Skip to Main content Skip to Navigation
Journal articles

Proving the existence of loops in robot trajectories

Simon Rohou 1 Peter Franek 2 Clément Aubry 3 Luc Jaulin 1 
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : This paper presents a reliable method to verify the existence of loops along the uncertain trajectory of a robot, based on proprioceptive measurements only, within a bounded-error context. The loop closure detection is one of the key points in SLAM methods, especially in homogeneous environments with difficult scenes recognitions. The proposed approach is generic and could be coupled with conventional SLAM algorithms to reliably reduce their computing burden, thus improving the localization and mapping processes in the most challenging environments such as unexplored underwater extents. To prove that a robot performed a loop whatever the uncertainties in its evolution, we employ the notion of topological degree that originates in the field of differential topology. We show that a verification tool based on the topological degree is an optimal method for proving robot loops. This is demonstrated both on datasets from real missions involving autonomous underwater vehicles, and by a mathematical discussion.
Complete list of metadata

Cited literature [32 references]  Display  Hide  Download
Contributor : Simon Rohou Connect in order to contact the contributor
Submitted on : Wednesday, October 24, 2018 - 5:18:17 PM
Last modification on : Monday, April 4, 2022 - 9:28:29 AM
Long-term archiving on: : Friday, January 25, 2019 - 3:34:31 PM


Files produced by the author(s)



Simon Rohou, Peter Franek, Clément Aubry, Luc Jaulin. Proving the existence of loops in robot trajectories. The International Journal of Robotics Research, SAGE Publications, 2018, 37 (12), pp.1500-1516. ⟨10.1177/0278364918808367⟩. ⟨hal-01904112⟩



Record views


Files downloads