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Abstract

We propose a new four-parameter lifetime distribution obtained by compounding two

useful distributions: the Weibull and Burr XII distributions. Among interesting features,

it shows a great flexibility with respect to its crucial functions shapes; the probability den-

sity function can exhibit unimodal (symmetrical and right-skewed), bimodal and decreas-

ing shapes, and the hazard rate function can accommodate increasing, decreasing, bath-

tub, upside-down bathtub and decreasing-increasing-decreasing shapes. Some mathematical

properties of the new distribution are obtained such as the quantiles, moments, generating

function, stress-strength reliability parameter and stochastic ordering. The maximum likeli-

hood estimation is employed to estimate the model parameters. A Monte Carlo simulation

study is carried out to assess the performance of the maximum likelihood estimates. We

also propose a flexible cure rate survival model by assuming that the number of competing

causes of the event of interest has the Poisson distribution and the time for the event follows

the proposed distribution. Four empirical illustrations of the new distribution are presented

to real-life data sets. The results of the proposed model are better in comparison to those

obtained with the exponential-Weibull, odd Weibull-Burr and Weibull-Lindley models.

Keywords— Weibull distribution; Burr distribution; compounding; maximum likelihood

method; Poisson distribution; cure rate model.
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1 Introduction

In probability theory, the act of compounding often refers to the mixing or joining of two

distributions with possible different nature, that is, (i) discrete with discrete, (ii) discrete with

continuous, and (iii) continuous and continuous. From a statistical point of view, this mixing

may leads to an increase flexibility in the subjacent model, which can accommodate a variety

of data sets generated from simple to complex phenomenons. A complete survey addressing

trends in compounding can be found in [22]. The objective of this paper is to introduce a

new promising distribution defined by mixing two useful continuous univariate distributions:

the Weibull and Burr XII distributions. We thus follow the spirit of [9] with the exponential-

Weibull (EW) distribution and [3] with the Weibull-Lindley (WL) distribution, both showing

remarkable properties in the modelling real life data sets of various kinds.
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Let us now present the distribution of interest, with motivations. Let Y be a random variable

following the Burr distribution with parameters c > 0 and k > 0, i.e. having the cumulative

distribution function (cdf) given by GB(y) = 1 − (1 + yc)−k, y > 0 (recall that the associated

survival function (sf) is given by ḠB(y) = 1−GB(y) = (1 + yc)−k and the hazard rate function

(hrf) is given by hB(y) = ckyc−1(1 + yc)−1). Let Z be a random variable following the Weibull

distribution with parameters a > 0 and b > 0, i.e. having the cdf given by GW (z) = 1 −
exp(−azb), z > 0 (recall that the associated sf is given by ḠW (z) = 1−GW (z) = exp(−azb) and

the associated hrf is given by hW (z) = abzb−1). Consider that Y and Z are independent random

variables. We define the minimum Weibull-Burr (minWB) distribution by the distribution of

the random variable X defined by the minimum of Y and Z, i.e. X = min{Y,Z}. Hence the

cdf of the minWB distribution is given by

F (x) = 1− ḠB(x)ḠW (x)

= 1− (1 + xc)−k exp(−axb), x > 0, (1.1)

where a > 0 is the scale parameter, and b > 0, c > 0 and k > 0 are shape parameters.

The associated sf, probability density function (pdf) and hrf of the minWB distribution are

respectively given by S(x) = (1 + xc)−k exp(−axb),

f(x) = (1 + xc)−k exp(−axb)
[
abxb−1 + ckxc−1 (1 + xc)−1

]
(1.2)

and

h(x) = abxb−1 + ckxc−1 (1 + xc)−1 . (1.3)

Henceforth, a random variable X with pdf (1.2) is denoted by X ∼ minWB(a, b, c, k). Some

special distributions of the minWB distribution are: (i) Weibull when k = 0, (ii) Burr when

a = 0, (iii) Weibull-log-logistic (WLL) when k = 1, (iv) Rayleigh-Burr (RB) when b = 2, (v)

exponential-Burr (EB) when b = 1, and (vi) Weibull-Lomax (WLx) when c = 1.

The major motivations for the new distribution are fivefold: (i) the cdf of the minWB

distribution is quite simple, giving simple expressions for the pdf, sf and hrf; (ii) the new

distribution is very flexible with respect to the pdf and hrf shapes. In particular, the possible

pdf shapes are decreasing, unimodal (right-skewed or symmetrical) and bimodal. This means

that the minWB model can show suitable fit to those data sets, whose histograms are similar to

the minWB pdf shapes. Furthermore, the minWB distribution exhibits monotone [increasing

(IFR) and decreasing (DFR)], non-monotone [bathtub (BT) and upside-down bathtub (UBT)]

and decreasing-increasing-decreasing (DID) failure rate shapes to cope with all types of lifetime

data sets; (iii) the WLL, WLx, RB, EB, Weibull and Burr distributions are special cases of the

proposed distribution; (iv) the minWB pdf shows bimodal feature as well; (v) suppose a system

has two sub-systems functioning in series independently at a given time, so that the system will

fail when the first sub-system fails. Consider that the failure times of the sub-systems follow

the Weibull and Burr distributions. Then, the time-to-failure of the system has cdf (1.1).

The paper is unfolded as follows. In Section 2, we derive some mathematical properties

of minWB distribution including shapes of pdf and hrf, quantiles, moments, mean deviations,

generating function, stress-strength reliability parameter and stochastic ordering. In Section 3,

the model parameters are estimated by maximum likelihood and a simulation study is performed.

In Section 4, we formulate the Poisson-Weibull-Burr regression model with cure fraction by

defining the pdf, cdf and hrf. In Section 5, the usefulness of the new distribution is illustrated

by means of four real data sets, where we prove empirically that our proposed model outperforms

some well-known lifetime distributions. Finally, Section 6 offers some concluding remarks.
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2 Properties of the minWB distribution

Hereafter, X denotes a random variable such that X ∼ minWB(a, b, c, k), F (x) is the cdf of X

given by (1.1), f(x) is the pdf of X given by (1.2) and h(x) is the hrf of X given by (1.3).

2.1 Quantile

For p ∈ (0, 1), the pth quantile of X, say xp, is defined by F (xp) = p. It is then the root of

xp =

{[
(1− p) exp(axbp)

]−1/k
− 1

}1/c

. (2.1)

For a given p, it can be computed numerically. This is the case for the median of X defined by

M = x1/2.

2.2 Asymptotics

The asymptotics of the cdf, pdf and hrf of X when x→ 0 are given below.

• F (x) ∼ axb.

• For f(x), we must distinguish the cases b > c, b = c and c > b. If b > c then f(x) ∼ ckxc−1
(note that it tends to +∞ if c ∈ (0, 1), k if c = 1 and 0 if c > 1). Moreover, if c > b then

f(x) ∼ abxb−1, if b = c then f(x) ∼ (ab+ ck)xc−1.

• For h(x), we have h(x) ∼ f(x), and the results aboves are still valid.

The asymptotics of the cdf, pdf and hrf of X when x→ +∞ are given below.

• 1− F (x) ∼ x−kc exp(−axb).

• f(x) ∼ abx−kc+b−1 exp(−axb) (note that it tends to 0 in all case).

• h(x) ∼ abxb−1 (note that it tends to 0 if b ∈ (0, 1), a if b = 1 and +∞ if b > 1).

These results show the effects of the parameters on the tails of the minWB distribution.

2.3 Shapes of the pdf

The critical points of the minWB pdf are the roots of the equation df(x)/dx = 0, i.e., after

calculus,

a2b2x2b(xc + 1)2 − abxb(xc + 1) [xc(b− 2ck − 1) + b− 1]

+ ckxc [c(kxc − 1) + xc + 1] = 0. (2.2)

By using any numerical software, we can examine Equation (2.2) to determine the local maximum

and minimum and inflexion points.

Figures 1 and 2 display some plots of the minWB pdf for selected values of a, b, c and k

(some of them are fixed, the others differ). The plots in Figures 1 and 2 reveal that the shapes

of the minWB pdf are decreasing, unimodal (right-skewed or symmetric) and bimodal.
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2.4 Shapes of the hrf

The critical points of the minWB hrf are obtained from the equation dh(x)/dx = 0, i.e., after

calculus,

a(b− 1)bxb−2(xc + 1)2 − ck
[
(xc + 1)xc−2 + c(x2c−2 − (xc + 1)xc−2)

]
= 0. (2.3)

By using any numerical software, we can examine Equation (2.3) to determine the local maximum

and minimum and inflexion points.

Figures 3 and 4 display some plots of the minWB hrf for different values of a, b, c and k

(some of them are fixed, the others differ). These plots indicate that the hazard rate shapes of

the minWB model are IFR, DFR, BT, UBT and DID.
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Figure 1: Plots of the minWB pdf for some parameter values.
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Figure 2: Plots of the minWB pdf for some parameter values.

2.5 Moments and generating function

First, we obtain general expressions for the following two integrals, which are used to determine

some structural properties of the minWB distribution. There are no closed-form expressions for

the integrals and then they can be computed numerically.

Integral 1: We define the integral J1(p, c, k, a, b) by

J1(p, c, k, a, b) =

∫ +∞

0
xp (1 + xc)−k exp(−axb)dx.
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Figure 3: Plots of the minWB hrf for some parameter values.
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Figure 4: Plots of the minWB hrf for some parameter values.

Let us now determine a series expansions for this integral. Using the generalized binomial

expansion, we have

(1 + xc)−k =
+∞∑
i=0

(
−k
i

)
xic1(0,1)(x) + 2−k1{1}(x) +

+∞∑
i=0

(
−k
i

)
x−c(i+k)1(1+∞)(x),

where 1A(x) denotes the indicator function over a given set of real numbers A, i.e. 1A(x) = 1

if x ∈ A and 1A(x) = 0 elsewhere, and
(−k
i

)
is the (generalized) binomial coefficient defined by(−k

i

)
= (−k)(−k − 1) . . . (−k − i+ 1)/i! and

(−k
0

)
= 1.

By the change of variable y = axb, we can write

J1(p, c, k, a, b) =
+∞∑
i=0

αiγ
(p+ ic+ 1

b
, a
)

+
+∞∑
i=0

α∗iΓ
(p− c(i+ k) + 1

b
, a
)
, (2.4)

where γ(m,x) =
∫ x
0 t

m−1e−tdt, Γ(m,x) =
∫ +∞
x tm−1e−tdt, m > 0, αi = b−1

(−k
i

)
a−(p+ic+1)/b and

α∗i = b−1
(−k
i

)
a−(p−c(i+k)+1)/b.

Integral 2: Let y > 0. We define the integral function J2(y; p, c, k, a, b) (function according to

y) by

J2(y; p, c, k, a, b) =

∫ y

0
xp (1 + xc)−k exp(−axb)dx.
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By using algebraic developments similar to those used for the previous integral, we can write

J2(y; p, c, k, a, b) =



+∞∑
i=0

αiγ
(p+ ic+ 1

b
, ayb

)
1(0,1)(y)

+∞∑
i=0

αiγ
(p+ ic+ 1

b
, a
)

+
+∞∑
i=0

α∗iΓ
(p− c(i+ k) + 1

b
, ayb

)
1(1,+∞)(y).

(2.5)

Equations (2.4) and (2.5) are the main tools to obtain some mathematical properties of

the minWB distribution such as the ordinary and incomplete moments, mean deviations and

moment generating function.

The nth ordinary moment of X can be determined from Equations (1.2) and (2.4) as

µ′n =

∫ +∞

0
xnf(x)dx = abJ1

(
n+ b− 1, c, k, a, b

)
+ ckJ1

(
n+ c− 1, c, k + 1, a, b

)
. (2.6)

Hence, the mean of X is given by µ′1 and the variance of X is given by V = µ′2 − (µ′1)
2. The

central moments of X can follow from Equation (2.6). Indeed, we have

µs =

p∑
k=0

(
s

k

)
(−1)kµ′s1 µ

′
s−k.

Similarly, the cumulants of X are given by the recursive equation: κs = µ′s−
∑s−1

k=1

(
s−1
k−1
)
κkµ

′
s−k,

with as initial value: κ1 = µ′1. The skewness and kurtosis of X can be calculated from the third

and fourth standardized cumulants. Indeed, they are respectively given by

γ1 =
κ3

κ
3/2
2

, γ2 =
κ4
κ22
.

The rth incomplete moment of X can be determined from Equations (1.2) and (2.5) as

mr(y) =

∫ y

0
xrf(x)dx = abJ2

(
y; r + b− 1, c, k, a, b

)
+ ckJ2

(
y; r + c− 1, c, k + 1, a, b

)
. (2.7)

The Bonferroni and Lorenz curves, useful in several fields, involve the first incomplete mo-

ment. For a given π ∈ (0, 1), they are given by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1,

respectively, where m1(q) comes from Equation (2.7) with r = 1 and q = Q(π) follows from

Equation (2.1).

The amount of scatter in a population is measured to some extent by the totality of deviations

from the mean and median defined by δ1 =
∫ +∞
0 |x−µ′1|f(x)dx and δ2(x) =

∫ +∞
0 |x−M |f(x)dx,

respectively. These measures can be expressed as δ1 = 2µ′1F (µ′1) − 2m1(µ
′
1) and δ2 = µ′1 −

2m1(M), where F (µ′1) is given by Equation (1.1).

The moment generating function of X can be expressed as

M(t) =

∫ +∞

0
exp(tx) exp(−axb)(1 + xc)−k

[
abxb−1 + ckxc−1(1 + xc)−1

]
dx, t < 0.

By expanding exp(−axb) in power series and using Equation (2.5), we obtain

M(t) =

+∞∑
i=0

(−a)i

i!

[
abJ1

(
b(i+ 1)− 1, c, k,−t, 1

)
+ ckJ1

(
bi+ c− 1, c, k + 1,−t, 1

)]
.

Table 1 provides the values of the mean, median, variance, skewness and kurtosis of X for

selected values of a, b, c and k. One can observe that the mean and variance of the minWB

model are decreasing functions of a and b and increasing functions of c and k. Also, these values

indicate that the minWB distribution can be left-skewed or right-skewed.
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Table 1: Mean, median, variance, skewness and kurtosis of X for some combinations. I: a,

b=5.0, c=1.3, k=0.6, II: a=0.5, b, c=0.3, k=1.6, III: a=1.5, b=1.5, c, k=2.6, IV: a=2.5, b=0.5,

c=2.5, k.

Varying Mean µ′1 Median M Variance V Skewness γ1 Kurtosis γ2
Parameter ↓

I a

0.5 0.8505 0.9104 0.1361 -0.4228 2.3799

1.5 0.7123 0.7580 0.0806 -0.5181 2.6236

5.0 0.5819 0.6143 0.0451 -0.5965 2.8988

25.0 0.4390 0.4586 0.0208 -0.6539 3.2271

II b

0.5 1.5241 0.0595 38.3800 13.6801 39.1397

1.5 0.5237 0.1158 0.6336 2.0954 8.0115

5.0 0.4274 0.1299 0.2392 0.6878 1.9001

25.0 0.4137 0.1387 0.2041 0.4431 1.3432

III c

0.5 0.3201 0.3008 0.0999 2.3395 9.9112

1.5 0.3805 0.3165 0.0792 1.4144 5.9816

5.0 0.5306 0.5301 0.0702 0.0341 2.4914

25.0 0.5903 0.5977 0.0892 -0.1702 1.7217

IV k

0.5 0.2528 0.0766 0.2033 4.6483 48.6909

1.5 0.2059 0.0763 0.0910 2.7029 15.1240

5.0 0.1593 0.0751 0.0384 1.6819 6.0251

25.0 0.1086 0.0700 0.0126 1.1186 3.3692

2.6 Stress-strength reliability

The reliability parameter R is defined as R = P(X1 > X2), where X1 and X2 are independent

random variables. An amount of applications of this parameter have been investigated in the

literature (such as the area of classical stress-strength model, the breakdown of a system having

two components. . . ). Let us now study it in the context of the minWD distribution. Let

X1 ∼ minWB(a1, b, c, k1) and X2 ∼ minWB(a2, b, c, k2) with cdfs denoted by F1(x) and F2(x)

and pdfs f1(x) and f2(x), respectively, the reliability R is given by

R = P(X1 > X2) =

∫ +∞

0
f1(x)F2(x)dx. (2.8)

Theorem 2.1 Suppose that X1 and X2 are two independent random variables as defined above

with fixed parameters b and c. Then we can express R as

R = 1− a1bJ1
(
b− 1, c, k1 + k2, a1 + a2, b

)
−ck1J1

(
c− 1, c, k1 + k2 + 1, a1 + a2, b

)
. (2.9)
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Proof of Theorem 2.1. Putting Equations (1.1) and (1.2) in Equation (2.8), we have∫ +∞

0
f1(x)F2(x)dx = 1− a1b

∫ +∞

0
xb−1(1 + xc)−(k1+k2) exp[−(a1 + a2)x

b]dx

− ck1
∫ +∞

0
xc−1(1 + xc)−1(1 + xc)−(k1+k2) exp[−(a1 + a2)x

b]dx.

Equation (2.9) follows immediately after using Equation (2.4). �

2.7 Stochastic ordering

Stochastic ordering has been recognized as an important tool in reliability theory and other

fields to assess comparative behavior. Here we present a stochastic ordering result related to the

minWD distribution. Let X1 and X2 be two random variables having cdfs, sfs and pdfs F1(x)

and F2(x), F̄1(x) = 1 − F1(x) and F̄2(x) = 1 − F2(x), and f1(x) and f2(x), respectively. The

random variable X1 is said to be smaller than X2 in the following ordering as:

1. stochastic order (denoted by X1 ≤st X2) if F̄1(x) ≤ F̄2(x) for all x;

2. likelihood ratio order (denoted by X1 ≤lr X1) if f1(x)/f2(x) is decreasing in x ≥ 0;

3. hazard rate order (denoted by X1 ≤hr X2) if F̄1(x)/F̄2(x) is decreasing in x ≥ 0;

4. reversed hazard rate order (denoted by X1 ≤rhr X2) if F1(x)/F2(x) is decreasing in x ≥ 0.

All these four stochastic orders defined in (1)–(4) are related to each other due to [20] and

the following implications hold:

(X1 ≤rhr X2)⇐ (X1 ≤lr X2)⇒ (X1 ≤hr X2)⇒ (X1 ≤st X2).

The following theorem reveals that the minWB distributions are ordered with respect to strongest

likelihood ratio ordering when appropriate assumptions hold.

Theorem 2.2 Let X1 ∼ minWB(a1, b, c, k1) and X2 ∼ minWB(a2, b, c, k2). If b > c and

k1/k2 > a1/a2 then X1 ≤lr X2.

Proof of Theorem 2.2. First, we have

f1(x)

f2(x)
=

(
exp(−a1xb)(1 + xc)−k1

exp(−a2xb)(1 + xc)−k2

)[
a1bx

b−1 + ck1x
c−1(1 + xc)−1

a2bxb−1 + ck2xc−1(1 + xc)−1

]
.

After simplification, we get

f1(x)

f2(x)
= exp[−(a1 + a2)x

b](1 + xc)−(k1+k2)
[
a1bx

b−1 + ck1x
c−1(1 + xc)−1

a2bxb−1 + ck2xc−1(1 + xc)−1

]
.

Next,

log

[
f1(x)

f2(x)

]
= −(a1 + a2)x

b − (k1 + k2) log(1 + xc)

+ log
[
a1bx

b−1 + ck1x
c−1(1 + xc)−1

]
− log

[
a2bx

b−1 + ck2x
c−1(1 + xc)−1

]
.

Therefore

d

dx
log

[
f1(x)

f2(x)

]
= −b(a1 + a2)x

b−1 − c(k1 + k2)x
c−1(1 + xc)

− bcxb+c−1(bxc + b− c)(k1a2 − k2a1)
[a1bxb(xc + 1) + ck1xc] [ba2xb(xc + 1) + ck2xc]

.
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The two first terms are always negative. The denominator of the ratio in the third term is

always positive and −
[
bcxb+c−1(bxc + b− c)(k1a2 − k2a1)

]
< 0 if b > c and k1/k2 > a1/a2.

Thus d[f1(x)/f2(x)]/dx < 0 and f1(x)/f2(x) is decreasing in x if b > c and k1/k2 > a1/a2,

implying that X1 ≤lr X2. �
The rest of the study is devoted to the study of the minWD distribution as statistical model,

with applications.

3 Estimation of parameters

3.1 Maximum likelihood estimation

Inference can be carried out in three different ways: point estimation, interval estimation and

hypothesis tests. Several approaches for parameter point estimation were proposed in the lit-

erature but the maximum likelihood method is the most commonly employed. The maximum

likelihood estimates (MLEs) enjoy desirable properties that can be used when constructing con-

fidence intervals for the model parameters. Large sample theory for these estimates delivers

simple approximations that work well in finite samples. The normal approximation for the

MLEs in distribution theory is easily handled either analytically or numerically.

We consider the estimation of the unknown parameters of the new distribution by the max-

imum likelihood method. Let x1, · · · , xn be n observations from the minWB distribution given

by (1.2) with parameter vector θ = (a, b, c, k)>. The log-likelihood ` = `(θ) for θ is given by

` = −a
n∑
i=1

xbi − k
n∑
i=1

log(1 + xci ) +
n∑
i=1

log
[
abxb−1i + ckxc−1i (1 + xci )

−1
]
. (3.1)

Equation (3.1) can be maximized either directly by using the R (optim function), SAS (NLMixed

procedure) or Ox (MaxBFGS function), or then by solving the nonlinear likelihood equations by

differentiating it. The components of the score vector U(θ) are

Ua = −
n∑
i=1

xbi +

n∑
i=1

Ai
a

(Ai +Bi)
−1 ,

Ub = −1

b

n∑
i=1

(Aixi log xi) +

n∑
i=1

(
Ai
b

+Ai log xi

)
(Ai +Bi)

−1 ,

Uc = −k
n∑
i=1

xci log xi
1 + xci

+ k

n∑
i=1

xc−1i (1 + xci + c log xi)

(1 + xci )
2

(Ai +Bi)
−1 ,

Uk = −
n∑
i=1

log(1 + xci ) +
1

k

n∑
i=1

Bi (Ai +Bi)
−1 ,

where Ai = abxb−1i and Bi = ckxc−1i (1 + xci )
−1.

Setting these equations to zero and solving them simultaneously yields the MLEs θ̂ of the

model parameters.

Under standard regularity conditions, the multivariate normal N4(0, J(θ̂)−1) distribution,

where J(θ̂)−1 is the observed information evaluated at θ̂, can be used to construct approximate

confidence intervals for the model parameters. Further, we can compare the minWB model with

any of its special models using likelihood ratio (LR) statistics.

3.2 Monte Carlo simulation study

We evaluate the performance of the MLEs of the model parameters of the minWB distribution

using Monte Carlo simulations for selected parameter values varying the sample size. The
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simulation is repeated 3, 000 times each for sample size n= 50, 100, 200, 300, 500. The parametric

values are I: a = 0.5, b = 3, c = 1.5, k = 1.8 and II: a = 1.0, b = 3, c = 1.5, k = 2. The MLEs are

evaluated by maximizing Equation (3.1) using the optim routine in the R software. Table 2 gives

the MLEs, average biases (Biases), mean square errors (MSEs), coverage probabilities (CPs),

average lower bounds (LBs), average upper bounds (UBs) for the estimates of the parameters a,

b, c and k for different sample sizes. The figures in this table indicate that the biases and MSEs

decrease when the sample size increases and the MLEs tend to be close to the true parameter

values. The CPs of the confidence intervals are quite close to the nominal level of 95% thus

indicating that the asymptotic results for the MLEs can be used for estimating and constructing

confidence intervals.

4 The Poisson Weibull Burr distribution with cure fraction

4.1 Motivations

We define the Poisson Weibull Burr (PWB) distribution by assuming that the latent number of

failure causes has a Poisson distribution and that the time for these causes to be activated follows

the minWB model. Also, we propose the inclusion of covariates in the model formulation in order

to study their effects on the hrf. Inferential aspects based on the maximum likelihood method

is discussed. Models for survival data with a cure fraction (also known as cure rate models or

long-term survival models) play an important role in reliability and survival analysis. Cure rate

models cover situations where there are sampling units not susceptible to the occurrence of the

event of interest. The proportion of such units is called the cured fraction. These models have

become very popular due to significant progress in treatment therapies leading to enhanced cure

rates. The proportion of these “cured units” is termed the cure fraction.

The literature on the subject is by now rich and growing rapidly. The books by [13] and

[12], as well as the review paper by [6], [23] and [7], could be mentioned as key references.

Alternatively, other works dealt with cure rate models. For example, [11] proposed the long-

term survival model with interval-censored data, [17] introduced the power series beta-Weibull

regression model for predicting breast carcinoma, [24] investigated the Weibull-negative-binomial

regression model with cure rate under latent failure causes, [16] studied the regression models

generated by gamma random variables with long-term survivors and [21] defined the general

long-term aging model with different underlying activation mechanisms.

4.2 The PWB cure rate model

The PWB cure rate model is derived as follows. For an individual in the population, let N denote

the unobservable number of causes of the event of interest for this individual. We assume that

N has a Poisson distribution with mean τ . The time for the jth cause to produce the event

of interest is denoted by Zj , j = 1, . . . , N . Further, we consider that, conditional on N , the

Z ′js are independent and identically random variables having cumulative function (1.1) and that

Z1, Z2, . . . are independent of N . The observable time to the event of interest is defined by

X = min{Z1, . . . , ZN}, and T = +∞ if N = 0 with P(X = +∞|N = 0) = 1.

Under this setup, the survival function for the population is given by

Spop(x) = P(N = 0) + P(Z1 > x, . . . , ZN > x|N ≥ 1)P(N ≥ 1).

Among others, [23] and [18] demonstrated that Spop(t) = A
[
S(t)

]
, where A(·) is the prob-

ability generating function (pgf) of the number of competing causes (N). Then, the sf for the

population reduces to

Spop(x) = exp
{
−τ
[
1− e−axb (1 + xc)−k

]}
(4.1)
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and the cured fraction is given by Spop(∞) = π0 = e−τ (not a proper survival function). The

corresponding pdf reduces to

fpop(x) =
τe−ax

b

(1 + xc)k

[
abxb−1 +

ckxc−1

(1 + xc)

]
exp

{
−τ
[
1− e−axb (1 + xc)−k

]}
. (4.2)

The hrf for the population is given by

hpop(x) =
τe−ax

b

(1 + xc)k

[
abxb−1 +

ckxc−1

(1 + xc)

]
. (4.3)

Equations (4.1), (4.2) and (4.3) are referred to as the PWB model with cure fraction in

competitive-risk structure.

Then, the sf for the non-cured population, so-called the PWB survival function, is given by

S(x) = P (X > x|N ≥ 1) =
exp

{
−τ
[
1− e−axb (1 + xc)−k

]}
− e−τ

1− e−τ
. (4.4)

We note that S(0) = 1 and S(+∞) = 0, so that it is a proper survival function. Henceforth, the

model (4.4) will be referred to as the PWB survival function. The new pdf for the non-cured

population reduces to

f(x) =
τe−ax

b

(1 + xc)k

[
abxb−1 +

ckxc−1

(1 + xc)

] exp
{
−τ
[
1− e−axb (1 + xc)−k

]}
1− e−τ

. (4.5)

In Equation (4.5), the parameter a ≥ 0 controls the scale of the distribution while the parameters

b > 0, c > 0, k > 0 and τ > 0 control its shape.

Some news special cases of Equation (4.5) are: (i) The Poisson Weibull (PW) model when

k = 0, (ii) The Poisson Burr (PB) model when a = 0, (iii) The Poisson Weibull-log-logistic

(PWLL) model when k = 1, (iv) The Poisson Rayleigh Burr (PRB) model when b = 2, (v)

The Poisson exponential-Burr (PEB) model when b = 1, and (vi) The Poisson Weibull-Lomax

(PWLx) model when c = 1.

4.3 Inference

Consider the situation where the time to the event is not completely observed and is subjected

to right censoring. Let Di denote the censoring time. We then observe xi = min{Xi, Di} and

δi = I(Xi ≤ Di), where δi = 1 if Xi is the observed time to the event defined before and δi = 0

if it is right censored (for i = 1, . . . , n).

In many medical problems, the lifetimes are affected by explanatory variables such as the

cholesterol level, blood pressure, weight and many others. Parametric models to estimate uni-

variate survival functions for censored data regression problems are widely used. The parameter

τ in (4.1) is now linked to a vector vi of explanatory variables by τi = exp(vTi β), for i = 1, . . . , n,

where β = (β1, . . . , βp)
T denotes the vector of regression coefficients. The vector of model pa-

rameters is denoted by θ = (a, b, c, k,βT )T .

We have the following special PWM regression models obtained from Equation (4.1): (i)

The PW regression model when k = 0, (ii) The PB regression model when a = 0, (iii) The

PWLL regression model when k = 1, (iv) The PRB regression model when b = 2, (v) The PEB

regression model when b = 1, and (vi) The PWLx regression model when c = 1.

Let θ denote the parameter vector of the distribution function F (x) of the time-to-event.

From n triples of times and censoring indicators (x1, δ1,vi), . . . , (xn, δn,vn), the observed full
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log-likelihood function under non-informative censoring is given by

l(θ) =
n∑
i=1

δi(v
T
i β − axbi) + k

n∑
i=1

δi log(1 + xci ) +
n∑
i=1

δi log

(
abxb−1i +

ckxc−1i

1 + xci

)

−
n∑
i=1

exp(vTi β)
[
1− exp(−axbi)(1 + xci )

−k
]
.

The MLE θ̂ of θ is obtained by solving the nonlinear equations Ua(θ) = 0, Ub(θ) = 0,

Uc(θ) = 0, Uk(θ) = 0 and Uβj (θ) = 0, j = 1, . . . , p. These equations cannot be solved

analytically and statistical software can be used to solve them numerically. We can use iterative

techniques such as Newton-Raphson type algorithms to calculate the estimate θ̂. We use the

software SAS (NLMixed procedure) to evaluate the MLE θ̂.

The inference procedures for θ = (a, b, c, k,βT )T can be based on the multivariate normal

approximation

(â, b̂, ĉ, k̂, β̂
T

)T ∼ Np+4

{
(a, b, c, k,βT )T ,−L̈−1(θ̂)

}
,

where −L̈(θ) =
{
∂2l(θ)
∂θθT

}
, the (p + 4)× (p + 4) observed information matrix, can be calculated

numerically.

Besides estimation of the model parameters, hypothesis tests can be taken into account.

Let θ1 and θ2 be proper disjoint subsets of θ. Consider the test of H0 : θ1 = θ01 against

H1 : θ1 6= θ01, where θ2 is an unspecified vector. Let θ̂0 maximize the the log-likelihood l(θ)

constrained to H0 and define the likelihood ratio (LR) statistic by w = 2[l(θ̂) − l(θ̂0)]. Under

H0 and some regularity conditions, the statistic w converges in distribution to a chi-square

distribution with dim(θ1) degrees of freedom.

5 Applications of the minWB distribution and PWB models

In this section, we provide some applications of the minWB and PWB models.

5.1 Application 1: WB distribution

Here, we compare the fits of the minWB, WL, EW and OWB (see [2]) distributions by means

of four real data sets to illustrate the potentiality of the minWB model. The densities of the

competitive models are, respectively, given by

fEW (x) = (λ+ abxb−1) exp[−(λx+ axb)], x, a, b, λ > 0,

fWL(x) =
1

1 + λ
exp[−(λ+ axb)]

[
(1 + λ+ λx)(λ+ abxb−1)− λ

]
, x, a, b, λ > 0,

fOWB(x) = abckxc−1(1 + xc)bk−1
[
1− (1 + xc)−k

]b−1
exp

{
−a[(1 + xc)k − 1]b

}
,

x, a, b, c, k > 0.

We estimate the unknown parameters of the distributions by maximum likelihood. We com-

pute the log-likelihood function evaluated at the MLEs (ˆ̀) using a limited-memory quasi-Newton

code for bound-constrained optimization (L-BFGS-B). For model comparison, we consider five

well-known statistics: the maximized log-likelihood (ˆ̀), Akaike information criterion (AIC),

Anderson-Darling (A∗), Cramér–von Mises (W ∗) and Kolmogorov-Smirnov (K-S) measures,

where lower values of these statistics and higher p-values of K-S indicate good fits. The required

computations are carried out using the R script AdequacyModel which is freely available from
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http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

The following data sets are considered for analysis:

Data set 1: Drilling Machine data. The first data set refers to the 50 observations with

hole and sheet thickness of 12 mm and 3.15 mm (see [10]): 0.04, 0.02, 0.06, 0.12, 0.14, 0.08,

0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12,

0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06,

0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

Data set 2: Guinea Pigs data. The second data set represents the survival times (in days)

of 72 guinea pigs infected with virulent tubercle bacilli (see [5]). Guinea pigs are known to have

high susceptibility of human tuberculosis, which is one of the reasons for choosing this species.

The survival times of the Guinea pigs in days are: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77,

0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21,

1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76,

1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78,

2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

Data set 3: Stress Level data. The third data set (see [8]) represents the failure times of

Kevlar 49/epoxy strands when the pressure is at 90% stress level: 0.01, 0.01, 0.02, 0.02, 0.02,

0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18,

0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60,

0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92,

0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34,

1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,

2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Data set 4: Failure Times data. The fourth data set (see [15]) represents the failures times

of 50 items: 0.032, 0.035, 0.104, 0.169, 0.196, 0.260, 0.326, 0.445, 0.449, 0.496, 0.543, 0.544,

0.577, 0.648, 0.666, 0.742, 0.757, 0.808, 0.857, 0.858, 0.882, 1.138, 1.163, 1.256, 1.283, 1.484,

1.897, 1.944, 2.201, 2.365, 2.531, 2.994, 3.118, 3.424, 4.097, 4.100, 4.744, 5.346, 5.479, 5.716,

5.825, 5.847, 6.084, 6.127, 7.241, 7.560, 8.901, 9.000, 10.482, 11.133.

The numerical measures of some statistics for the data sets 1–4 and for the fitted minWB

model to these data are given in Tables 3 and 4, respectively.

We also analyzed the hazard rates of these four data sets. In order to identify the shapes of

data, we consider the graphical method based on total time on test (TTT) transformed pioneered

by [4]. The empirical illustration of the TTT-transform is given by [1]. The TTT plot is obtained

by plotting G(r/n) =
[∑r

i=1 Ti:n + (n − r)Tr:n
]
/
[∑n

i=1 Ti:n
]

versus r/n(r = 1, 2, . . . , n), where

the observed variables Ti:n (for i = 1, 2, . . . , n) are the order statistics of the sample.

The TTT plots for four data sets are given in Figures 5 and 6. The TTT-plots for the data

sets 1 and 2 in Figure 5(a) and 5(b) reveal that the hrf is concave giving an indication of an

increasing hazard rate. The TTT-plot for the data set 3 in Figure 6(a) shows that the hrf is first

convex, then concave and lastly convex giving an indication of decreasing-increasing-decreasing

(DID) shape. The TTT-plot in Figure 6(b) for the data set 4 shows that the hrf is first concave

then convex giving an indication of increasing-decreasing (UBT) shape. Hence, the minWB

model could be in principle an appropriate model for fitting these data sets.

In Figures 7 and 8, we consider kernel density estimation (a non-parametric approach) with
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Gaussian Filter. The kernel density estimator of f(x) is given by

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
,

where K(x) is the kernel function usually symmetric,
∫ +∞
−∞ K(x)dx = 1 and h > 0 is a smoothing

parameter. Here we use a Gaussian kernel and the so called rule-of-thumb for the choice of h

(see [19]).
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Figure 5: TTT plots for (a) Data set 1 (b) Data set 2.
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Figure 6: TTT plots for (a) Data set 3 (b) Data set 4.

(a) (b)

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

De
ns

ity

−2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

De
ns

ity

Figure 7: Gaussian kernel density estimation for data sets. (a) Data set 1 (b) Data set 2.

Table 6 lists the MLEs and their corresponding standard errors (in parentheses) of the model

parameters for the fitted models to data sets 1–4. The results in Table 5 indicate that the minWB

model provides the best fit as compared to the other models.
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Figure 8: Gaussian kernel density estimation for data sets (a) Data set 3 (b) Data set 4.
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Figure 9: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 1.

5.2 Application 2: PWB model with cure fraction: Gastric cancer data

The data set refers to n = 201 patients observed with gastric adenocarcinoma. Gastric (stomach)

cancer is a disease in which malignant (cancer) cells form in the lining of the stomach. Almost all

gastric cancers are adenocarcinomas (cancers that begin in cells that make and release mucus and

other fluids). Other types of gastric cancer are gastrointestinal carcinoid tumors, gastrointestinal

stromal tumors and lymphomas. These data sets have been analyzed by [14] and [16]. The

response variable is the time xi in months after surgery until death. The patients who die from

other causes and the patients that are still alive at the end of the study are censored observations

(53%). The only covariate is the type of therapy: vi1 (0=adjuvant chemoradiotherapy, n = 125;

1=surgery alone, n = 76). We are interested in the effect of the explanatory variable on the

cure fraction.

For the PWB regression model with cure fraction, we consider (i = 1, . . . , 201):

τi = exp(β0 + β1vi1).

Recently, [16] analyze these data using the family called the Poisson-gamma-G (PG-G) model

with cure fraction in competitive-risk structure. The authors estimate of the parameters of the

the following models: Poisson-gamma Weibull (PGW), Poisson-gamma log-logistic (PGLL),
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Figure 10: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 2.

Poisson-gamma Birnbaum-Saunders (PGBS) and Poisson-gamma generalized half-normal (PG-

GHN) regression model with cure fraction. In this application, we compare all these regression

models with the PWB regression model with cure fraction.

In Table 7, we list the values of the AIC, Consistent Akaike Information Criterion (CAIC)

and Bayesian Information Criterion (BIC) for all models discussed in Section 4. So, we will have

more evidence to be able to discriminate and choose the most suitable model. The lowest values

of these information criteria correspond to the PWLx regression model with cure fraction, which

provides the best fit to the current data among these models.

Table 8 gives the MLEs for the fitted PWLx regression model with cure fraction. At a 5%

significance level, the regression coefficient is significant for the type of therapy (v1).

Goodness-of-fit. We adopt a regression structure for the cure probability in long-term sur-

vivor models (see Section 4). We now estimate the cure rate (π0). Note that

τ̂ =
1

201

201∑
i=1

τ̂i = 0.7242,

where

τ̂i = exp(−0.6282 + 0.4539vi1),

and then

π̂0 = e−τ̂ = 0.4847.

In order to assess if the model is appropriate, Figure 13a displays the empirical survival

function and the estimated marginal survival functions given by Equation (4.1) from the fitted

PWLx model with long-term survivors.

The estimates of the cure rate for patients stratified by type of therapy (v1) are:

• For Chemoradiotherapy (v1 = 0)

τ̂0 = exp(−0.6282) and the cured fraction is π̂00 = e−τ̂0 = 0.5865.

• For Surgery alone (v1 = 1)

τ̂1 = exp(−0.6282 + 0.4539) and the cured fraction is π̂01 = e−τ̂1 = 0.4317.
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Figure 11: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 3.

Also, the estimated survival function and cure fraction stratified by v1 are displayed in Figure

13b, from which a significant fraction of survivors can be observed. Note that the proportion of

cured is greater for patients receiving chemoradiotherapy.

6 Concluding remarks

We propose and study the minimun Weibull-Burr (minWB) model and obtain some mathemat-

ical properties such as quantile function, ordinary and incomplete moments, mean deviations,

generating function, stress-strength reliability and stochastic ordering. The model parameters

are estimated by the method of maximum likelihood. Some simulations are performed to check

the asymptotic properties of the estimates. We define the Poisson-Weibull-Burr regression model

with cure fraction as a competitor to other existing regression models. Some applications to

real data set are presented to illustrate the potentiality of the proposed models. We expect the

utility of the proposed models in different fields especially in lifetime and reliability.
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Figure 12: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 4.
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Figure 13: (a) Kaplan-Meier curves (solid lines), the estimated PWLx survival function and the

estimated cure fraction for the gastric cancer data. (b) Estimates of the survival function and

cure fraction of model stratified by type of therapy for the gastric cancer data.
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Table 2: Monte Carlo simulation results: MLEs, Biases, MSEs, CPs, LBs and UBs.

n Parameter MLE Bias MSE CP LB UB

I

50 a 0.4482 0.0598 0.2501 0.9403 0.3097 0.5868

b 4.8071 1.8071 8.9206 0.8358 4.1446 5.4696

c 1.5154 0.0154 0.1432 0.9552 1.4100 1.6207

k 1.9229 0.1229 0.5944 0.8806 1.7109 2.1350

100 a 0.4943 0.0557 0.2848 0.9437 0.3892 0.5994

b 4.1836 1.1836 4.1348 0.8451 3.8579 4.5093

c 1.5172 0.0172 0.0994 0.9718 1.4552 1.5792

k 1.8253 0.0253 0.5617 0.8998 1.6777 1.9729

200 a 0.5562 0.0562 0.2382 0.9787 0.4887 0.6237

b 3.7267 0.7267 2.6368 0.8553 3.5244 3.9290

c 1.4830 0.0170 0.0589 0.9574 1.4493 1.5167

k 1.7619 0.0381 0.4219 0.7447 1.6716 1.8523

300 a 0.5397 0.0397 0.1978 0.9895 0.4893 0.5901

b 3.5230 0.5230 1.6379 0.8610 3.3901 3.6558

c 1.4924 0.0076 0.0480 0.9579 1.4675 1.5173

k 1.7245 0.0255 0.3598 0.8737 1.6568 1.7922

500 a 0.5059 0.0159 0.1323 0.9501 0.5445 0.6072

b 3.2088 0.2088 0.8549 0.9498 3.1295 3.2882

c 1.4695 -0.0305 0.0296 0.9500 1.4546 1.4844

k 1.7997 0.0103 0.2433 0.9400 1.6572 1.7423

II

50 a 0.8610 0.1390 0.7500 0.9125 0.6229 1.0991

b 6.3291 3.3291 6.6283 0.8000 5.2307 7.4274

c 1.5619 0.0619 0.8992 0.9167 1.4388 1.6851

k 2.2878 0.4878 1.6848 0.7500 1.9527 2.6229

100 a 0.9934 0.0266 0.6577 0.8675 0.8337 1.1531

b 4.4732 1.4732 5.7956 0.8747 3.9661 4.9802

c 1.5075 0.0075 0.1388 0.9518 1.4342 1.5809

k 2.0309 0.0309 1.1146 0.8554 1.8230 2.2388

200 a 1.0195 0.0195 0.4561 0.9565 0.9255 1.1136

b 4.0912 1.0912 4.0493 0.9065 3.7841 4.3982

c 1.4922 0.0058 0.0697 0.9348 1.4555 1.5290

k 1.9767 0.0233 0.7875 0.8478 1.8532 2.1003

300 a 0.9893 0.0107 0.4083 0.8969 0.9166 1.0619

b 3.7425 0.7425 3.4347 0.9113 3.5494 3.9356

c 1.4831 0.0039 0.0474 0.9054 1.4495 1.5166

k 1.9639 0.0161 0.7634 0.8823 1.8646 2.0632

500 a 1.0094 0.0094 0.1971 0.9489 0.9703 1.0485

b 3.1607 0.3607 0.8446 0.9502 3.2863 3.4352

c 1.4942 -0.0018 0.0366 0.9501 1.4575 1.4909

k 2.0007 0.0007 0.3833 0.9568 1.9461 2.0552
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Table 3: Summary statistics for the data sets 1–4.

Data n Mean Median Var. Skewness Kurtosis Min Max

Set 1: 50 0.163 0.160 0.007 0.072 2.216 0.02 0.32

Set 2: 72 1.837 1.560 1.478 1.755 7.152 0.08 7.0

Set 3: 101 1.025 0.800 1.253 3.002 16.70 0.01 7.89

Set 4: 50 2.897 1.383 9.047 1.118 3.240 0.032 11.133

Table 4: Summary statistics for the minWB distribution fitted to data sets 1–4.

Data Mean Median Var. S. D. Skewness Kurtosis

Set 1: 0.1633 0.1605 0.0065 0.0804 0.0413 2.5005

Set 2: 1.8380 1.4866 1.5402 1.2410 1.9570 8.8400

Set 3: 1.0216 0.8186 1.1759 1.0844 3.6427 34.6871

Set 4: 2.8910 1.3886 8.5375 2.9219 1.2355 3.8592

Table 5: The statistics ˆ̀, AIC,A∗, W ∗, K-S and P-value for the data sets 1–4.

Distribution ˆ̀ AIC A∗ W ∗ K-S P-value

Data set 1

minWB -57.2249 -107.8497 0.4436 0.0730 0.0889 0.8239
WL -56.7418 -107.4836 0.4763 0.0788 0.0976 0.7275
EW -56.7323 -107.4646 0.4821 0.0802 0.1002 0.6971
OWB -55.8928 -103.7855 0.6430 0.1051 0.1091 0.5916

Data set 2

minWB 97.2426 202.4853 0.1536 0.0232 0.0514 0.9913
WL 108.6217 223.2434 0.8644 0.1380 0.2168 0.0023
EW 104.0168 214.0336 0.9758 0.1603 0.1135 0.3121
OWB 104.0160 216.0320 0.9757 0.1602 0.1128 0.3190

Data set 3

minWB 98.2315 204.4629 0.2816 0.0347 0.0523 0.945
WL 103.6844 213.3688 0.8413 0.1373 0.1069 0.198
EW 102.9160 211.8320 1.0448 0.1841 0.0886 0.406
OWB 102.9772 213.9544 1.1118 0.1988 0.0902 0.384

Data set 4

minWB 99.6313 207.2626 0.2519 0.0437 0.0866 0.816
WL 105.2206 216.4412 0.7036 0.1320 0.2248 0.011
EW 102.5311 211.0622 0.5493 0.0971 0.1109 0.533
OWB 102.5315 213.0631 0.5477 0.0967 0.1116 0.526
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Table 6: MLEs and their standard errors (in parentheses) for the data sets 1–4.

Distribution a b c k λ

Data set 1

minWB 3.4425 115.7659 7.0668 1.4788 -
(0.9872) (114.3137) (9.8228) (0.5072) -

WL 3.2015 4.4621 - - 2.6462
(0.9125) (0.4891) - - (1.2208)

EW 109.0637 3.1182 - - 1.8680
(114.3953) (0.8582) - - (1.13877)

OWB 0.0260 1.0340 0.8446 80.5528 -
(0.0784) (0.1803) (7.2285) (248.5867) -

Data set 2

minWB 27.1932 0.0355 0.17694 1.4943 -
(19.9536) (0.0300) (0.0526) (0.2236) -

WL 0.1427 80.3697 - - 0.8345
(0.0018) (85.0955) - - (0.0738)

EW 0.3117 1.6173 - - 0.0000
(0.1470) (0.2256) - - (0.1436)

OWB 0.0189 0.9721 9.0398 86.2455 -
(0.0211) (0.0234) (30.2416) (96.2013) -

Data set 3

minWB 5.4645 0.2652 0.7096 0.7029 -
(1.0051) (0.1505) (0.1152) (0.1001) -

WL 61.4381 0.1263 - - 1.3775
(72.3178) (0.0025) - - (0.1066)

EW 0.2788 0.7413 - - 0.7237
(0.5996) (0.4483) - - (0.5755)

OWB 0.0109 0.9807 10.0264 85.2866 -
(0.0079) (0.0239) (38.5478) (62.1627) -

Data set 4

minWB 1.1152 0.6451 0.0027 2.8371 -
(0.1854) (0.1250) (0.0019) (0.3356) -

WL 56.0004 0.0900 - - 0.5572
(133.3242) (0.0026) - - (0.0589)

EW 0.3763 0.8690 - - 0.0366
(1.2059) (0.4681) - - (1.1929)

OWB 0.0105 0.9731 10.0811 84.8302 -
(0.0153) (0.0288) (41.7357) (124.2766) -
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Table 7: Some statistics from the fitted regression models with cure fraction to the gastric cancer

data.

Statistics

Model proposed AIC CAIC BIC

PWB 886.4 886.8 906.2

PW 898.2 898.4 911.4

PB 944.3 944.5 957.5

PWLL 1011.3 1011.6 1027.8

PRB 887.6 887.9 904.1

PEB 899.2 899.5 915.7

PWLx 884.4 884.7 900.9

Model proposed by Statistics

[16] AIC CAIC BIC

PGW 900.3 900.6 916.8

PGLL 900.1 900.4 916.7

PGBS 893.9 894.2 910.4

PGGHN 892.9 893.2 909.4

Table 8: MLEs for the full PWLx regression model with cure rate fraction fitted to the gastric

cancer data.

Parameter Estimate Standard Error 95% C.L. p-value

a 0.0003 0.00004 (0.0002, 0.0004) –

b 2.6880 0.3940 (1.9111, 3.4649) –

k 0.0957 0.02442 (0.0475, 0.1438) –

β0 -0.6282 0.1805 (-0.9842, -0.2722) 0.0006

β1 0.4539 0.2179 (0.0241, 0.8837) 0.0385
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