
HAL Id: hal-01903003
https://hal.science/hal-01903003

Submitted on 24 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guiding Clone-and-Own When Creating Unplanned
Products from a Software Product Line

Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, Badih Baz

To cite this version:
Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, Badih Baz. Guiding Clone-and-Own
When Creating Unplanned Products from a Software Product Line. International Conference on
Software Reuse (ICSR), May 2018, Madrid, Spain. �hal-01903003�

https://hal.science/hal-01903003
https://hal.archives-ouvertes.fr


Guiding Clone-and-Own when Creating
Unplanned Products from a Software

Product Line

Eddy Ghabach1,2, Mireille Blay-Fornarino1, Franjieh El Khoury2,3, and Badih
Baz2

1 Université Côte d’Azur, I3S, CNRS UMR 7271, Sophia Antipolis, France
{ghabach,blay}@i3s.unice.fr

2 Université Saint-Esprit de Kaslik, Kaslik, Lebanon
badih.baz@usek.edu.lb

3 Université de Lyon, Université Lyon 1, ERIC EA 3083, Lyon, France
franjieh.elkhoury@eric.univ-lyon2.fr

Abstract. Clone-and-own is a simple and intuitive practice adopted to
construct new product variants based on existing ones. However, when
the developed family of products becomes rich, maintaining shared as-
sets and managing variability between the clones become tedious tasks.
Therefore, migrating the family of products into a software product line
becomes essential. Despite that, software engineers remain interested in
constructing new product variants that are not provided by the software
product line. In this short paper, we briefly present our approach to guide
software engineers in deriving new products from a software product line
based on clone-and-own. This approach consists of proposing the possi-
ble configuration scenarios by means of operations to perform at asset
level, in order to derive a new product variant.

Keywords: Software product line · Clone-and-own · Product derivation

1 Introduction

A software product line (SPL) is a set of software products that belong to the
same domain and have some characteristics in common [1]. These characteristics
are known as features [2]. A feature model (FM) is one of the abstract represen-
tations of SPL products variability [3]. A configuration is a selection of features
that respects the constraints imposed by the FM and generally reflects a prod-
uct of the SPL [4]. SPLs permit a systematic reuse of software artifacts, which
reduces development cost and increases time to market and software quality [5].
SPLs are considered as an expensive up-front investment, since artifacts must
be initially defined in a domain engineering phase, before deriving new products
through an application engineering phase [5]. Therefore, organizations that are
not able to deal with such an up-front investment, tend to develop a family of
software products using simple and intuitive practices such as clone-and-own.



2 E. Ghabach et al.

Clone-and-own (C&O) is an approach that consists in cloning an existing
product variant (PV) then modifying it to add and/or remove some functional-
ities in order to obtain a new PV [6] [7]. This approach is practically adopted
by several organizations as “favorable and natural” solution to develop a family
of related software systems, due to its simplicity, availability and rapidity [8].
However, when the number of variants increases, it becomes difficult to manage
them efficiently [8]. Thus, it becomes essential to migrate the developed PVs into
an SPL [9], in order to manage their variability and benefit from a systematic
reuse. This process is known as extractive [10] or bottom-up [11] adoption, or re-
engineering [9] [12] of SPLs. In our approach, we are interested in organizations
that adopt C&O to develop a family of software products, and desire to develop
new PVs after integrating the existing products into an SPL. Such organizations
are in need of a guidance in reusing the existing products artifacts to derive the
new “desired product”. Hence, our approach consists of proposing the possible
configuration scenarios by means of operations to perform, in order to derive
a new PV from the SPL based on C&O. In addition, our approach allows the
integration of the newly developed products into the SPL, in order to benefit
from its reuse in future derivations.

2 Approach Overview

We illustrate our approach on a running example, representing an excerpt of
three PVs for managing soccer matches1. The features, assets and FM of the
running example are illustrated in Table 1, Table 2, and Fig. 1 respectively.

2.1 SPL definition and correlations

We define SPL as a software product line, where P = {p1, ..., px} is the set of
products that can be derived through the valid configurations of the SPL feature
model, F = {f1, ..., fy} is the set of features implemented by its products and
A = {a1, ..., az} is the set of assets employed by the products to implement
the features. We note F (pj) the set of features implemented by a product pj .
A product pj employs a set of assets A(pj) and for each employed asset ak ∈
A(pj), pj exploits one of its instances aik to fulfill the implementation, where
aik ∈ AI(ak) the set of instances of ak. The set of asset instances exploited by
pj are noted as AI(pj). We call assets the identified files and asset instances
their corresponding versions. For example, referring to Table 2, we can identify
1 instance for asset match.jsp and 3 instances for asset style.css.

We designate correlations as the mappings between features and assets, and
between features and asset instances. Instead of mapping a feature or set of fea-
tures (features interaction) to an implementation block, which can be composed
of fragments of several assets, we map each feature to the set of assets that sup-
posedly contribute in its implementation. Hence, a feature might be correlated

1 The implementation files of the PVs of the running example are available on:
https://github.com/eddyghabachi3s/SoccerManager



Guiding Clone-and-Own when Creating Unplanned Products from SPL 3

Table 1. Product variants with their corresponding features

Product
Feature

ManageMatches AddMatches ModifyMatches DeleteMatches

p1 X X X
p2 X X X X
p3 X X

Fig. 1. Running example SPL FM

Table 2. Product variants with an excerpt
of their corresponding assets

Product Assetversion

p1

match.jsp1

SaveMatch.java1

style.css1

p2

match.jsp1

SaveMatch.java1

style.css2

DeleteMatch.java1

p3

match.jsp1

SaveMatch.java2

style.css3

to several assets, and an asset might be correlated to several features as well. We
consider that a correlation has to be identified between a feature and an asset in-
stance, if we find at least a product implementing the feature and exploiting the
asset instance, with a constraint that no other product exploits the same asset
instance without implementing the feature, or implements the feature without
exploiting any instance of the asset. Thus, given an instance ai of an asset a, a cor-
relation between a feature f and ai noted as c(f, ai) holds if ∃ pj , f ∈ F (pj), a

i ∈
AI(pj) ∧ @ pk, (ai ∈ AI(pk), f /∈ F (pk) ∨ f ∈ F (pk), a /∈ A(pk)). For example,
the correlation c(ModifyMatches,match.jsp1) does not hold, because the same
instance match.jsp1 exploited by p1 and p2 which implement ModifyMatches,
is also exploited by p3 that does not implement ModifyMatches. Moreover,
the correlation c(AddMatches,DeleteMatch.java1) does not hold, because ex-
cept p2, the products p1 and p3 implement the feature AddMatches without
exploiting any instance of the asset DeleteMatch.java. A correlation between a
feature and an asset is identified if there exists at least one of the instances of
the asset in correlation with the feature. Thus, given a feature f and an asset a,
a correlation c(f, a) holds if ∃ ai ∈ AI(a) ∧ c(f, ai).

We consider an SPL complete if each of its features, assets and asset instances
has at least one correlation. To guarantee the completeness of an SPL, we impose
the following rules: given two products (pj , pk) ∈ P, À there has to be at least
a feature in common between them which is the root feature, Á no two prod-
ucts have exactly the same implementation (same set of asset instances), thus,
if A(pj) = A(pk)⇒ AI(pj) 6= AI(pk), Â if pk implements all the features imple-



4 E. Ghabach et al.

mented by pj and more, pk has to employ all the assets employed by pj and –
not necessarily but most likely – more, thus, if F (pj) ⊂ F (pk)⇒ A(pj) ⊆ A(pk).

2.2 Product configuration and derivation

A restrictive FM allows an automated derivation of the exact set of products P
provided by the SPL. However, a software engineer might be interested in creat-
ing a product that is not provided by the SPL, such as p4 that implements the
features ManageMatches, AddMatches and DeleteMatches. Thus, we define a
free FM, a constraint-free version of the restrictive FM where all features except
the root are optional. Hence, a free FM allows a software engineer to select the
features required for a desired product, in addition to extension points allowing
to add new features that are not provided yet by the SPL.

We define a configuration cf consisting of two sets of features: EF (cf) the
features required for the desired product and offered by the SPL, and NF (cf)
the features required and not offered by the SPL. For instance, the configu-
ration cf4 relative to the derivation of p4 has EF (cf4) = {ManageMatches,
AddMatches,DeleteMatches} and NF (cf4) = {φ}. When NF 6= {φ}, software
engineers are asked to determine the assets to be added and/or modified to intro-
duce the new features. Inspired from [13], we categorize the potential products to
achieve a certain configuration into three categories: given a product p and a con-
figuration cf , À p realizes cf if EF (cf) = F (p), Á p covers cf if EF (cf) ⊂ F (p),
Â p contributes in cf if EF (cf) 6⊂ F (p) ∧ ∃ f | f ∈ EF (cf) ∧ f ∈ F (p). If no
product realizes a certain configuration, several scenarios might be possible to
achieve the configuration. Hence, we identify for each configuration cf a set of
configuration scenarios {cs1(cf), ..., csn(cf)}. A configuration scenario csi(cf)
is defined as a pair 〈{〈pk, {fq, ..., fs}〉}, {fx, ..., fz}〉, where {〈pk, {fq, ..., fs}〉} is
a combination of products where each pk covers or contributes in cf , while
{fq, ..., fs} refers to the unrequired features of pk and {fx, ..., fz} is NF (cf), if
any. Table 3 shows the possible configuration scenarios for cf4.

A configuration scenario is a way to identify the suitable assets and operations
to perform over their instances to achieve the configuration. An asset a is required
for a configuration cf if F (a)

⋂
EF (cf) 6= {φ} where F (a) = {fj | c(fj , a)}. We

define three types of actions that can be performed on an asset instance:

1. Clone and Retain (CRT): consists of cloning a required asset instance and
retaining it as it is, without modifying its implementation.

2. Clone and Remove (CRM): consists of cloning a required asset instance, and
removing from it the implementation fragments corresponding to the features
that it is in correlation with but are not required by the configuration.

3. Extract and Add (ETA): consists of extracting from an asset instance the
implementation fragments of some features required by the configuration,
and adding them to a cloned asset instance under construction. An ETA
action is used only as a subsequent to a CRT or CRM action.

We define an action ac as a triple 〈type, ai, {fj , ..., fn}〉, where type is one
of the action types defined earlier {CRT,CRM,ETA}. For CRT and CRM ,



Guiding Clone-and-Own when Creating Unplanned Products from SPL 5

Table 3. Possible configuration scenarios for configuration cf4

cs1 〈{〈p2, {ModifyMatches}〉}〉, {φ}
cs2 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉}〉, {φ}
cs3 〈{〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}〉, {φ}
cs4 〈{〈p1, {ModifyMatches}〉, 〈p2, {ModifyMatches}〉, 〈p3, {φ}〉}〉, {φ}

ai is the asset instance to clone, while for ETA, ai is the asset instance to
extract from. {fj , ..., fn} is the set of features to be removed or extracted from
ai, if type is CRM or ETA respectively. Hence, we define an operation op as a
triple 〈a, {ac1, ..., acn}, ai〉 where a is the operation asset, {ac1, ..., acn} noted as
AC(op) is the set of actions to be made to obtain the suitable asset instance ai.
For instance, the operation 〈style.css, {〈CRM, style.css1, {ModifyMatches}〉,
〈ETA, style.css2, {DeleteMatches}〉}, style.css4〉 consists of cloning the asset
instance style.css1 and removing from it the feature ModifyMatches, then
extracting the feature DeleteMatches from style.css2 and adding the extraction
to the clone, which produces a new instance style.css4. Several operations might
be identified for a required asset, where only one of them has to be chosen.

A software engineer might be interested in choosing the configuration scenario
dealing with the products that she is most familiar with, or that involves the
least number of products (i.e. cs1 involves only p2), or the one having the least
number of operations that require a modification of assets (i.e. cs3 requires less
modifications than cs1). For these purposes, we auto-generate an FM (see Fig. 2)
based on the identified configuration scenarios and operations. The generated
FM uses a classic FM formalism, but serves only in supporting the selection of
the operations. If one of the operations has a CRT action, it is chosen by default
since it does not involve any modification to the asset instance in concern. The
generated FM can be configured from several dimensions. A software engineer
can make her choice of operations within or outside a configuration scenario,
and she can deselect the products or asset instances that she is not familiar with
as well, in order to reduce the possible choices.

It is essential to permit the reuse of the newly derived products. Therefore, to
enable an incremental evolution of the SPL, we enrich the SPL with the derived
products. We perform a FAMILIAR merge operation [14] on the restrictive FM
and the newly derived product FM to obtain an updated restrictive FM. As well,
we re-generate the free FM and we update the correlations.

3 Experiments and Limitations

We demonstrate the feasibility of our approach on a case study of 8 PVs, by
performing an incremental derivation and integration of 5 PVs into an SPL
composed initially of 3 PVs. The SPL comprises when it has its 8 PVs a total
of 93 features, 271 assets and 296 asset instances with an average of 66 features,
214 assets and 4.7KLOCs per PV. Table 4 illustrates some significant metrics



6 E. Ghabach et al.

Fig. 2. Generated FM upon configuration of cf4

that we collected from the configurations. Metrics show that the number of con-
figuration scenarios per configuration increases as long as the SPL becomes rich.
Further, despite that the number of required assets can be large, the number
of operations to perform might be few. The interest in our approach is that it
can identify the assets to be modified and the ones to retain without modifica-
tion. Further, the deselection of some undesired products or asset instances from
the generated FM considerably reduces the choice of a configuration scenario.
Moreover, metrics show that, if selection is made by operations regardless the
configuration scenarios that they belong to, the number of operations to perform
is less, compared to a selection made by configuration scenario. Thus, a software
engineer who is familiar with the SPL can rely on this dimension.

A limitation of our approach is that it is dependent on the architecture of
the developed SPL. A change in structure or naming of the SPL artifacts affects
the identified correlations. However, adhering to the proposed operations dur-
ing product derivation avoids such inconsistencies. Another limitation is that
correlations are identified at file level, while several related works when per-
forming feature location, map features to implementation blocks of several files.
Such techniques can be complementary to our approach, since we consider that
guidance is the most meaningful when provided at file level.



Guiding Clone-and-Own when Creating Unplanned Products from SPL 7

Table 4. Metrics of 5 sequential configurations to derive new PVs

Configuration cf4 cf5 cf6 cf7 cf8

NB of CSs 7 10 16 48 56

AVG NB of Products per CS 1.714 2.5 3 3.3 4.214

NB of required Assets 185 221 211 211 244

NB of Assets to modify if selection made by OPs 4 3 2 2 2

AVG NB of Assets to modify if selection made by CSs 7.143 3.5 4.5 3.167 2.286

NB of features added by the configuration 0 0 25 0 0

NB of Assets added after derivation 0 0 8 0 24

NB of Asset instances added after derivation 3 1 11 1 25
NB: number — AVG: average — CS: configuration scenario — OP: operation

4 Related Work

Fischer et al. developed the ECCO approach [7] that allows an automated deriva-
tion of existing PVs and supports the derivation of new PVs by an automated
extraction of the required artifacts, and a guidance during the manual comple-
tion of the PV. Further, it allows an incremental enrichment of the new PVs. In
our approach, we focus on guiding developers in manual derivation, since we con-
sider automated derivation can degrade ownership level and trust of developers
in the newly derived products. Martinez et al. proposed a bottom-up extractive
approach that migrates PVs from several artifact types into an SPL [11]. The
approach performs feature identification when features are not provided, and
feature location when features are known. Moreover, it provides word cloud vi-
sualization, which helps software engineers to name the identified features. This
proposed approach allows an automated derivation of existing and new PVs as
well, however, contrarely to our approach the new PVs cannot be incrementally
integrated in the SPL. Rubin and Chechik proposed a framework to manage PVs
developed using C&O approach [15]. They consider features as the main unit of
reuse and they define a set of useful operators to manage PVs and derive new
ones. Narwane et al. define operators to investigate traceability between features
and assets [13]. Although the functionality of some operators from [15] and [13]
are provided by our approach, we consider that integrating these operators in
our approach can be an added value.

5 Conclusion and Future Work

In this paper, we presented our approach in guiding software engineers to derive
new PVs based on C&O and incrementally integrating them into an SPL. Our
experiments showed that the configuration scenarios and operations to perform
that we propose upon a new configuration can guide software engineers to con-
struct new PVs, so they can maintain their ownership and trust on the developed
PVs since they built it by themselves. As future work, we plan to enhance the
provided guidance by a cost estimation for the identified operations, so software



8 E. Ghabach et al.

engineers can rely on it as an additional parameter during derivation. Further,
we aim to compare our approach to related works, and measure its effectiveness
in terms of efforts and time saving when compared to the classic C&O approach.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

2. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik,
M., Czarnecki, K.: What is a Feature?: A Qualitative Study of Features in Industrial
Software Product Lines. Proceedings of the 19th International Software Product
Line Conference. pp.16–25 (2015)

3. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S. : Feature-oriented
domain analysis (FODA) feasibility study. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst. (1990)

4. Bagheri. E., Ensan, F., Gasevic, D., Boskovic, M.: Modular feature models: Repre-
sentation and configuration. Journal of Research and Practice in Information Tech-
nology, 43(2):109 (2011)

5. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Science & Business Media, (2005)

6. Lapeña, R., Ballarin, M., Cetina, C.: Towards Clone-and-own Support: Locating
Relevant Methods in Legacy Products. Proceedings of the 20th International Sys-
tems and Software Product Line Conference. pp. 194–203. Beijing, China (2016)

7. Fischer, S., Linsbauer L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-
own with systematic reuse for developing software variants. Proceedings of IEEE In-
ternational Conference on Software Maintenance and Evolution. pp. 391–400 (2014)

8. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. 17th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 25–34 (2013)

9. Ziadi, T., Henard, C., Papadakis, M., Ziane, M., Le Traon, Y.: Towards a language-
independent approach for reverse-engineering of software product lines. Proceedings
of the 29th Annual ACM Symposium on Applied Computing. pp. 1064–1071 (2014)

10. Krueger, C.W., van der Linden, F.: Easing the transition to software mass cus-
tomization. International Workshop on Software Product-Family Engineering, pp.
282–293. Springer (2002)

11. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Le Traon, Y.: Bottom-up adop-
tion of software product lines: a generic and extensible approach. Proceedings of the
19th International Software Product Line Conference. pp. 101–110 (2015)

12. Assunção, W. K. G., Lopez-Herrejon, R. E. , Linsbauer, L., Vergilio, S. R., Egyed
A.: Reengineering legacy applications into software product lines: a systematic map-
ping. Empirical Software Engineering 22(6): 2972-3016 (2017)

13. Khandu Narwane, G., Galindo Duarte, J., Narayanan Krishna, S. and Benavides,
D., and Millo, J., Ramesh, S.: Traceability analyses between features and assets in
software product lines. Entropy MDPI (2016)

14. Acher, M., Collet, P., Lahire, P., France, R.B: Familiar: A domain-specific language
for large scale management of feature models. In Science of Computer Programming,
Vol. 78. Elsevier, pp. 657–681 (2013)

15. Rubin, J., Czarnecki, K., Chechik, M.: Managing cloned variants: a framework and
experience. Proceedings of the 17th International Software Product Line Conference.
pp. 101–110 (2013)


