to consider the following iterative sequence:
Let us set s(0) = (c1−α , . . . ,c1−α), where c1−α is the 1−α quantile of max{|ζ1|, . . . , |ζp|} and
let us define the iterative sequence (s(i))i∈N, where s(i+1) is given by{

u(i) =
(

s(i)+ 1
∇F(s(i))

)
,

s(i+1) = λ1−αu(i) where λ1−α is such that F(λ1−αu(i)1 , . . . ,λ1−αu(i)p ) = 1−α.

In the previous expression, because ∇F(s(i))> 0, then u(i) > s(i) (these two inequalities are given
as per component). The parameter λ1−α , the 1−α quantile of max

{
|ζ1|/u(i)1 , . . . , |ζp|/u(i)p

}
,

shrinks u(i) in order to recover an element s(i+1) so that P(|ζ1| ≤ s(i+1)
1 , . . . , |ζp| ≤ s(i+1)

p ) = 1−α .
Thus far, this numerical method is available whatever ζ having a continuous distribution on Rp

and a covariance matrix Σ. However, the naive computation of the gradient ∇F(s(i)) through
simulation is time expensive. Roughly, the components of s(i) are large; thus, P(s(i)j ≤ |ζ j| ≤
s(i)j +h) is very small, and consequently, a good estimation of

(
F(s1, . . . ,s j−1,s j +h,s j+1, . . . ,sp)

− F(s1, . . . ,sp)
)
/h through simulations is very time consuming. Fortunately, there is a trick to

compute ∇F in the Gaussian and student frameworks. For example, let us explain how this trick
provides the first component of ∇F . When ζ is Gaussian, the conditional distribution L (ζ1|ζ2 =
x2, . . . ,ζp = xp) is a Gaussian distribution with density fm(x),σ2 (the mean m(x) depends on x :=
(x2, . . . ,xp) while the variance σ2 does not depend on x). Precisely, let A = (C1 j)2≤ j≤p and let
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8 Tardivel, Servien and Concordet

B = (Ci j)2≤i, j≤p, then m(x) = AB−1x and σ2 =C11−AB−1A′. Let fζ1( . | |ζ2| ≤ s2, . . . , |ζp| ≤ sp)
be the density of the conditional distribution L (ζ1||ζ2| ≤ s2, . . . , |ζp| ≤ sp) and let fζ2,...,ζp be the
density of (ζ2, . . . ,ζp), the first component of ∇F is given hereafter

∂F
∂ s1

(s) = 2 fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) = 2
∫ s2

−s2

. . .
∫ sp

−sp

fζ2,...,ζp(x) fm(x),σ2(s1)dx2 . . .dxp.

Finally, the last expression is easy to compute by using Monte-Carlo simulations of the Gaussian
vector (ζ2, . . . ,ζp). When ζ ∼ tn−p(0,C) then ζ has the same distribution as Z/

√
V/(n− p),

where Z ∼N (0,C) is independent of V ∼ χ2
d with d = n− p. In the student framework, the first

component of ∇F is given hereafter

∂F
∂ s1

(s) = 2 fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp)

=
∫ +∞

0
2 fZ1

(
s1

√
v
d
| |Z2| ≤ s2

√
v
d
, . . . , |Zp| ≤ sp

√
v
d

)
fV (v)dv.

This integral is still easy to infer through simulation by adding, with respect to the Gaussian
framework, Monte-Carlo simulations of V . Now, in the Gaussian framework, we illustrate the
performance of our solver using two examples.

Setting 1: We set C := diag(M500(1,0.9), Id500). Because C is block diagonal equicorrelated,
the optimal thresholds satisfy s∗1, . . . ,s

∗
500 = c1 and s∗501, . . . ,s

∗
1000 = c2 where c1 and c2 are

handily computable. Thus, in this setting, it is easy to compare the theoretical optimal
thresholds with the thresholds given by the solver of the problem (2).

Setting 2: We set C = (Ci j)1≤i, j≤1000 with Ci j =
√

min{i, j}/max{i, j}. The matrix C is the
correlation matrix of a Brownian motion discretized on the set {1, . . . ,1000}.

The left panel of the figure 1 shows that in setting 1 after i = 5 iterations, the threshold s(i) almost
recovers the optimal thresholds. The right panel shows that in setting 2, s(5)1 ≥ ·· · ≥ s(5)999 (there
is a singularity for s(5)1000 that is not a numerical problem).

As described in the figure 1, in both settings, the gain between the volume of the hypercube
associated with the initial threshold s(0) (for which s(0)1 = · · · = s(0)1000) and that of the hyperrect-
angular region associated with the threshold s(5) is very large.

Given optimal thresholds s∗1, . . . ,s
∗
p, the solution of the problem (2), one derives a multiple

testing procedure for the null hypotheses Hi : βi = 0, i ∈ {1, . . . , p}. The hypothesis Hi is re-
jected when 0 /∈ [β̂ mle

i ± s∗i × se(β̂ mle
i )] or equivalently, when |β̂ mle

i |/se(β̂ mle
i ) > s∗i . Because the

confidence region [β̂ mle
1 ± s∗1× se(β̂ mle

1 )]× ·· ·× [β̂ mle
p ± s∗p× se(β̂ mle

p )] contains β with a prob-
ability 1−α , the previous procedure controls the Family-Wise Error Rate (FWER) at signifi-
cance level α . Let us remind that A0 := {i ∈ {1, . . . , p} | βi = 0}, the FWER is the probability
P
(⋃

i∈A0
|β̂ mle

i |/se(β̂ mle
i )> s∗i

)
. The inequality given hereafter assures the control of the FWER

at significance level α .

P

(⋃
i∈A0

|β̂ mle
i |

se(β̂ mle
i )

> s∗i

)
= P

(⋃
i∈A0

βi /∈ [β̂ mle
i ± s∗i × se(β̂ mle

i )]

)

≤ P

(
p⋃

i=1

βi /∈ [β̂ mle
i ± s∗i × se(β̂ mle

i )]

)
= α.
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Powerful multiple testing procedures 9

0 200 400 600 800 1000

3.
0

3.
4

3.
8

4.
2

T
hr

es
ho

ld
s

0 200 400 600 800 1000

2.
5

3.
0

3.
5

T
hr

es
ho

ld
s

FIGURE 1. The figure on the left provides the optimal thresholds associated with setting 1 described above. A handy
computation of the optimal thresholds gives s∗1 = · · · = s∗500 = 2.93 and s∗501 = · · · = s∗1000 = 4.19. The y-axis of the

figure provides the thresholds s(5)1 , . . . ,s(5)1000 given by the iterative sequence s(i) after i = 5 iterations and s(0)1 = · · ·=
s(0)1000 = 3.88. Observe that our solver almost recovers the optimal thresholds. With respect to the initial threshold

s(0), the gain in volume is very large, as ∑
1000
j=1 log(s(0)j ) = 1358.07 while ∑

1000
j=1 log(s(5)j ) = 1255.20. The figure on

the right provides the optimal thresholds associated with setting 2 described above. The y-axis of the figure provides
the thresholds s(5)1 , . . . ,s(5)1000 given by the iterative sequence s(i) after i = 5 iterations and s(0)1 = · · · = s(0)1000 = 3.08.

Again, the gain in volume is also large in setting 2, as ∑
1000
j=1 log(s(0)j ) = 1124.60 while ∑

1000
j=1 log(s(5)j ) = 1063.71.

Intuitively, because the volume of the hyperrectangular confidence region is minimal, one should
expect to recover a multiple testing more powerful than the classical single step procedures. The
numerical experiments given in the following section confirm this intuition.

4. Comparison of multiple testing procedures

One of the most famous single-step multiple testing procedure controlling the FWER is the
procedure described in Lehmann and Romano (2005) page 352 (hereafter, procedure 1).

Procedure 1: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : βi = 0 is rejected in favour
of the alternative βi 6= 0 when |β̂ mle

i |/se(β̂ mle
i ) > smax. The threshold smax is the 1−α

quantile of max{|ζ1|, . . . , |ζp|}.

Sequential procedures have better power than single step procedures, especially when β has
many large components. Hereafter, we describe the StepDown (SD) counterpart of procedure 1.

The generic stepdown procedure defined by Romano and Wolf (2005), Lehmann and Ro-
mano (2005) p. 352, Dudoit and Van Der Laan (2007) p. 126 is a generalization of Holm’s
sequential procedure (Holm, 1979). To describe the generic stepdown procedure, let us denote
Ti = β̂ mle

i /se(β̂ mle
i ). The statistical tests are sorted from the most significant to the least signif-

icant, namely, |Tr(1)| ≥ · · · ≥ |Tr(p)|. The rejection of the hypotheses Hr(1), . . . ,Hr(p) is done
sequentially, as explained hereafter.

Procedure 1 SD: The hypothesis Hr(1) is rejected if |Tr(1)| ≥ tr(1). The hypothesis Hr(2) is
rejected if |Tr(1)|> tr(1) and |Tr(2)|> tr(2) and so on. In the previous expressions, the thresh-
old tr(s) is the 1−α quantile of max{|ζr(s)|, . . . , |ζr(p)|} (see e.g. (Lehmann and Romano,
2005) pages 351 to 353).
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10 Tardivel, Servien and Concordet

We will compare procedures 1 and 1 SD with procedure 2, described hereafter, which is de-
rived from the computation of the optimal thresholds. Note that procedure 1 and 1 SD are respec-
tively more powerful that Bonferroni’s precedure (Dunn, 1961) and Holm’s procedure (Holm,
1979) . Therefore performances of Bonferroni and Holm procedures are not reported.

Procedure 2: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : βi = 0 is rejected in favour of
the alternative βi 6= 0 when |β̂ mle

i |/se(β̂ mle
i )> s∗i . The thresholds s∗1, . . . ,s

∗
p are the optimal

ones given in (2).

By construction of the thresholds smax and s∗1, . . . ,s
∗
p, the single step procedures 1 and 2 control

the FWER at a significance level α ∈ (0,1). In addition, the procedure 1 SD also controls the
FWER at a significance level α ∈ (0,1) (see e.g. (Lehmann and Romano, 2005) pages 351 to
353 or (Romano and Wolf, 2005)). A comparison of these three procedures based on the average
power is carried out on the following setting:

We set var(β̂ mle
1 ) = · · ·= var(β̂ mle

p ) = 1 and the Gaussian vector ζ has a N (0,C) distribution,
where C := diag(M900(1,ρ), Id100). We set β ∈ R1000 with card(A1) = k ∈ {50,500} and for
all i ∈ A1,βi = t, where t > 0. For the different values of ρ ∈ {0,0.5,0.9,0.999}, the optimal
thresholds s∗1, . . . ,s

∗
1000 given by Proposition 2 are as follows.

— When ρ = 0 then s∗1 = · · ·= s∗900 = c1 ≈ 4.0553 and s∗901 = · · ·= s∗1000 = c2 ≈ 4.0553.
— When ρ = 0.5 then s∗1 = · · ·= s∗900 = c1 ≈ 3.7628 and s∗901 = · · ·= s∗1000 = c2 ≈ 4.0961.
— When ρ = 0.9 then s∗1 = · · ·= s∗900 = c1 ≈ 2.9284 and s∗901 = · · ·= s∗1000 = c2 ≈ 4.3327.
— When ρ = 0.999 then s∗1 = · · ·= s∗900 = c1 ≈ 2.0601 and s∗901 = · · ·= s∗1000 = c2 ≈ 4.4542.

Hereafter, the average power of a multiple testing procedure represents the proportion of hy-
potheses associated to non-null components of β which are correctly rejected. Let I1 = {1, . . . ,900},
let I2 = {901, . . . ,1000} and let V ∼N (t,1). In this framework, the average power of procedure
2 is

card(A1∩ I1)

card(A1)
Pt (|V |> c1)+

card(A1∩ I2)

card(A1)
Pt (|V |> c2) .

We observe that the average power of procedure 2 depends on the location of the non-null com-
ponents of β . Intuitively, when the non-null components of β are located on I1 (i.e. A1 ⊂ I1)
then, because the thresholds s∗1, . . . ,s

∗
900 are small, procedure 2 should be powerful. On the other

hand, when the non-null components of β are located on I2 (i.e. A1 ⊂ I2) then, because the
thresholds s∗901, . . . ,s

∗
1000 are large, procedure 2 should not be powerful. Thus, to perform a fair

comparison, instead of computing the average power for a particular A1, we will examine the
expected value of the average power when ‘A1’ is a random set uniformly distributed on the set
of combination of k elements among 1000. Let U be a random set with a uniform distribution on
the set {I ⊂ {1, . . . ,1000} | card(I) = k}, the expected value of the average power of procedure
2 is given hereafter

EU

(
card(U ∩ I1)

k
Pt (|V |> c1)+

card(U ∩ I2)

k
Pt (|V |> c2)

)
=

9
10

Pt (|V |> c1)+
1
10

Pt (|V |> c2) . (3)

In the figure 2, we compare the average power of procedures 1, 2 and 1 SD.
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FIGURE 2. This figure provides the average power of procedures 1, 1 SD and 2 (the average power of procedure
2 is reported in (3)). Average power of procedures 1 and 2 are explicit and thus can be computed without using
simulations whereas the average power of procedure 1 SD is computed based on 10000 simulations. When ρ = 0,
these three procedures have approximately the same power. When ρ increases, the difference between the average
power of procedure 2 increases in comparison with the average power of the other procedures.
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12 Tardivel, Servien and Concordet

A stepdown procedure is merely a sequential application of a single step procedure. Precisely,
in the first stage of stepdown procedure 1 SD, the rejections are the ones given by the single
step procedure 1. The second stage of stepdown procedure 1 SD is an application of single step
procedure 1 on the hypotheses not rejected in the first stage, and so on. Intuitively, when β has
many very large components, a large number of hypotheses are rejected in the first stage, im-
plying that the number of hypotheses tested in the second stage becomes small, allowing the
stepdown procedure to become powerful. The most favourable setting for the stepdown proce-
dures is when card(A1) = 500 and t is large, as in this case, β has lot of large components. Note
that our procedure is at least as competitive as the other ones in this situation, and depending on
ρ , our procedure can be much more powerful than the state-of-the art procedures.

In summary, when some components of β̂ mle are strongly correlated, our method outperforms
the other ones.

It could appear as appealing to construct a stepdown procedure based on the procedure 2.
Unfortunately, as illustrated in the appendix the application of the generic stepdown method on
the procedure 2 (as described in Lehmann and Romano (2005) page 353) does not control the
FWER since the monotonicity assumption does not hold. The construction of a stepdown proce-
dure based on the procedure 2 and controlling the FWER is, for the authors, an open question.

5. Application in metabolomics: detection of metabolites

Metabolomics is the science of detection of metabolites (small molecules) in biological mixtures
(e.g. blood and urine). The most common technique for performing such characterization is
proton nuclear magnetic resonance (NMR). Each metabolite generates a characteristic resonance
signature in the NMR spectra with an intensity proportional to its concentration in the mixture.
The number of peaks generated by a metabolite and their locations and ratio of heights are
reproducible and uniquely determined: each metabolite has its own signature in the spectra. Each
signature spectrum of each metabolite can be stored in a library that could contain hundreds
of spectra. A major challenge in NMR analysis of metabolic profiles is automatic metabolite
assignment from spectra. To identify metabolites, experts use spectra of pure metabolites and
manually compare these spectra to the spectrum of the biological mixture under analysis. Such
a method is time-consuming and requires domain-specific knowledge. Furthermore, complex
biological mixtures can contain hundreds or thousands of metabolites, which can result in highly
overlapping peaks. Figure 3 gives an example of an annotated spectrum of a mixture.

Recently, automatic methods have been proposed, for example, Metabohunter (Tulpan et al.,
2011), BATMAN (Astle et al., 2012; Hao et al., 2012), Bayesil (Ravanbakhsh et al., 2015) or the
software Chenomx (Weljie et al., 2006). Most of these methods are based on modelling using a
Lorentzian shape and a Bayesian strategy. Nevertheless, most are time-consuming, and thus, can-
not be applied to a large library of metabolites, and/or their statistical properties are not proven.
Thus, the establishment of a gold-standard methodology with proven statistical properties for
identification of metabolites would be very helpful for the metabolomic community.

Because the number of tests is not very large (one can expect to analyse a mixture with about
200 metabolites), and as NMR experts want to recover all metabolites present in the mixture, but
to prevent a false discovery, we developed a multiple testing procedure controlling the FWER.
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Powerful multiple testing procedures 13

FIGURE 3. An annotated mixture spectrum with overlaps between peaks of lipides and valine and between peaks of
glutamine and lysine.

5.1. Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact
interval T. We assume that we have a library of known spectra containing all p = 36 metabolites
{ fi}16i6p (with

∫
T fi(t)dt = 1) that can be found in a mixture. This family of p spectra is assumed

to be linearly independent. In the first approximation, the observed spectrum of the mixture Y
can be modelled as a discretized noisy convex combination of the pure spectra:

Yj =

(
p

∑
i=1

βi fi(t j)

)
+ ε j with 16 j 6 n, t1 < · · ·< tn a subdivision of T and n = 6001.

The random vector (ε1, . . . ,εn) is a Gaussian vector N (0,Γ), where Γ is a known and invertible
covariance matrix. The covariance structure (ε1, . . . ,εn) is described in Tardivel et al. (2017).

5.2. Real dataset

The method for the detection of metabolites was tested on a known mixture. The NMR experts
supplied us with a library of 36 spectra of pure metabolites and a mixture composed of these
metabolites. We first analysed this mixture without any knowledge about the number of used
metabolites and their proportions. The results are presented in Table 1.

After analysing this mixture we have compared our results with the real composition of the
mixture supplied by NMR experts. The six metabolites present in the complex mixture was
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14 Tardivel, Servien and Concordet

Metabolites Actual proportions Significantly not null
Choline chloride 0.545 Yes
Creatinine 0.209 Yes
Benzoic acid 0.086 Yes
L-Proline 0.069 Yes
D-Glucose 0.060 Yes
L-Phenylalanine 0.029 Yes
30 other metabolites 0 No

TABLE 1. This table presents the results for the 36 metabolites of the library. The actual proportions of each
metabolite are presented in the first column. For each metabolite, evidence against the nullity of the proportion is
given in the second column.

detected, including those with small proportions. Among the 30 other metabolites which are not
present in the mixture, no one was wrongly detected. Because the whole procedure is fast, lasting
only a few seconds, it could be easily applied to a library containing several hundred metabolites.
For more detailed results on this application to metabolomics, we refer the interested reader to
Tardivel et al. (2017) where our procedure is compared to existing procedures on more complex
datasets and to Lefort et al. (2019) where the package ASICS, derived from this procedure and
available on the Bioconductor platform, is presented.

6. Conclusions

This study takes a new look at an old problem: the construction of multiple testing procedures de-
rived from hyperrectangular confidence regions. Our purpose is to derive such a procedure based
on hyperrectangular confidence regions having a minimal volume. These regions depend on an
optimal threshold s∗, which is a solution of the constraint problem (2); we provide a solver giving
a numerical solution to this problem. When p≤ 1000, the optimal threshold s∗ (thus, the optimal
hyperrectangular confidence region) is easily tractable. With respect to standard hypercube con-
fidence regions, the gain in volume obtained with our method is huge. Based on simulations, we
show that deriving a multiple testing procedure from a hyperrectangular region having a minimal
volume is an intuitive way to increase the average power. Indeed, simulations show that our pro-
cedure is at least as powerful as the other procedures, and depending on the correlation matrix,
our procedure can be much more powerful than the state-of-the-art procedures. However, it is
still a challenge to provide a stepdown counterpart to our procedure.

7. Appendix

7.1. Proofs:

Proposition 3. Let C be a p× p correlation matrix and let ζ be a Gaussian vector N (0,C) or
a multivariate student tn−p(0,C). Then, there exists at least one element s∗ ∈ [0,+∞)p solution
of the problem (2).

Proof: We see that the volume cannot be minimal when ‖s‖∞ is too large. Let qi > 0 be
the 1−α quantile of |ζi|, let q = min{q1, . . . ,qp} > 0 and let us set S := {s ∈ Rp | P(|ζ1| ≤
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s1, . . . , |ζ1| ≤ sp) = 1−α}. Whatever s ∈ S the following inequality holds ∏
p
i=1 si ≥ ‖s‖∞qp−1,

consequently, the function s ∈ S 7→∏
p
i=1 si is coercive and continuous. Finally, since the function

s∈ [0,+∞)p 7→ P(|ζ1| ≤ s1, . . . , |ζ1| ≤ sp) is continuous then the set S is closed and consequently
the minimum of the problem (2) is reached. �

Proof of Proposition 1:
To simplify the computation of the gradients, we consider the following problem, which has the
same solution as (2)

ming(s) =
p

∑
i=1

ln(si) subject to F(s) = P(|ζ1|/s1 ≤ 1, . . . , |ζp|/sp ≤ 1) = 1−α.

As this problem reaches its minimum at s∗, ∇g(s∗) is collinear to ∇F(s∗). Let us set D the matrix
D = diag(s1, . . . ,sp), we have the following expression for F(s1, . . . ,sp), namely,

F(s1, . . . ,sp) =
∫
[−1,1]p

Rexp
(
−1

2
x′DC−1Dx

)
det(D)dx

=
∫
[−1,1]p

Rexp
(
−1

2
x′DC−1Dx+ ln(det(D))

)
dx,

with R = 1/((2π)p/2 det(C)1/2). Next, the expression of the partial derivative

∂

∂ si

(
−1

2
x′DC−1Dx+ ln(det(D))

)
=

1
si
−

p

∑
j=1

C−1
i, j xix js j,

implies that the gradient of F is equal to

∂F
∂ si

(s1, . . . ,sp) =
1
si

F(s1, . . . ,sp)−R
p

∑
j=1

∫
[−1,1]p

(C−1
i, j xix js j)exp

(
−1

2
x′DC−1Dx

)
det(D)dx,

=
1−α

si
−R

p

∑
j=1

∫
[−1,1]p

(C−1
i, j xix js j)exp

(
−1

2
x′DC−1Dx

)
det(D)dx.

Thus, ∇F(s) = (1−α)∇g(s)+ v(s), where v(s) ∈ Rp is the following vector

v(s) :=

(
p

∑
j=1

C−1
i, j

∫
[−1,1]p

xix js∗jRexp
(
−1

2
x′DC−1Dx

)
det(D)dx

)
1≤i≤p

.

Consequently, ∇g(s∗) and ∇F(s∗) are collinear if and only if ∇g(s∗) and v(s∗) are collinear.

∃k ∈ R such that v(s∗) = k∇g(s∗),

⇔ ∀i ∈ {1, . . . , p},
p

∑
j=1

C−1
i, j

∫
[−1,1]p

xis∗i x js∗jRexp
(
−1

2
x′DC−1Dx

)
det(D)dx = k,

⇔ ∀i ∈ {1, . . . , p},
p

∑
j=1

C−1
i, j

∫
u∈Rp

uiu j
R

1−α
exp
(
−1

2
u′C−1u

)
1(u ∈ S∗)du =

k
1−α

. (4)
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16 Tardivel, Servien and Concordet

The expression (4) is obtained via the change of variables ∀i∈ {1, . . . , p},ui = xis∗i . To conclude,
one recognizes that∫

u∈Rp
uiu j

R
1−α

exp
(
−1

2
u′C−1u

)
1(u ∈ S∗)du = E

(
T s∗

i T s∗
j

)
= cov

(
T s∗

i ,T s∗
j

)
.

Thus, the diagonal coefficients of C−1var(Ts∗) are equal to k/(1−α). �

7.2. Proof of Proposition 2

Let us remind that Mp(a,b) represents a p× p matrix whose diagonal coefficients are a and
non-diagonal coefficients are b. Our main purpose is to prove Lemma 1.

Lemma 1. Let ζ be a Gaussian vector of Rp having a N (0,Mp(1,ρ)) distribution where ρ ∈
[0,1) and let α ∈ [0,1). The following problem

minimize
p

∏
i=1

si subject to P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1−α. (5)

has a unique minimizer s∗ = (c1−α , . . . ,c1−α) where c1−α is the 1−α quantile of the random
variable max{|ζ1|, . . . , |ζp|}.

Proposition 2 is a straightforward consequence of lemma 1

Sketch of the proof

First le us notice the Gaussian vector ζ given in Lemma 1 has the same distribution as (
√

ρZ0 +√
1−ρZi)1≤i≤p where Z0, . . . ,Zp are i.i.d N (0,1) random variables. Consequently, condition-

ally to {Z0 = z0}, the Gaussian vector (
√

ρZ0 +
√

1−ρZi)1≤i≤p has i.i.d components having
N (
√

ρz0,1−ρ) distribution. Lemmas 2 and 3 provide some geometrical results associated to
this conditional distribution N (θ ,a2Idp) for some θ ∈ Rp and some a ≥ 0. More precisely,
when θ = 0, Lemma 2 shows that among hyperrectangle with volume 2pV , the hypercube
[−V 1/p,V 1/p]p has a maximal probability with respect to the Gaussian measure N (0,a2Idp).
Lemma 2 is a consequence of Proposition 1 but a specific and easier proof for this lemma is
given here. Lemma 3 extends the result given by Lemma 2 to the case in which θ 6= 0. Technical
details to prove this second lemma are different than the ones used for the first lemma. Actu-
ally, the result given by Lemma 2 and an application of the Gronwall’s inequality (Gronwall,
1919) are key steps to prove the Lemma 3. The proof of Lemma 1 is a quite straightforward
consequence of lemmas 2 and 3.

Proof of Lemma 1

Lemma 2. Let W be a Gaussian vector having a N (0,a2Idp) distribution where a > 0 and let
V > 0. The following optimization problem

maximize P(|W1| ≤ s1, . . . , |Wp| ≤ sp) subject to
p

∏
i=1

si =V (6)

has a unique maximizer s̄ ∈ (0,+∞)p which is s̄ = (V 1/p, . . . ,V 1/p).
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Powerful multiple testing procedures 17

Proof: Similar arguments than the ones given in proof of Proposition 1 shows that the opti-
mization problem (6) has at least one maximizer in (0,+∞)p. Let us denote φ and Φ be respec-
tively the density and cumulative distribution function of a N (0,1) distribution.

Let us introduce the following optimization problem equivalent to (6) which allows to reduce
technical computation difficulties.

maximize L(s) =
p

∑
i=1

ln(2Φ(si/a)−1) subject to g(s) =
p

∑
i=1

ln(si) = ln(V ).

At s̄, maximizer of (6), according to Lagrange multipliers theorem, gradient vectors ∇L(s̄) and
∇g(s̄) are collinear. Consequently the following collinearity holds(

2φ(s̄i/a)
a(2Φ(s̄i/a)−1)

)
1≤i≤p

∝

(
1
s̄i

)
1≤i≤p

where ∝ means collinear to.

Thus there exists λ ∈ R such that the following equalities occurs

∀i ∈ {1, . . . , p}, 2s̄iφ(s̄i/a)
a(2Φ(s̄i/a)−1)

= λ . (7)

Whatever a > 0, the function h : t > 0 7→ (2tφ(t/a))/(a(2Φ(t/a)−1)) is strictly decreasing on
(0,+∞). Consequently, if s ∈ (0,+∞)p is a vector for which equalities s1 = · · ·= sp do not occur
then the condition (7) is not met implying thus that s is not a maximizer. One may deduce that s̄,
maximizer of (6), satisfies the equalities s̄1 = · · ·= s̄p which implies that s̄ = (V 1/p, . . . ,V 1/p).�

Lemma 3. Let W1, . . . ,Wp be i.i.d random variable having N (θ ,a2) distribution, where θ ∈ R
and a > 0 and let V > 0. The following optimization problem

maximize Pθ (|W1| ≤ s1, . . . , |Wp| ≤ sp) subject to
p

∏
i=1

si =V

has a unique minimizer s̄ ∈ [0,+∞)p which is s̄ = (V 1/p, . . . ,V 1/p).

Proof: Let S be the hypercube S := [−V 1/p,V 1/p]p, let s1 > 0, . . . ,sp > 0 not simultaneously
equal and such that ∏

p
i=1 si =V , let S be the hyperrectangle S := [−s1,s1]×·· ·× [−sp,sp] and let

W be the Gaussian vector W := (W1, . . . ,Wp). Since S is not an hypercube, according to Lemma
2, when θ = 0 we already know that P0(W ∈ S) > P0(W ∈ S). We are going to show that this
inequality remains true when θ 6= 0. Let us set G be the following function

∀θ ∈ R,G(θ) := (2π)p/2 (Pθ (W ∈ S)−Pθ (W ∈ S)
)

=
∫

x∈Rp
exp

(
−1

2

p

∑
i=1

(θ − xi)
2

)(
1(x ∈ S)−1(x ∈ S)

)
dx.

We aim to prove that G is strictly positive. The derivative of G is the following function

G′(θ) =
∫

x∈Rp

p

∑
i=1

(xi−θ)exp

(
−1

2

p

∑
i=1

(θ − xi)
2

)(
1(x ∈ S)−1(x ∈ S)

)
dx,

= −pθG(θ)+
∫

x∈Rp

p

∑
i=1

xi exp

(
−1

2

p

∑
i=1

(θ − xi)
2

)(
1(x ∈ S)−1(x ∈ S)

)
dx.
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Since ∑
p
i=1 xi is bounded over the set S∪ S, there exists a constant K ≥ 0 such that whatever

x ∈ S∪ S,
∣∣∑p

i=1 xi
∣∣ ≤ K. From this inequality one deduces the differential inequality G′(θ) ≥

−pθG(θ)−K|G(θ)|. Now, let us prove, by contradiction, that G is positive on [0,+∞). Let
us assume that G is not positive on [0,+∞) then, because G is continuous and G(0) > 0, there
exists θ0 > 0 such that G(θ0) = 0 and G is non-negative on [0,θ0]. Therefore on this interval
G′(θ) ≥ G(θ)(−pθ −K) and thus, according to the Gronwall’s inequality (Gronwall, 1919),
this differential inequality implies the following result

∀θ ∈ [0,θ0],G(θ)≥ G(0)exp
(∫

θ

0
(−pt−K)dt

)
.

One may deduce the contradiction G(θ0) > 0 and thus, because G is even, G is positive on R.
Consequently, whatever θ ∈R, the inequality Pθ (W ∈ S)> Pθ (W ∈ S) occurs implying thus that
s̄ = (V 1/p, . . . ,V 1/p) is the unique maximizer of the problem (3). �

Proof of Lemma 1:
First, let us notice that when Z0, . . . ,Zp are i.i.d N (0,1) random variables, the Gaussian vector
(
√

ρZ0 +
√

1−ρZi)1≤i≤p has the same distribution as ζ . Let us assume that a minimizer s∗, so-
lution of the problem (5), does not satisfy inequalities s∗1 = · · ·= s∗p and let us set v = (s∗1×·· ·×
s∗p)

1/p (thus s∗ 6= (v, . . . ,v)). According to Lemma 3, conditionally to the event {Z0 = z0}, the
following inequality occurs

P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1−ρZi

∣∣∣≤ s∗i |Z0 = z0

)
= P

(
∀i ∈ {1, . . . , p},

∣∣∣√ρz0 +
√

1−ρZi

∣∣∣≤ s∗i
)

< P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρz0 +
√

1−ρZi

∣∣∣≤ v
)
.

Let φ be the density of the N (0,1) distribution, since the previous inequality holds whatever
z0 ∈ R, one may deduce that

P(∀i ∈ {1, . . . , p}, |ζi| ≤ v)

=
∫

z0∈R
P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1−ρZi

∣∣∣≤ v|Z0 = z0

)
φ(z0)dz0

>
∫

z0∈R
P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1−ρZi

∣∣∣≤ s∗i |Z0 = z0

)
φ(z0)dz0

> P(∀i ∈ {1, . . . , p}, |ζi| ≤ s∗i ) = 1−α.

Because P(|ζ1| ≤ v, . . . , |ζp| ≤ v)> 1−α , there exists t ∈ [0,1) such that P(|ζ1| ≤ tv, . . . , |ζp| ≤
tv) = 1−α . Finally, since t pvp < s∗1×·· ·× s∗p, one deduces that s∗ = (s∗1, . . . ,s

∗
p) is not a mini-

mizers of (5). Consequently, every components of a minimizer s∗ of (5) are equal which implies
that s∗1 = · · ·= s∗p = c1−α . �

7.3. Dunnett’s procedure is optimal

As an illustration of Proposition 1, the thresholds prescribed by Dunnett’s procedure are optimal.
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Dunnett’s procedure compares the mean of treatment groups with the mean of the control group
(Dunnett, 1955). When each group (control and treatment) has the same number of observations
the thresholds given by Dunnett’s procedure are the optimal ones.

Let us denote p the number of treatment groups and n the number of observations, under the
assumptions of Dunnett (Gaussianity, homoscedasticity), the empirical means M̂0,M̂1, . . . ,M̂p

of each group are independent and distributed according to N (µ0,σ
2/n),N (µ1,σ

2/n), . . . ,
N (µp,σ

2/n) distributions (with σ known to simplify). In Dunnett’s procedure, whatever i ∈
{1, . . . , p}, the null hypothesis H 0

i : µi = µ0 is rejected for the alternative H 1
i : µi 6= µ0 as soon

as |M̂i−M̂0|> c1−ασ
√

2/n, where c1−α is the 1−α quantile of max{|ζ1|, . . . , |ζp|}. In the later
expression, ζ := (ζ1, . . . ,ζp) is distributed according to N (0,C) distribution, where C is a p× p
equicorrelated correlation matrix defined by Ci j = 1 if i = j and Ci j = 1/2 otherwise. Because
C is an equicorrelated correlation matrix, the threshold prescribed in Dunnett’s procedure (the
same for each hypothesis) is optimal with respect to the volume.

7.4. Application of the generic stepdown method to procedure 2 does not control the FWER

The following example illustrates that an application of the generic stepdown method to proce-
dure 2 does not control the FWER. Let us assume that the maximum likelihood estimator β̂ mle

is distributed according to a N (β ,C) distribution where C and β , as given hereafter,

C = (C1|C2|C3) :=

 1 0.999 0
0.999 1 0

0 0 1

 and β = (+∞,0,0).

Let us apply the generic stepdown method to our procedure based on the optimal thresholds.
The solution of the problem (2) with the matrix C and α = 0.05 is s(0)1 = s(0)2 = 2.10 and s(0)3 =

2.43. In the first step, the hypothesis Hi is rejected if |β̂ mle
i |> s(0)i with i ∈ {1,2,3}. Obviously,

because β1 =+∞, the hypothesis H1 is rejected; let us assume that H2 and H3 are not rejected.
Consequently, there is no false discovery in the first step; thus, |β̂ mle

2 | ≤ s(0)2 and |β̂ mle
2 | ≤ s(0)3 .

Let us set C̃ = (C2|C3) = Id2, the solution of the problem (2) with C̃ is s(1)2 = s(1)3 = 2.23. In
the second step, the hypothesis Hi is rejected if |β̂ mle

i |> s(1)i with i ∈ {2,3}. Let us assume that
H2 and H3 are not rejected. Consequently, there is no false discovery in the second step; thus,
β̂ mle

2 ≤ s(1)2 and β̂ mle
2 ≤ s(1)3 . Finally, the probability of no false discovery is

P(|β̂ mle
2 | ≤ 2.10∩|β̂ mle

3 | ≤ 2.23)< P(|β̂ mle
2 | ≤ 2.23∩|β̂ mle

2 | ≤ 2.23) = 0.95.

Consequently, the FWER is not controlled at the significance level α = 0.05. Note that, in this
example, optimal thresholds are not decreasing in the sense that (s(1)2 ,s(1)3 ) is not per component
smaller than (s(0)2 ,s(0)3 ). This fact is the reason why the application of the generic stepdown
method to procedure 2 fails to control the FWER.
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