Uniqueness and stability for the recovery of a time-dependent source and initial conditions in elastodynamics

Abstract : This paper is concerned with inverse source problems for the time-dependent Lamé system and the recovery of initial data in an unbounded domain corresponding to the exterior of a bounded cavity or the full space R 3. If the time and spatial variables of the source term can be separated with compact support, we prove that the vector valued spatial source term can be uniquely determined by boundary Dirichlet data in the exterior of a given cavity. If the cavity is absent, uniqueness and stability for recovering source terms depending on the time variable and two spatial variables in the whole space are also obtained using partial Dirichlet boundary data.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01902820
Contributeur : Yavar Kian <>
Soumis le : mardi 23 octobre 2018 - 19:50:19
Dernière modification le : samedi 10 novembre 2018 - 01:16:58
Document(s) archivé(s) le : jeudi 24 janvier 2019 - 18:13:05

Fichier

HuKian-2018-4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01902820, version 1

Collections

Citation

Guanghui Hu, Yavar Kian. Uniqueness and stability for the recovery of a time-dependent source and initial conditions in elastodynamics. 2018. 〈hal-01902820〉

Partager

Métriques

Consultations de la notice

216

Téléchargements de fichiers

14