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Abstract

Let G = (V,E) be a connected graph, let = € V(G) be a vertex and e = yz €
E(G) be an edge. The distance between the vertex z and the edge e is given
by da(z,e) = min{dg(z,y),dc(z,2)}. A vertex t € V(G) distinguishes two edges
e,f € E(G) if dg(t,e) #dg(t, f). Aset RC V(G) is an edge metric generator for
G if every two edges of G are distinguished by some vertex of R. The minimum
cardinality of R is called the edge metric dimension and is denoted by edim(G).
In this paper, we compute the edge metric dimension of barcycentric subdivision of
Cayley graphs Cay(Z,, ® Z) .

Keywords: metric dimension, edge metric dimension, resolving set, barcycentric subdivi-
sion, Cayley graph
Mathematics Subject Classification: 05C12, 05C85, 05C90.

1 Introduction

The concept of metric dimension was introduced by Slater [25] and studied independently
by Harary and Melter [12]. This problem has been investigated widely since then. The
metric dimension has a lot of applications in different areas of science and technology.
The concept of the edge metric dimension is a recent advancement in this line of research.
Next we reveal some of the applications of metric dimension in various subjects.



The metric dimension arises in many diverse areas, including navigation of robots [21],
telecommunications [5], combinatorial optimization [24] and sonar and coast guard Loran
[25] and applications to chemistry in [8, 9, 14]. Furthermore, this topic has some applica-
tions to problems of pattern recognition and image processing, some of which involve the
use of hierarchical data structures [23]. Metric dimension of several interesting classes of
graphs can be seen in [2, 1, 3, 4, 7, 15, 16, 17, 18, 22, 26].

Let G = (V, E) be a simple and connected graph. For a vertex x € V(G) distinguishes
two vertices y, z € V(G) if dg(y,x) # dg(z, ), where dg(x,y) denotes the length of the
shortest path between the vertices z and y in G. A vertex set Ry C V(G) is a metric
generator for G, if any pair of vertices of G is distinguished by at least one vertex of
Ry and R; is the resolving set of G'. The minimum cardinality of any metric generator
for G is the metric dimension of G, denoted by dim(G). Let Ry = {ri,r2,...,75} be
an ordered set of vertices of G and let = € V(G), then the representation r(x|R;) of
x with respect to R; is the s-tuple (dg(x,r1),dg(x,1r2),da(z,r3),...,da(z,75)) . Since
the set R; has the minimum cardinality, therefore this is also known as the basis of G,
and its cardinality is called the metric dimension or location number [6].

Similarly, for z € V(G) be a vertex and e = yz € E(G) be an edge. The distance
between the vertex x and the edge e is given by dg(z,e) = min{dg(x,y),dg(z, 2)}.
A vertex t € V(G) distinguishes two edges e, f € E(G) if dg(t,e) # da(t, f). A set
R C V(G) is an edge metric generator for G if every two edges of G are distinguished
by some vertex of R. The minimum cardinality of R is called the edge metric dimension
and is denoted by edim(G) [19]. Let R = {r1,re,...,7} be an ordered set of vertices
of G and let e € F(G), then the representation r(e|R) of e with respect to R is the
t-tuple (dg(e,r1),dg(e,r2),da(e,rs),...,dg(e,r)) .

In addition, combined (mixed) form of these two parameters depicted above is of
fascinate. A vertex x € V/(G) distinguishes two elements (vertices or edges) wu,v €
V(G) U E(G) if dg(z,u) # dg(x,v). A set R™ C V(G) is a mixed metric generator for
G if every two distinct elements (vertices or edges) of G are distinguished by some vertex
of R™. The smallest cardinality of R is the mixed metric dimension and is denoted by
mdim(G) [20].

Geometrically, an operation that splits an edge into two edges by inserting a new vertex
into the interior of an edge is known as subdividing an edge. If we are performing a
sequence of edge-subdivision operations, then it is called Subdividing a graph G and
resulting graph is called a subdivision of the graph G . The subdivision of graph can be
used to convert a general graph into a simple graph. If we subdividing each edge of the
graph G, then this subdivision is called the barycentric subdivision of G. Gross and
Yellen [11] proved the results that the barycentric subdivision of any graph is a simple
and bipartite graph.

A graph G is planar if it can be drawn in the plane without edge crossings. Subdivision
of graphs play a very important role in characterization of planar graphs. A graph G
is planar if and only if every subdivision of G is planar. Two graphs are said to be



homeomorphic if they are subdivisions of same graph G . The next theorem gives a nice
characterization of planar graphs.

Theorem 1.1. [11] A graph is planar if and only if it does not contain a subdivision of
K5 or K373 .

In this paper, we study the edge metric dimension of barcycentric subdivision of Cayley
graphs Cay(Z, @ Zsz) . We prove that these subdivisions of Cayley graphs have constant
edge metric dimension and only three vertices chosen appropriately suffice to resolve all
the vertices of these subdivision of Cayley graphs Cay(Z, ® Zs) .

2 Results and Discussions

As expressed, there are a several graphs in which metric generator and edge metric gener-
ator are same. In this sense, one could believe that most likely any edge metric generator
R is likewise a standard metric generator. In any case, this is again further far from the
truth, despite the fact that there are a few families of graphs in which such actualities hap-
pen. Kelenc et al. [19] explained some comparison between the edge metric generator and
standard metric generator in detailed. We show a few results concerning the edge metric
dimension of graphs. The first importance result about the complexity is as follows:

Theorem 2.1. [19] Computing the edge metric dimension of graphs is NP -hard.

The edge metric dimension of Cartesian product of two paths P, and P, with r and
t vertices is determined in the following proposition.

Proposition 2.2. [19] Let G be the grid graph G = P,0OP;, with v >t > 2. Then
edim(G) = dim(G) = 2.

Kelenc et al. [19] proved in the next proposition that the edge metric dimension of
wheel graphs and observe it is strictly larger than the value for the metric dimension,
except in the case Wi 3.

The wheel graph W, is the graph obtained from a cycle C,,n > 3 by joining all
vertices of C), to an additional vertex. In [19], they determined the edge metric dimension
of wheel graph W ,, in the following proposition:

Proposition 2.3. [19] Let Wy, be a wheel graph. Then

. n, forn =3,4
edim(Win) = { n—1, forn>5

The fan graph Fi, is the graph obtained by joining each vertices of a path F,, to an
additional vertex. In the next proposition, the edge metric dimension of fan graph Fi ,
is determined.



Proposition 2.4. [19] Let Fy, be a fan graph. Then

. | n, forn=1,2,3
edim(Fin) = { n—1, forn>4

Kelenc et al. [19] also determined the edge metric dimension of path, cycle, complete
graph, complete bipartite, cartesian product of cycles and bounds for some families of
graphs.

3 The edge metric dimension of barcycentric subdivision of
Cayley graphs Cay(Z, ® Z>)

Let G be a semigroup, and let H be a nonempty subset of G. The Cayley graph
Cay(G,H) of G relative to H is defined as the graph with vertex set G and edge set
E(H) consisting of those ordered pairs (a,b) such that ha =b for some h € H. Cayley
graphs of groups are significant both in group theory and in constructions of interesting
graphs with nice properties. The Cayley graph Cay(G,H) of a group G is symmetric or
undirected if and only if H = H~'.

The Cayley graphs Cay(Z, ® Zs),n > 3, is a 3-regular graph which is also known
as the cartesian product C,0P, of a cycle of order n with a path of order 2. The
Cayley graphs Cay(Z, ® Z3),n > 3 consists of an inner n-cycle ajasas...a, , an outer
n-cycle xixoxs3... 7z, and n spokes a;x;,1 < ¢ < n. This implies that the order and size
of Cay(Z, ® Z3) is 2n and 3n, respectively. The metric dimension of Cayley graphs
Cay(Zy, @ Z2) has been determined in [7] while the metric dimension of Cayley graphs
Cay(Zy, : H) for all n > 7 and H = {£1,43} hase been determined in [13].

The barcycentric subdivision graph BS(Cay(Z, @ Z3)) can be obtained by splitting
edges a;a;11 by inserting a new vertices b;, splitting edges a;x; by inserting a new
vertices ¢; splitting edges z;x;+1 by inserting a new vertices y;. From this we observe
that , BS(Cay(Z, ® Z3)) contains 5n vertices among of these 3n vertices of degree 2
and 2n vertices of degree 3 and 6n edges. In the next theorem, we prove that the metric
dimension of the barcycentric subdivision BS(Cay(Z, ®Zz)) of is constant and only three
vertices appropriately chosen suffice to resolve all the vertices of the BS(Cay(Z, ® Z2)) .

Theorem 3.1. Let BS(Cay(Z, ® Zz)) be the barcycentric subdivision of Cayley graphs
(Cay(Zy ® Z2)) ; then edim(BS(Cay(Z, ® Zs3))) =3 for every n > 6.

Proof. We will prove the above equality by double inequalities.

Case 1. When n is even.

Let R = {a1,an41,4,} C V(BS(Cay(Zn @ Z3))), we show that R is a resolving set
for BS(Cay(Z, ® Z,)) in this case. For this we give representations of any edge of
E(BS(Cay(Z, ® Z3))) with respect to R.



Representations for the edges of BS(Cay(Z,, & Z3)) are

20 —2,n—2i+1,2i), for1 <i<5 -1
n—21,n-1), fori = %
2n —2i+1,2i —n—2,2n-2i—1), forg+1<i<n-—1

(
(I,n—2,0), fori =n

and
(20 —1,n —2i,2i + 1), for1 <i< g —1
(n—1,0,n — 2), fori =g
rbiainlB) =9 (0, 9 9i — - 1,20 — 2 —2), for2+1<i<n-—1
(0,mn —1,1), fori =n
Representations for the set of interior edges of BS(Cay(Z,, & Z3)) are
oy (20 =2,n — 20+ 2,2i), forl <i< %
r(aici|R) = { (2n —2i+2,2i —n—2,2n—2i), forZ2+1<i<n
and

(20 —1,n — 2i +3,2i + 1), forl <i<?n
r(cizi|R) = ) . . n 2
(2n—2i+3,2i—n—12n—-2i+1), forf +1<i<n

Representations for the edges on the outer cycle of BS(Cay(Z,, & Z2)) are

(2i,n — 2i + 3,2i + 2), forl <i<?2 -1
o ) (n,3,n+1), fori = %
r(zigil R) = (2n—2i 43,2 —n,2n—2i+1), for2+1<i<n—1
(3,n,2), fori =n
and
(20 4+ 1,n — 21 + 2,2i + 3), forl <i< % —1
. ) (n+1,2,n), fori =g
r(yizipi| R) = (2n—2i+2,2i —n+1,2n—2i), forZ+1<i<n-—1
(2,n+1,3), fori =n

We note that there are no two edges having the same representations implying that
edim(BS(Cay(Z, & Z2))) < 3.
On the other hand, we show that edim(BS(Cay(Z,, ® Z3))) > 3. Suppose on contrary
that edim(BS(Cay(Zy, ® Z2))) = 2, then there are the following possibilities to be dis-
cussed.
(1) Both vertices are in the inner cycle. Here are the following subcases.
e Both vertices belong to the set {a; : 1 <1i < n}. Without loss of generality, we can sup-
pose that one resolving vertex is a; . Suppose that the second resolving vertex is ap (2 <
k< 5+1). Thenfor 2 <k < %, wehave r(aici|{ar,ar}) = r(a1bn|{a1, ar}) = (0,2k—-2),
and for k=3 +1, we have r(ai1b1|{a1,az11}) = r(a1bnl{ar, az1}) = (0,n — 1), a con-
tradiction.



e Both vertices belong to the set {b; : 1 < i < n}. Without loss of generality, we can
suppose that one resolving vertex is by . Suppose that the second resolving vertex is by
(2<k< 4 +1). Then for 2 < k < %, we have r(aici|{b1,bx}) = r(aibn|[{(b1,br}) =
(1,2k—1) ,and for k = 3+1, we have r(aiby|[{b1,bz 1}) = r(azbi[{b1,b241}) = (0,n—1),
a contradiction.

e One vertex belong to the set {a; : 1 <i < n} and the second vertex belong to the set
{b; : 1 <1i < n}. Without loss of generality, we can suppose that one resolving vertex is
ay . Suppose that the second resolving vertex is by (1 < k < %4—1) . Thenfor 1 <k < % ,
we have r(aiby|{ai,br}) = r(aici[{a1,br}) = (0,2k — 1), and for k = § + 1, we have
r(a1bi[{a1,b241}) = r(aicrl{ar, bz 41}) = (0,n — 1), a contradiction.

(2) Both vertices are in the interior vertices. Without loss of generality, we can suppose
that one resolving vertex is c¢;. Suppose that the second resolving vertex is ¢ (2 <k <
§+1). Then for 2 <k < §+1, we have r(zici[{c1,cr}) = r(arcr[{c1, c}) = (0,26 1),
a contradiction.

(3) Both vertices are in the outer cycle. Due to the symmetry of the graph, this case is
analogous to case (1).

(4) One vertex is in the inner cycle and the other one is in the set of interior vertices.
Here are the two subcases.

e One vertex is in the set {a; : 1 < ¢ < n} and the other one is in the set of inte-
rior vertices {¢; : 1 < i < n}. Without loss of generality, we can suppose that one
resolving vertex is a;. Suppose that the second resolving vertex is ¢ (1 <k < 5 +1).
Then for k£ = 1, we have r(a1bi[{a1,c1}) = r(a1by|{a1,c1}) = (0,1). For 2 <k < &,
we have 7(aib,|{a1,cr}) = r(aici|{a1,cr}) = (0,2k — 1) and for £ = § + 1, we have
r(aibpl{ar, czi1}) = r(aibi|{ar, cz41}) = (0,2n) , a contradiction.

e One vertex is in the set {b; : 1 < i < n} and the other one is in the set of inte-
rior vertices {¢; : 1 < i < n}. Without loss of generality, we can suppose that one
resolving vertex is b;. Suppose that the second resolving vertex is ¢, (1 <k <5 +1).
Then for k£ = 1, we have r(z1y1/{b1,c1}) = r(x1yn|{b1,c1}) = (3,1). For 2 < k < %,
we have r(aici|{b1,cx}) = r(aibn|{b1,ck}) = (1,2k — 1) and for k = § + 1, we have
r(caaa|{br, czi1}) = r(anbnl{b1,c211}) = (2,n — 1), a contradiction.

(5) One vertex is in the outer cycle and the other one is in the set of interior vertices.
Due to the symmetry of the graph, this case is analogous to case (4).

(6) One vertex is in the inner cycle and the other one is in the outer cycle. Here are the
following subcases.

e One vertex is in the set {a; : 1 <i < n} and the other one is in the set {z;:1 <7 <n}.
Without loss of generality, we can suppose that one resolving vertex is a;. Suppose
that the second resolving vertex is z, (1 < k < § + 1). Then for k = 1, we
have r(aibi|{ar,z1}) = r(aibp|{a1,21}) = (0,2). For 2 < k < 5 + 1, we have
r(aib1){a1,zx}) = r(arc1|{a1,zx}) = (0,2k — 1), a contradiction.

e One vertex is in the set {a; : 1 < ¢ < n} and the other one is in the set
{y; :+ 1 < i < n}. Without loss of generality, we can suppose that one resolving ver-
tex is aj. Suppose that the second resolving vertex is yr (1 < k < Z 4+ 1). Then

2

for k& = 1, we have r(aibi[{a1,y1}) = r(a1b,[{a1,y1}) = (0,3). For 2 < k < 3,



we have r(aibi|{a1,yx}) = r(aricil{ar,yx}) = (0,2k) and for £k = 5 + 1, we have
r(aibil{ar, yz 11}) = r(arcil{ar,yz11}) = (0,n + 1), a contradiction.
e One vertex is in the set {b; : 1 <i < n} and the other one is in the set {y; : 1 <i <n}.
Without loss of generality, we can suppose that one resolving vertex is b;. Suppose that the
second resolving vertex is yx (1 <k < §+1). Then for k = 1, we have r(a1b1[{b1,41}) =
r(agb1]{b1,11}) = (0,3). For k =2, we have r(x1y1|{b1,y2}) = r(ascs|{b1,y2}) = (3,2).
For 3 <k < §+1, we have r(zaye|[{b1,yx}) = r(ascs|{b1,yx}) = (3,2k — 4), a contra-
diction.
Hence from above it follows that there is no resolving set with two vertices for
V(BS(Cay(Z, ® Zs))) implying that edim(BS(Cay(Z, ® Z3))) # 2 in this case. There-
fore, edim(BS(Cay(Z, ® Z3))) = 3.

Case 2. When n is odd.
Let R = {a1,brzy,an} C V(BS(Cay(Zn ® Zz))), we show that R is a resolving set
for BS(Cay(Z, @ Z2)) in this case. For this we give representations of any edge of
E(BS(Cay(Z, ® Z3))) with respect to R.
Representations for the edges of of the inner cycle of BS(Cay(Z, ® Z,)) are

h. _ (22'—2,71—1—1—22'7271—22'_1)’ for: = %—|

r(a;bi|R) = (2n—2i+1,2i —n—-2,2n—-2i—1), for[§]+1<i<n—1
(17n_270)7 fori = n.

and
(22—1n 2i,2i + 1), forl <i<[2]-2
(2i — 1,n — 2i,2n — 2 — 2), fori = [2] —1

r(biait1|R) = (2n—222@—n—12n—2@—2) for[2]<i<n—1
(0,n —1,1), fori =n

Representations for the edges on the outer cycle of BS(Cay(Z,, @ Z2)) are

(2i,n + 3 — 2i,2i + 2), forl <i<[4]-1
R (2i,m —2i+3,2n — 2i + 1), fori = [%]

@Yl =4 (2n — 20 4+ 3,2 — n, 20 — 2i + 1), for[2] 41<i<n-—1
(3,n,2), fori=n

and
(2 +1,n — 2i +2,2i +3), forl <i<[2]-2
(20 +1,n— 2i +2,2n — 2i), fori =[5]—1

r(vizit1|R) =< (2n —2i+2,3,2n — 2i), fori = [5]
(2n —2i4+2,2i —n+1,2n —2i), for[§]+1<i<n-1
(2,n+1,3), fori =n

Representations for the set of interior edges of BS(Cay(Z,, ® Z3)) are



(2i — 2,n — 2i + 2,2i), forl <i<[2]-1
r(a;c;|R) = ¢ (20 —2,n — 20 + 2,2n — 2i), fori = [5]

(2n —2i+2,2i —n—2,2n—2i), for[§]+1<i<n

(2 — 1, — 2i +3,2i + 1), for1 <i<[2]-1
r(cz;|R) =< (20 —1,n—2i+3,2n — 2i + 1), fori =

n
2
(2n—20+3,2i —n—1,2n - 2i+ 1), for[F]+

Again we see that there are no two vertices having the same representations which
implies that edim(BS(Cay(Z, ® Z2))) < 3.
On the other hand, suppose that edim(BS(Cay(Z, ®Zs3))) = 2, then there are the same
possibilities as in case (1) and contradictions can be deduced analogously. This implies
that edim(BS(Cay(Zy, ® Z3))) = 3 in this case, which completes the proof.
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