
HAL Id: hal-01904616
https://hal.science/hal-01904616

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Executing linear algebra kernels in heterogeneous
distributed infrastructures with PyCOMPSs

Ramon Amela, Cristian Ramon-Cortes, Jorge Ejarque, Javier Conejero, Rosa
M. Badia

To cite this version:
Ramon Amela, Cristian Ramon-Cortes, Jorge Ejarque, Javier Conejero, Rosa M. Badia. Executing
linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs. Oil & Gas Science
and Technology - Revue d’IFP Energies nouvelles, 2018, 73, pp.47. �10.2516/ogst/2018047�. �hal-
01904616�

https://hal.science/hal-01904616
https://hal.archives-ouvertes.fr


Executing linear algebra kernels in heterogeneous distributed
infrastructures with PyCOMPSs
Ramon Amela1,*, Cristian Ramon-Cortes1, Jorge Ejarque1, Javier Conejero1, and Rosa M. Badia1,2

1 Barcelona Supercomputing Center, Barcelona, Spain
2 Consejo Superior de Investigaciones Cientı́ficas (CSIC), Barcelona, Spain

Received: 24 February 2018 / Accepted: 31 July 2018

Abstract. Python is a popular programming language due to the simplicity of its syntax, while still achieving a
good performance even being an interpreted language. The adoption from multiple scientific communities has
evolved in the emergence of a large number of libraries and modules, which has helped to put Python on the top
of the list of the programming languages [1]. Task-based programming has been proposed in the recent years as
an alternative parallel programming model. PyCOMPSs follows such approach for Python, and this paper
presents its extensions to combine task-based parallelism and thread-level parallelism. Also, we present how
PyCOMPSs has been adapted to support heterogeneous architectures, including Xeon Phi and GPUs. Results
obtained with linear algebra benchmarks demonstrate that significant performance can be obtained with a few
lines of Python.

1 Introduction

When faced with the selection of a programming language,
programmers may take into account aspects such as: syntax
simplicity, compilers and tools available, performance
attainable, etc. However, other factors such as: language
used by the community, libraries specific to the application
field, current trends, etc.; can be even more important.
In this sense, Python [2] currently fulfills a lot of the require-
ments: easy to program, good performance trade-off and
has a large number of third-party libraries available. Exam-
ples of such libraries are NumPy [3] and SciPy [4], that offer
vectorized data structures and numerical routines. NumPy
is a de facto standard when working with tensors in Python
due to the high performance achieved, its ease of use and
because it automatically maps operations on vectors and
matrices to the BLAS [5] and LAPACK [6] functions when
present in the system. When a multi-threaded BLAS
version is present in the system (using OpenMP [7] or
TBB [8]), the operations are automatically parallelized.

Python is an interpreted language and CPython its
most common interpreter. A very well-known limitation
of CPython is the use of a Global Interpreter Lock (GIL)
which disables concurrent Python threads within one
process. This basically means that, although threads are
supported in Python, only one will execute at a time.

There are multiple modules that have been developed to
provide parallelism in Python, such as the multiprocessing,
Parallel Python (PP) and MPI modules. The multiprocess-
ing module provides [9] support for the spawning of pro-
cesses in SMP machines using an API similar to the
threading module, with explicit calls to create processes.
On the other hand, the Parallel Python (PP) module [10]
provides mechanisms for parallel execution of Python codes,
with an API with specific functions to specify the number of
workers to be used, submits the jobs for execution, gets the
results from the workers, etc. Finally, the mpi4py [11]
library provides a binding of MPI for Python which allows
the programmer to open parallelism both inter-node and
intra-node. In all cases, the management of the parallelism
is the programmer’s responsibility.

PyCOMPSs [12] is a task-based programming model
that offers an interface on Python that follows the sequen-
tial paradigm. It enables the parallel execution of applica-
tions’ tasks by means of building, at execution time, a
data dependency graph of the tasks that compose an
application. The syntax of PyCOMPSs is minimal, using
decorators to enable the programmer to identify those
methods that are tasks and a small API for synchroniza-
tion. PyCOMPSs relies on a Runtime that can exploit the
inherent parallelism at task level and execute the applica-
tion in a distributed parallel platform (clusters and clouds).
The Runtime is responsible for scheduling the tasks in the
available computation resources, performing the necessary
data transfers between distributed memory resources when* Corresponding author: ramela@bsc.es
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no shared data system is available, synchronizing all activ-
ities, acting as an interface with different computing
resources such as cloud middlewares, etc. The Runtime also
gives 0support to the new container technologies, such as
Docker or Singularity [13].

There are other libraries and frameworks that enable
Python distributed and multi-threaded executions such as
Dask [14] and PySpark [15]. Dask is a native Python library
that allows both the creation of custom DAG’s and the
distributed execution of a set of operations on NumPy and
pandas [16] objects. PySpark is a binding to the widely
extended framework Spark [17]. A previous paper compares
several Big Data algorithms using the native version of both
COMPSs1 and Spark runtimes [18], showing that COMPSs
is able to get better or competitive results in comparison to
Spark.

This paper presents PyCOMPSs functionalities through
numerical codes such as matrix multiplication and several
matrix factorizations. The main contributions are the
extensions to the PyCOMPSs programming model to
support multi-threaded libraries, a new scheduling infras-
tructure, the support for multiple tasks’ versions, and its
support to heterogeneous architectures (Xeon Phi and
GPUs). This set of extensions allows to achieve good perfor-
mance with a moderate encoding effort, enabling non expert
users to reach HPC behaviors even under Big Data condi-
tions (i.e. when data is already present in the infrastructure
instead of being initialized for the computation). Moreover,
the same code can be executed in a multi-threaded way on a
single machine, in the cloud or an heterogeneous cluster,
making it highly portable.

An additional contribution of the paper is a set of linear
algebra kernels written in PyCOMPSs, which conform a
prototype of a parallel linear algebra library that would
be made available for the community in the future.

The rest of the paper is organized as follows: Section 2
presents PyCOMPSs and its features, Section 3 describes
the linear algebra kernels, Section 4 presents performance
results, and Section 5 concludes the paper and gives some
guidelines for future work.

2 PyCOMPSs overview

PyCOMPSs is a task-based programming model that aims
to make it easier the development of parallel applications,
targeting distributed computing platforms. It relies on the
power of its Runtime to exploit the inherent parallelism
of the application at execution time by detecting the task
calls and the data dependencies between them.

As shown in Figure 1, the PyCOMPSs Runtime allows
applications to be executed on top of different infrastruc-
tures (such as multi-core machines, grids, clouds or contain-
ers) without modifying a single line of the application’s
code. Thanks to the different connectors, the Runtime is
capable of handling all the underlying infrastructure so
that the users only define the tasks. It also provides fault-
tolerant mechanisms for partial failures (with job resubmis-

sion and reschedule when task or resources fail), has a live
monitoring tool through a built-in web interface, supports
instrumentation using the Extrae [19] tool to generate
postmortem traces that can be analyzed with Paraver
[20, 21], has an Eclipse IDE, and has pluggable cloud con-
nectors and task schedulers.

Moreover, since the PyCOMPSs Runtime is written in
Java [22], Python syntax is supported through a binding,
PyCOMPSs. This Python binding is supported by a
Binding-commons layer which focuses on enabling the
functionalities of the Runtime to other languages (currently,
Python and C/C++). It has been designed as an API with a
set of defined functions. It is written in C and performs the
communication with the Runtime through the JNI [23].

Regarding the programmability, Tasks are identified by
the programmer using simple annotations in the form of
Python decorators, which indicate that invocations of a
given method will become tasks at execution time. The
@task decorator also contains information about the direc-
tionality of the method parameters specifying if a given
parameter is read (IN), written (OUT) or both read and
written in the method (INOUT).

Figure 2 shows an example of a task annotation. The
parameter c is of type INOUT, and parameters a, b, and
MKLProc are set to the default type IN. The directionality
tags are used at execution time to derive the data depen-
dencies between tasks and are applied at an object level,
taking into account its references to identify when two tasks
access the same object. Furthermore, the priority tag is
a hint for the PyCOMPSs’ scheduler that will force to
execute the tasks with this tag earlier, always respecting
the data dependencies.

Additionally to the @task decorator, the �con-
straint decorator can be optionally defined to indicate
some task hardware or software requirements. Continuing
with the previous example, the task constraint Comput-
ingUnits shows to the Runtime how many CPUs are
consumed by each task execution. The available resources
are defined by the system administrator in a separated
XML configuration file. Other constraints that can be
defined refer to processor architecture, memory size, etc.

Fig. 1. PyCOMPSs overview.

1 COMPSs is the task-based programming model for which
PyCOMPSs is its Python binding.
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A tiny synchronization API completes the PyCOMPSs
syntax. As shown in Figure 3, the API function
compss_wait_on waits until all the tasks modifying the
result’s value are finished and brings the value to the node
executing the main program. Once the value is retrieved, the
execution of the main program code is resumed. Given that
PyCOMPSs is usedmostly in distributed environments, syn-
chronizing may imply a data transfer from a remote storage
or memory space to the node executing the main program.

2.1 PyCOMPSs Runtime

The PyCOMPSs Runtime handles the execution of the
applications in the computing infrastructure. The comput-
ing infrastructure is composed of several heterogeneous
nodes, and the execution is orchestrated following the mas-
ter-worker paradigm, where the main program is started on
the master node and tasks are offloaded to worker nodes. In
the most general case, the node allocating the master node
will also allocate a worker node.

As depicted in Figure 4, the Runtime first builds a task
graph adding a new node to it every time a task is invoked
in the application’s code. The directionality of the parame-
ters is used to detect the data dependencies between the
new task and previous ones. Secondly, the scheduler will
analyze the generated graph in a particular way to execute
all the workload among the available resources. We must
highlight that this analysis is highly dependent on the differ-
ent scheduler implementations, but the Runtime provides
information about all the data locations so that they can
exploit the data locality. Eventually, when a task is sched-
uled to a given resource, the required objects and files are
transferred directly between different memory spaces to
guarantee that tasks have available their parameters before
execution without passing through the master. Finally, the
task is executed in the worker resource and, when specified
by the synchronization API, the results are gathered back
to the master resource (where the main code is running).

Only concerning the PyCOMPSs binding, when a trans-
fer between different memory spaces is required, the binding
serializes and writes the object to disk using the standard
library Pickle. The transfer between different resources
is then delegated to the Runtime.

Finally, the available Computing Units that each
resource can offer to the Runtime is configurable. More
specifically, this allows to oversubscribe the amount of work
that a resource can receive; meaning that the Runtime can
create more threads than the real amount of CPUs that the
resource has.

2.2 Interaction with external libraries

The PyCOMPSs Runtime supports the execution of multi-
threaded tasks using the constraint interface. The number

of cores assigned to a multi-threaded task can be indicated
by the programmer in the ComputingUnits constraint
tag. The PyCOMPSs scheduler can assign several cores to
a given multi-threaded task. On the other hand, although
support for tasks that use several nodes has been added
recently, in this work we only consider tasks executing
inside a single node.

Before this work, the cores were assigned blindly to the
tasks. The performance results observed were relatively
poor when running numerical applications, such as those
using the NumPy or SciPy libraries that link to the
Intel�MKL library [24]. It has been shown that, by default,
Intel�MKL tends to occupy the entire node when the
multi-threading is enabled. Not considering this fact can
result in a heavy oversubscribing. In addition, each task
can be executed in several NUMA sockets. This fact
increases the amount of transfers between the different
NUMA-nodes, decreasing the performance dramatically.
Knowing that this behavior can be found in other libraries,
the problem has been solved in a general way.

We have modified the PyCOMPSs task executor in such
a way that it is currently able to bind multi-threaded tasks
to specific computing units of the infrastructure. This fact,
combined with the capability to define the nodes’ virtual
amount of computing units, allows the user to achieve the
desired rate of oversubscribing. However, this is not done
blindly: the PyCOMPSs Runtime distributes the tasks
evenly between the different NUMA sockets, avoiding at
the maximum the transfers between memory spaces.

2.3 Scheduling infrastructure

PyCOMPSs Runtime has been extended with a scheduling
infrastructure that supports pluggable scheduling policies.
Almost all the tests presented in this paper are based on
a data locality scheduler that takes into account the node
that stores the data accessed by the tasks. More precisely,
a task will have a score equal to the amount of input data
present in a given node. It is important to realize that even
if a centralized task manager or task scheduler can be a
bottleneck in some applications, we are tacking distributed
computing platforms and the time required for data trans-
fers can be an issue as well, so we are assuming that tasks
should have a given granularity that is able to hide the task
manager overhead.

Defining a new score policy is enough to change the
scheduler behavior. It will prioritize the tasks with the high-
est score for a given combination of resource, implementa-
tion, and data. In addition to the data locality score,
three more policies have been defined: First In First Out
(FIFO), Last In First Out (LIFO) and data locality with
priority to tasks with a shared edge in the dependency
graph with the finished task (FIFOData). In this last
policy, there are two different scenarios. In the case where
there are tasks freed by the job that has just finished, one

Fig. 3. Sample call to synchronization API.
Fig. 2. Sample task annotation.
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of them is scheduled in First In First Out order; even before
treating the tasks that are already free. Otherwise, data
locality is considered between all the available tasks. The
first two policies (LIFO, FIFO) have served to probe the
robustness of the scheduling system. The third one can be
seen as a relaxation of the data locality scheduler to lighten
the amount of needed comparisons to schedule a task.

The available schedulers allow the users to configure the
execution depending on the expected load.

2.4 Python persistent workers

In previous Runtime versions, PyCOMPSs was enhanced
with a persistent Java worker, meaning that a Java worker
process was started at the beginning of the application
execution, communicating with the master to get informa-
tion about the tasks to be executed and data transfers to
be performed. However, every time a Python task was
invoked, a new Python interpreter was launched. This pro-
cess has been enhanced with the implementation of Python
persistent workers.

More in detail, the PyCOMPSs worker module has been
modified on top of the Python’s built-in multiprocessing
library. When the application execution begins, the primary
worker process in each worker node spawns a set of pro-
cesses that will be responsible for executing the tasks. These
processes are kept alive during the whole application execu-
tion and communicate with the Java persistent worker
through pipes. The messages that they exchange include
information about the task execution requests, job parame-
ters, and computation results. This feature improves the
overall performance by reducing the overhead of deploying
a new Python interpreter per task. Besides, modules loaded
by previous tasks are already present in the interpreter and
do not need to be reloaded.

2.5 Methods’ polymorphism

GPUs are clearly faster than CPUs for some applications.
Nevertheless, it is not always easy to decide whether it is

better to use one architecture or the other [25]. Also,
FPGAs are gaining some momentum. In this context,
projects with the primary focus of interest on heterogeneous
architectures are arising [26]. Hence, it seems reasonable to
think that, in both HPC and Big Data contexts, we are
going towards environments with heterogeneous
architectures.

PyCOMPSs can manage those cases by providing sup-
port for the definition of different versions of the same
method for different architectures. The programmer can
use the �implements decorator to indicate that a method
implements the same behavior than another. Figure 5 shows
an example of polymorphism, which together with the
�constraint decorator allows to indicate to the Runtime
that some tasks can only be executed in a given set of
computing resources. In fact, using polymorphism and tasks’
constraints, the users can define CPU, GPU or FPGA
versions of the same task.

Internally, at the beginning of the execution, the
Runtime will blindly execute all the available versions that
can run in a given resource in order to obtain an execution
profile per version. Afterwards, the Runtime is capable to
use the profiled information to choose the implementation
with the lowest execution time. In this initial version, data
size is not taken into account and we take the hypothesis
that each kind of implementation is better or worst in the
general case. There are no particularities considered capable
to combine both implementations depending on the mor-
phology of the input data, even if it would be really interest-
ing and is can be considered in the future work.

2.6 Profiling

PyCOMPSs generates postmortem traces under demand
using Extrae [19]. These files can be explored with Paraver
[20, 21], obtaining visual information to make easier the
code performance fine tuning.

Some specific PyCOMPSs events have been added in
order to differentiate the different steps done by the master

Fig. 4. PyCOMPSs Task life-cycle.
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and the workers. More precisely, it is possible to see the dif-
ferent actions performed by a worker each time that a task
is executed.

Finally, the dependency graph generated can be plotted
at the end of the computation or be explored on runtime
with the monitor.

3 Linear algebra codes

We have evaluated PyCOMPSs with several linear algebra
codes. It is important to keep in mind that PyCOMPSs is a
general purpose programming model, not a specific one for
dense linear algebra computations [27, 28]. Nevertheless,
linear algebra algorithms are the base for several fields such
as Machine Learning and Computational physics. Even if
other good options like ScaLAPACK [29] already do this
job, none of them can be called directly from Python.
In general, these libraries are coded in C or Fortran. They
are really low level languages that demand a high encoding
effort. In return their can achieve really high performances.
On the other hand, PyCOMPSs allows the user to have
working versions of an algorithm really quick. In addition,
the dynamic runtime scheduling empowers the resource
efficiency increasing the performance. It is so perfect for
prototyping and verifying new concepts and ideas and, as
will be shown, can even be competitive under the efficiency
point of view.

In general, the matrices are chunked in smaller square
matrices (blocks) to distribute the data easily along the
available resources and take advantage of this fact to con-
sider the square blocks as the minimum entity to work with
[30]. All the operations performed on the blocks use the best
library available for each architecture, either Intel�MKL or
PyCUDA [31] through skcuda [32].

The following schema has been pursued for all the com-
putations. The initialization is performed in a distributed
way, defining tasks to initialize the matrix blocks. These
tasks do not take into account the nature of the algorithm
and they are scheduled in a round robin manner. Next, all
the computations are done considering that the data is
already allocated in a given node. The data locality sched-
uler will assign the tasks taking into account the locality
information and reducing the data transfers. This method-
ology shows that PyCOMPSs is capable of obtaining HPC

performance in Big Data environments, where data is
already present in the infrastructure, and it is not possible
to arrange its location depending on the computation.

The following subsections provide a brief description of
the encoded algorithms.

3.1 Matrix multiplication

The matrix multiplication code performs a matrix multipli-
cation by blocks. The code has two tasks: one for the
creation of the matrices’ blocks and one for the blocks’
multiply-accumulate. Since the blocks are defined as
NumPy arrays, the operations that operate on them are
overridden and the corresponding NumPy operation is
invoked, which calls as well to the Intel�MKL operation.
Notice that this behavior happens even when indicated with
arithmetic operators.

Figure 2 shows the code used to perform the multiplica-
tion task. The computational complexity of this algorithm
is widely known: 2S3, where S is the side size of the matrix.
In this context, it may be easier to note S = N · M where
N is the amount of blocks in a side and M is the side size of a
single block.

3.2 Cholesky factorization

The Cholesky factorization can be applied to Hermitian
positive-defined matrices. This decomposition is a particu-
lar case of the LU factorization, obtaining two matrices of
the form U = Lt.

There are two main blocked algorithms to perform a
Cholesky decomposition. The right-looking algorithm [33]
and the left-looking version [34]. Figure 6 shows the code
used in this case, corresponding to the right-looking
approach. It has been chosen because it is more aggressive,
meaning that in an early stage of the computation there are
blocks of the solution that are already computed and all the
potential parallelism is released as soon as possible. Hence,
the Runtime can continue performing the following compu-
tations on the matrices.

The functions in bold in the Cholesky code (potrf,
solve_triangular, and gemm) are annotated as tasks.
Each of these tasks internally calls to Intel�MKL functions,
with a given number of threads.

Figure 7 shows the code of the potrf task from
the Cholesky code. This task has a constraint decorator

Fig. 6. Cholesky factorization main function.Fig. 5. Version handling with PyCOMPSs.
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that indicates the number of ComputingUnits (CPU’s in
this case) required to execute the task that, during the
experimentation, matches the amount of Intel�MKL
threads. Notice that the PyCOMPSs Runtime can be
configured to oversubscribe the computing nodes with
tasks that involve more threads than the actual available
computing cores. This way we can overlap I/O operations
when starting/ending tasks with the actual computation,
increasing the resource efficiency. The other tasks defined
in this example look very similar to the potrf one.

On the other hand, this kernel has a GPU version. The
PyCOMPSs Runtime automatically handles the GPUs
present in a node setting wisely the CUDA visible devices.
Figure 8 shows how easy is to take advantage of the accel-
erators. The polymorphism syntax explained in Section 2 is
used to give an alternative version of dgemm. The user can
consider the presented code as a template and just change
the call to cuBLAS with the desired kernel. Hence, even if
the code can seem a little bit complicated, it allows a user
that has never seen a line of CUDA to use the GPUs from
Python in a distributed context.

Looking at the code and considering the complexity of
each call, it is possible to build the Table 1. Hence, the
complexity of the algorithm can be computed as shown in
Figure 9, where M is the amounts of blocks per side and
N the side block size. We can conclude that the algorithm

is O MNð Þ3
3

� �
that is the same complexity of the sequential

algorithm.

3.3 QR factorization

Traditional QR algorithms use the Householder trans-
formation, but this method requires accessing a whole
column of the matrix, while our data structures are based
on blocks. The approach followed in our implementa-
tion uses a method based on Givens rotations, which
access the data in the matrices by blocks [35]. While the
Cholesky approach is the well known typical one, in the
QR we have to follow a more complicated procedure to
achieve a good degree of parallelism. The following steps
are followed:

1. Decomposition of the input matrix in blocks

A ¼

M0;0 M0;1 . . . M0;N

M1;0 M1;1 . . . M1;N

..

.

MN ;0

..

.

MN ;1

. .
.

. . .

..

.

MN ;N

0
BBBB@

1
CCCCA

2. QR decomposition of the upper left block

Mi;j ¼ Qi;i~Ri;i
i ! A

0 ¼

ðQ0;0Þt 0 . . . 0

0 I . . . 0

..

.

0

..

.

0

. .
.

. . .

..

.

I

0
BBBBB@

1
CCCCCA

Fig. 8. dgemm task executed in the GPU.

Table 1. NumPy calls done to perform a Cholesky
decomposition.

Function Amount of calls Complexity

potrf M N3

3

Trsm
M �ðMþ1Þ

2 2 � N3

gemm M � M �ðMþ1Þ
2 2 � N3

Fig. 9. Cholesky complexity.

Fig. 7. potrf task in the Cholesky code.
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�

M0;0 M0;1 . . . M0;N

M1;0 M1;1 . . . M1;N

..

.

MN ;0

..

.

MN ;1

. .
.

. . .

..

.

MN ;N

0
BBB@

1
CCCA

¼

~R0;0 ~M0;1 . . . ~M0;N

M1;0 M1;1 . . . M1;N

..

.

MN ;0

..

.

MN ;1

. .
.

. . .

..

.

MN ;N

0
BBB@

1
CCCA

3. Change every block of the column for zero blocks
a. Rotation matrix construction through a partial QR

decomposition

~Ri;i
j

~Mjþ1;i

 !
¼ R0;0 C0;1

C1;0 R1;1

 !
~Ri;i

jþ1

0

 !
!

~Ri;i
jþ1

0

 !

¼ R0;0
� �t

C1;0
� �t

C0;1
� �t

R1;1
� �t

 !
~Ri;i

j
~Mjþ1;i

� �

b. Add the rotation matrix to introduce a new zero
block in the R matrix

A
00 ¼

R0;0
� �t

C1;0
� �t

. . . 0

C0;1
� �t

R1;1
� �t

. . . 0

..

.

0

..

.

0

. .
.

. . .

..

.

I

0
BBBBB@

1
CCCCCA

�

Q0;0
� �t

0 . . . 0
0 I . . . 0

..

.

0

..

.

0

. .
.

. . .

..

.

I

0
BBB@

1
CCCA

�

M0;0 M0;1 . . . M0;N

M1;0 M1;1 . . . M1;N

..

.

MN ;0

..

.

MN ;1

. .
.

. . .

..

.

MN ;N

0
BBB@

1
CCCA

¼

~R0;0
1

~M0;1 . . . ~M0;N

0 ~M1;1 . . . ~M1;N

..

.

MN ;0

..

.

MN ;1

. .
.

. . .

..

.

MN ;N

0
BBB@

1
CCCA

c. Repeat the previous procedure with all the elements
in the column, obtaining the following expression

ANÞ ¼ ~Q0A ¼

~R0;0
N

~M0;1
N . . . ~M0;N

N

0 ~M1;1 . . . ~M1;N

..

. ..
. . .

. ..
.

0 MN ;1 . . . MN ;N

0
BBBBBBB@

1
CCCCCCCA

¼ R0;0 ½M 0�
A0

� �

4. Return to the point 1, treating the submatrix result of
discarding the first row and the first column of the obtained
AN) Once all the transformations have been performed, the
following expression is obtained:

R ¼ ~QN ~QN�1 . . . ~Q1 ~Q0A

5. Compute the final Q

Q̂ ¼ ~QN ~QN�1 . . . ~Q1 ~Q0 ! R ¼ Q̂A! A ¼ Q̂tR! Q ¼ Q̂t

Figure 10 shows the QR implementation used in this
paper that corresponds to the previous algorithm. An aux-
iliary matrix, mainly composed of identity and zero
blocks except for the four blocks corresponding to the posi-
tions (i, i), (i, j), (j, i) and (j, j), where (i, j) is the position
that is being rotated (changed to zero) performs the rota-
tions. Although in our initial version of the QR algorithm
we were allocating this auxiliary matrix, we have developed
a second version where only those blocks different to iden-
tity or zero are actually allocated, and only the multiplica-
tions by values different to identity or zero are performed.
With this second approach (called memorySaveQR in the
evaluation), we save memory space and reduce useless
computations.

Once again, the complexity can be deduced from the
code considering the complexity of each call, building the
Table 2. Thus, as demonstrated in Figure 11, the complex-
ity of the algorithm is O (20 (NM)3). In this case, the
obtained complexity is larger than the sequential one even
if it is in the same order. Nevertheless, the parallelism
obtained is remarkable so if the main goal is to make the
algorithm scalable, the trade-off is worth.

3.4 LU factorization

In this case, an approach without pivoting [36] has been the
starting point. The partial pivoting blocked algorithm [37]
was not considered because requires an entire column to be
present in a node to compute the partial column LU decom-
position. Knowing that this approach is unstable in general
[38], one modification has been done to increase the stability
of the algorithm while keeping the block division and avoid-
ing bringing an entire column into a single node.

Figure 12 shows a schema with all the steps taken in an
iteration of the LU factorization:

1. The current principal block, considered the one with
the lowest column and row index (A in the figure) is
decomposed using some underlying library.

2. The first U’s row (U12 in the figure) is computed using
the row of the current principal block.

3. The column of the present main block is used to calcu-
late an auxiliary result for the next steps (P22L21).

4. The LU decomposition of the blocks with a row or
column index larger than the principal one is launched
(recursive step).
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5. The first L’s column (L21 in the figure) is computed
using the column of the current main block as well
as the result of the iterative step.

Finally, Figure 13 shows the code corresponding to the
previously presented algorithm.

In the previous cases, all the calls had a cubic complex-
ity. On the other hand, this kernel has some calls like
invert_triangular – which calls to solve_trian-

gular, the MKL function to invert triangular matrices –
with quadratic complexity that have been neglected, build-
ing Table 3. In Figure 14 all the terms have been added to
compute the total complexity which is ¼ 8

3 M � Nð Þ3
� �

.
Since in sequential a developer would use either a non
pivoting algorithm or a pivoting considering the full
columns, it makes no sense to compare the complexity of
this algorithm against the sequential code. Nevertheless, it
is interesting to realize that it is less than a half of the
QR asymptotic complexity.

Table 2. NumPy calls to perform a QR decomposition.

Function Amount of calls Complexity

qr M 2 � N 3

dot M2 þ M �ðM�1Þ
2 2 � N 3

littleQR
M �ðM�1Þ

2 4 � N 3

multiplyBlocked
M2ðM�1Þ

2 þ M �ð2M2�3Mþ1Þ
6 8 � N 3

Fig. 11. QR complexity.

Fig. 12. LU mathematical principles.

Fig. 13. LU factorization main function.

Fig. 10. QR factorization main function.

R. Amela et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 47 (2018)8



4 Results

4.1 Computing infrastructure

The execution results presented in this section have been
obtained in three different clusters located at the Barcelona
Supercomputing Center (BSC).

We have used PyCOMPSs version 2.2 for the initial
evaluations, and the same version with the Python persis-
tent workers to test these new features. We have also used
Intel�Python 2.7.13 and Intel�MKL 2017.

MareNostrum III

This supercomputer was composed by 3056 nodes, each of
them with two Intel� SandyBridge-EP E5-2670/1600
20M (8 cores at 2, 6 GHz each), main memory that varies
from 32 to 128 GB, FDR-10 Infiniband and Gigabit
Ethernet network interconnections, and 3 PB of disk stor-
age [39]. It was providing service for researchers from a wide
range of different areas, such as life science, earth science
and engineering until March 2017.

COBI cluster

This cluster is an Intel� SSF system composed of 8 nodes
with two Intel� Xeon� CPU E5-2690 v4 @ 2.60 GHz
and 128 GB of main memory each (Xeon nodes) and
8 nodes with an Intel� Xeon Phi� CPU 7210 @ 1.30 GHz
and 110 GB of main memory each (KNL nodes). The
network technology used is Omni-Path. Also, Lustre [40]
is used as shared file system.

Minotauro cluster

This cluster is composed of 61 nodes with two Intel� E5649
@ 2.53 GHz, 2 M2090 NVIDIA GPU cards and 24 GB of
main memory each with two Infiniband QDR ports and
39 nodes with two Intel� E5-2630 v3 @ 2.4 GHz, 2 K80

NVIDIA GPU cards (2 NVIDIA Kepler GK210 each)
and 128 GB of main memory with 1 PCIe 3.0 Mellanox
ConnectX-3FDR 56 Gbit port.

4.2 General comments on the evaluation

We consider that Python users will use the intra-node
parallelized version of the linear algebra algorithms through
MKL (not only a shared memory implementation, but a
one optimized for Intel processors) into their applications.
Since these kernels can be directly called from Python with-
out any further installation, we have considered them as a
really good reference point for Cholesky, QR, and LU.
Hence, instead of comparing the PyCOMPSs implementa-
tions against other distributed kernels, we have computed
the SpeedUp’s against the sequential version encoded to
be optimal for this kind of processor. Since the sequential
version has shared memory and does not perform transfers,
we consider that having a good performance when compar-
ing against these executions is enough to assess the good
behavior of the executions.

On the other hand, it is important to keep in mind that,
for a given matrix size, increasing the block size implies
decreasing the number of total blocks. Hence, even if we
show that better performances can be obtained when
increasing the block size, this fact decreases the number of
blocks and thus the maximum parallelism. Moreover, since
the input sizes are bigger, each task requires a higher
amount of memory. After considering all these factors and
trade-offs, we have decided to perform all the tests with
blocks of 4K · 4K.

Finally, we would like to highlight the fact that, for
most of the executions, we delegate the transfers to the
shared file system. Hence, it is difficult to evaluate accu-
rately the transfer time since the shared file systems have
lots of data cached in memory and replicated across the
cluster. This is the main reason why this study has not been
done.

4.3 Matrix multiplication

For the matrix multiplication example, we have first
analyzed the impact of the oversubscription in a single node
of MareNostrum III. The data square matrices considered
had 32K · 32K doubles, organized in blocks of 4K and
8K. Larger blocks have not been tested since there is a limit
on the serialization size for a single block of 4 GB for
Python 2.7. This limitation is due to a hardcoded parame-
ter in the save_bytes function, present in the class _pickle.c
of the module in charge of the serializations.

We have instructed the Runtime to schedule always two
tasks per NUMA socket, where all task threads are bounded
to a single socket as described in Section 2. The number of
threads in each execution ranged from 4 to 32 threads, in
such a way that the oversubscription ratio ranged from 1
(when 4 threads/task are used) to 8 (when 32 threads/task
are used). Figure 15 shows the results of this evaluation.
Notice that PyCOMPSs gets the maximum performance
when using a level of oversubscription of 4 and a block
size of 8K. The performance in the best case is around

Table 3. NumPy calls to perform a LU decomposition

Function Amount of calls Complexity

multiply þM3

3 þ M2

2 þ M
6 þ M2

2 þ 3�M
2 þ M2

2 � M
2 4 � N3

dgemm M3

3 þ M2

2 þ M
6 4 � N3

custom_lu M 2�N3

3

Fig. 14. LU complexity.
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200 GFLOPS, which represents the 60% of the peak of a
MareNostrum III node (332 GFLOPS [41]).

Next, we have executed the same PyCOMPSs code in a
variable number of nodes of MareNostrum III, from 1 to 64
(from 16 to 1024 cores), with an additional node for the
master.

Figure 16 shows the performance obtained with matri-
ces of 64K · 64K doubles, organized in blocks of 4K · 4K.
The Runtime was configured to execute a maximum of four
tasks per node, each of them using 16 Intel�MKL threads,
which represent an oversubscription ratio of four. The light
green line labeled Ideal distributed scaling is derived by con-
sidering an ideal speedup from the performance obtained in
one node with PyCOMPSs. The red line Sequential perfor-
mance corresponds to the performance obtained with
Intel�MKL in one node with 16 threads for a single block
of 4K · 4K (251 GFLOPS). We observe a very good
speedup until 16 nodes. After that, the efficiency is lower
but the system keeps scaling.

The next result worth mentioning concerning the
matrix multiplication is the heterogeneous execution in
the COBI cluster. Figure 17 shows a post-mortem trace file
obtained with Extrae and analyzed with Paraver. More pre-
cisely, the execution uses one Xeon node and one KNL
node. Blue tasks at the left-side of the image correspond
to initialization tasks and the white ones to block multipli-
cations. Green flags point out beginning and end of tasks.
Notice that these many-core architectures allow working
with plenty of tasks simultaneously. For instance, this exe-
cution multiplies two matrices of 131K · 131K divided into
blocks of 4K, with 1024 free tasks in average, and a total
amount of 32 768 tasks; showing the capability of the
PyCOMPSs Runtime to handle a huge amount of work.
Each KNL node executes four tasks concurrently and each
Xeon node executes eight tasks at a time.

In this context, and considering that there is not a ded-
icated node to allocate the master (it runs in a Xeon node
that also executes an entire worker), the scalability study
has stressed the scheduler. Figure 18 shows how the Data
locality scheduler degrades much faster than the FIFOData

scheduler. This is due to the simplification in the second
scheduling policy, avoiding a lot of comparisons between
the score of the different free tasks. In this case, the users
have two options to increase the performance, either to
change the scheduler or to dedicate more resources to the
Runtime.

We have so demonstrated the importance of the choice
both of the block size and the scheduler choice. In addition,
we show that a good performance on the matrix multiplica-
tion can be achieved until 16–32 nodes. Finally, we show
that PyCOMPSs Runtime is able to handle different imple-
mentations of the same function to take advantage of
heterogeneous infrastructures.

Fig. 15. Matrix multiplication evaluation inside one node:
impact of oversubscription.

Fig. 16. Matrix multiplication performance in a distributed
cluster.

Fig. 17. Matrix multiplication heterogeneous execution trace in
the COBI cluster.
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4.4 Cholesky factorization

Figure 19 shows the Cholesky performance in MareNos-
trum III. The matrix size is again 64K · 64K doubles,
and the block size is 4K · 4K doubles. We have used the
same values for the maximum tasks per node and oversub-
scription than in the previous case (4 tasks per node,
16 threads per task, and an oversubscription ratio of 4).

The red line Sequential performance corresponds to the
performance obtained with Intel�MKL potrf with
16 threads for a block of 4K · 4K doubles (72 GFLOPS)
in a single MareNostrum node. The green line Ideal scaling
from sequential is equivalent to the ideal speedup calculated
from the previous value.

The chart shows the performance result with
PyCOMPSs 2.2. The line shows ideal scaling up to four
nodes and an increasing degradation from there.

When inspecting the post-mortem performance traces,
we have observed that the degradation of the performance
is due to the morphology of the task-graph. Combining the
observed results shown in Figures 20 and 21, the maximum
available parallelism is already filled with eight nodes. We
can conclude this by looking at the inverse triangle form
of the DAG and the resource fulfillment of the resources
in the trace. This is a good example of how useful the pro-
filing tools can be when analyzing the code to understand
the obtained performance.

Figure 22 shows the performance obtained with a
heterogeneous execution in the COBI cluster. The block size
is 4K · 4K and the matrix size is 130K · 130K. For each
execution, half of the nodes are Xeon, and half are KNL
nodes. In this case, only the gemm function can run on both
architectures. The rest can run only in the Xeon nodes.

Figure 20 shows the execution trace of the previous per-
formance test with four Xeon and four KNL nodes. Green
segments correspond to initialization tasks, the blue ones
to potrf, the red ones to solve_triangular and the
white ones to gemm. Yellow lines separate the different
nodes. While the nodes with a maximum of four tasks run-
ning at a time are KNLs, the ones with a maximum of eight

are Xeon nodes. In this execution, the KNL nodes are con-
strained to execute gemm tasks and readers may notice that
the scheduler is capable of handling the fact that not all the
machines can execute all tasks’ types by only sending the
tasks where they can run.

Finally, two executions in the Minotauro cluster have
been performed. This is an heterogeneous cluster with
two different types of node. It this case, no performance
studies have been done. This is mainly due to the fact that
considering that each time a GPUs is used, the data has
to be copied to its memory and bring back the result.
This slows down the execution significantly compared to
the maximum theoretical performance. Nevertheless, it is
important to realize that the PyCOMPSs Runtime is able
to handle a double heterogeneity in this case. On a first level,
we have two different kind of nodes in the cluster. On a
second level, each one of those nodes has two different kind

Fig. 19. Cholesky performance in MareNostrum III.

Fig. 20. Cholesky decomposition heterogeneous execution trace
in the COBI cluster.

Fig. 18. Performance of a 131K · 131K double matrix multi-
plication heterogeneous execution in the COBI cluster.
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of processors: several CPUs and GPUs. PyCOMPSs Run-
time handles successfully four different types of processors
in a single execution with a minimum effort for the devel-
oper. Figure 23 shows the traces obtained when using two
(Fig. 23a) and four nodes (Fig. 23b). In each case, half the
nodes are of one type and half of the other. The main interest
of these executions is to show that we are able to execute a
kernel in an heterogeneous GPU cluster. Still, the perfor-
mance remains really poor since all the data is copied
between the CPU and the GPU memory each time a compu-
tation is done. We think that the performance could be
increased implementing a cache to handle the GPU mem-
ory, avoiding some data transfers. Nevertheless, this remains
as an idea for future work.

4.5 QR factorization

For the QR evaluation, we used a matrix of size 32K · 32K
doubles organized in blocks of 4K · 4K doubles. We have
evaluated the dense version of the factorization against
the memory save version. As described in Section 3.3, the

Fig. 23. Cholesky factorization: heterogeneous execution trace
of a 16 blocks · 16 blocks matrix.

Fig. 21. Cholesky dependency graph for a 16 blocks · 16 blocks matrix decomposition.

Fig. 22. Cholesky performance in COBI. Fig. 24. QR performance in MareNostrum III.
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difference between both versions is that the sparse
version only allocates those blocks of the auxiliary matrix
that are different to the identity or to zero. Additionally,
the operations with this identity or zero blocks are not
performed (the original block or a zero block is directly
returned). To accomplish this behavior, each element is
modeled as a list with an integer to indicate the block type
and, if necessary, a NumPy array with its real content.

Figure 24 presents the results obtained executing the
code in MareNostrum III. As explained in the previous case,
the application does not scale well beyond 4 nodes because
it reaches the parallelism limit of the application. Neverthe-
less, the performance until this point is excellent.

Figure 25 shows the dependency graph corresponding to
a QR decomposition of a 4 blocks · 4 blocks execution,
manifesting that the PyCOMPSs Runtime is not only able
to handle an enormous amount of tasks but also really com-
plex dependency graphs. The real execution (8 blocks · 8
blocks) has a much more complicated graph but is too large
to be depicted in this paper.

4.6 LU factorization

In this case, all the executions have been performed in the
COBI cluster using only Xeon nodes. A matrix with
82K · 82K doubles has been factorized, obtaining the
matrices P, L and U detailed in Section 3.4.

As shown in Figure 26, the reference execution perfor-
mance is the maximum achieved with a threaded code
executing pure NumPy code, corresponding to a 32K · 32K
doubles matrix. The performance obtained with a matrix
with 4K · 4K doubles (the block size used in the dis-
tributed execution) is 41 GFLOPS, far away from the
218 GFLOPS achieved with the 32K · 32K matrix. This
fact suggests that when the matrix is not large enough,
not all the resources are fulfilled. Nonetheless, when execut-
ing several tasks at the same time, PyCOMPSs takes
advantage of all the available resources.

Two remarkable facts can be deduced from this experi-
ment. The blocked LU decomposition scales pretty well
until a reasonable amount of cores. In addition, the
PyCOMPSs Runtime demonstrates its capacity to work
with really complicated DAGs. Figure 27 shows a zoom of
a dependency graph for a 8 blocks · 8 blocks execution that
makes easier to appreciate the complexity handled by the
PyCOMPSs Runtime. On the other hand, Figure 28 shows
the dependency graph for a 6 blocks · 6 blocks execution.

On the other hand, not only the DAG complexity is
important. The amount of tasks that the Runtime can
handle is also remarkable. In this case, we have observed
that the scheduler choice has a really big impact in the final
performance. Figure 29a shows that, in this case, the data
locality scheduler is not the best choice. It adds come over-
head to compute the best locality when, in fact, all the data
is directly available on lustre. When taking into account
this fact, the FIFOData scheduler has been considered.
Figure 29b shows that the obtained performance is much
better. In this execution, 34 288 tasks are executed in
380 seconds in 196 cores. Figure 29c shows that with this
amount of tasks and slots available, the Runtime is able
to run correctly with tasks that last 0.7–2.0 s. Hence, the
throughput is in the microseconds order. This execution
can serve as example to better understand PyCOMPSs

Fig. 25. QR dependency graph for a 4 blocks · 4 blocks matrix decomposition.

Fig. 26. LU performance in the COBI cluster with Xeon
nodes.
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capabilities since is handles a huge amount of tasks not last-
ing so much.

4.7 Programming complexity

As stated in Section 2, we aim at providing a programming
model that makes it easier the development of parallel
applications. While it is difficult to evaluate the easiness
or complexity of a programming model, we show in this
subsection a summary of the lines of code required to pro-
gram the PyCOMPSs codes described in this paper as a
measure for programmability.

These codes are composed of the main algorithm and
the tasks’ functions. The main algorithm is usually
expressed in a method, like the ones shown in Figures 6,

10 or 13, with lengths of 15–30 lines composed of a set of
nested loops with calls to the task functions. The task func-
tions are much simpler, each of them of 5–10 lines (like the
ones in Figures 2 or 7) and are wrappers to the NumPy calls
with the corresponding PyCOMPSs decorators.

Table 4 shows a summary of the lines required to program
all the codes presented in this paper. The Main function col-
umn is the number of lines in the main algorithm of the codes.
The Program column is the total number of lines. The col-
umn Decorator corresponds to the number of lines specific
for PyCOMPSs, that can be considered the added lines to
a sequential version of the code. We can see that from very
simple codes, we can obtain performance in distributed and
heterogeneous platforms. Readers must consider that
the codes contain spaces and blank lines to ease its

Fig. 27. LU dependency graph for a 8 blocks · 8 blocks matrix.

Fig. 28. LU dependency graph for a 6 blocks · 6 blocks matrix decomposition.
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comprehension and that they include the distributed matrix
initialization, the auxiliary functions to join the blocked
matrix for the result verification, and the timers to com-
pute the elapsed time. Hence, the number of lines can be

considered a superior bound (which could be easily reduced)
of a complete program that tests the correct behavior of the
kernels. Furthermore, we explicitly state the number of lines
added as decorators to obtain the distributed version from
the blocked one. We highlight that it makes no sense to com-
pare the distributed version against the sequential one since
all the kernels can be called in a single MKL line.

5 Conclusion

PyCOMPSs is a robust programming model that enables
the programmer to achieve remarkable performances with
clean and simple codes. Based on the sequential version
and just by adding some decorators skillfully, the code is
ready to run on distributed and heterogeneous clusters
thanks to the power of the Runtime that automatically
handles all the tasks’ scheduling and data transfers. Once
the Runtime is installed on a given infrastructure, the code
parallelized with PyCOMPSs is easily executed.

This paper has shown that good performances can be
achieved regarding sequential codes when calling lower level
libraries tuned for each particular architecture. PyCOMPSs
allows the users to quickly turn a Python sequential code into
a highly portable distributed version. Depending on the
code’s nature, PyCOMPSs can so play both the distributed
programming language and orchestrator roles. In fact, when
increasing the size of the matrices, we are able to take advan-
tage of all the architecture, observing super linear SpeedUp’s
when considering the sequential execution as the reference.

Finally, all the executions have been performed with the
data already present in the shared file system. The
PyCOMPSs Runtime has shown that it is capable of
achieving a good performance level when the data is already
present in the infrastructure. This fact puts the program-
ming model in the frontier between Big Data and HPC, ful-
filling the needs of both environments.

Acknowledgments. This work has been supported by the
Spanish Government (SEV2015-0493), by the Spanish Ministry
of Science and Innovation (contract TIN2015-65316-P), by
Generalitat de Catalunya (contracts 2014-SGR-1051 and
2014-SGR-1272). Javier Conejero postdoctoral contract is
co-financed by the Ministry of Economy and Competitiveness
under Juan de la Cierva Formación postdoctoral fellowship
number FJCI-2015-24651. Cristian Ramon-Cortes predoctoral
contract is financed by the Ministry of Economy and Competi-
tiveness under the contract BES-2016-076791. This work is
supported by the Intel-BSC Exascale Lab.

This work has been supported by the European Commission
through the Horizon 2020 Research and Innovation program
under contract 687584 (TANGO project).

References

1 Stephen Cass (2017) The 2017 Top Programming Languages
(IEEE Spectrum), https://spectrum.ieee.org/comput-
ing/software/the-2017-top-programming-languages,
accessed: 2018-02-14.

Fig. 29. LU decomposition execution trace of a 32 blocks · 32
blocks matrix with 2048 · 2048 blocks.

Table 4. Amount of code lines in each kernel.

Algorithm Main
function

Program Decorator

matmul MN3 1 7 66 4
matmul COBI2 7 91 7
cholesky MN31 22 136 8
cholesky COBI2 22 147 11
cholesky

Minotauro3
22 170 11

QR MN31 31 233 10
memorySaveQR MN31 31 310 14
LU COBI1 45 155 10
1 Homogeneous.
2
dgemm versioning Xeon-KNL.

3
dgemm versioning CPU-GPU.

R. Amela et al.: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 47 (2018) 15

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages


2 Van Rossum G., Drake F.L. (2003) Python language refer-
ence manual. Network Theory.

3 van der Walt S., Colbert S.C., Varoquaux G. (2011) The
NumPy Array: A structure for efficient numerical computa-
tion, Comput. Sci. Eng. 13, 2, 22–30, http://dx.doi.org/
10.1109/MCSE.2011.37.

4 Jones E, Oliphant E., Peterson P. (2001) SciPy: Open source
scientific tools for Python, http://www.scipy.org/

5 BLAS (Basic Linear Algebra Subprograms)Web page at
http://www.netlib.org/blas/, accessed: 28th August, 2017.

6 Anderson E., Bai Z.J., Bischof C., Susan Blackford L.,
Demmel J., Dongarra J., Du Croz J., Greenbaum A.,
Hammarling S., McKenney A., et al. (1999) LAPACK Users’
guide, SIAM.

7 Dagum L., Menon R. (1998) OpenMP: An Industry-Standard
API for Shared-Memory Programming, IEEE Comput. Sci.
Eng. 5, 1, 46–55, https://doi.org/10.1109/99.660313.

8 Threading Building Blocks (Intel�TBB) (2017) Web page at
https://www.threadingbuildingblocks.org/, accessed: 28th
August, 2017.

9 Parallel Processing and Multiprocessing in Python (2017)
Web page at https://wiki.python.org/moin/ParallelProcess-
ing, accessed: 10th October, 2017.

10 Parallel Python Software (2017) Web page at http://
www.parallelpython.com, accessed: 10th October, 2017.

11 Dalcı́n L., Paz R., Storti M. (2005) MPI for Python, J.
Parallel. Distr. Com., http://www.sciencedirect.com/science/
article/pii/S0743731505000560.

12 Tejedor E., Becerra Y., Alomar G., Queralt A., Badia R.M.,
Torres J., Cortes T., Labarta J. (2017) PyCOMPSs: Parallel
computational workflows in Python, Int. J. High Perform.
Comput. Appl. 31, 1, 66–82.

13 Ramon-Cortes C., Serven A., Ejarque J., Lezzi D., Badia
R.M. (2018) Transparent orchestration of task based parallel
applications in containers platforms, J. Grid Computing 16,
1, 137–160.

14 Dask Development Team (2016) Dask: Library for dynamic
task scheduling, http://dask.pydata.org

15 PySpark (The Spark Python API (2017) Web page at
https://spark.apache.org/docs/latest/api/python/in-
dex.html, accessed: 6th October, 2017.

16 McKinney W. (2011) pandas: a foundational python library
for data analysis and statistics, Python for High Performance
and Scientific Computing 1–9.

17 Zaharia M., Chowdhury M., Franklin M.J., Shenker S.,
Stoica I. (2010) Spark: Cluster Computing with Working
Sets, in: Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, Berkeley, CA, USA.

18 Conejero J., Corella S., Badia Rosa M., Labarta J. (2017)
Taskbased programming in COMPSs to converge from HPC
to big data, Int. J. High Perform. Comput. Appl. 4,
https://doi.org/10.1177/1094342017701278.

19 Extrae Web page at https://tools.bsc.es/extrae, accessed:
19th December, 2016.

20 Pillet V., et al. (1995) Paraver: A tool to visualize and
analyze parallel code, Transputer and Occam Developments
4, 17–32, http://www.bsc.es/paraver.

21 Paraver: a flexible performance analysis tool Web page
at https://tools.bsc.es/paraver, accessed: 19th December,
2016.

22 Lordan F., Tejedor E., Ejarque J., Rafanell R., Álvarez J.,
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