Uncertainty quantification in urban drainage simulation: fast surrogates for sensitivity analysis and model calibration

Abstract : This paper presents an efficient surrogate modeling strategy for the uncertainty quantification and Bayesian calibration of a hydrological model. In particular, a process-based dynamical urban drainage simulator that predicts the discharge from a catchment area during a precipitation event is considered. The goal is to perform a global sensitivity analysis and to identify the unknown model parameters as well as the measurement and prediction errors. These objectives can only be achieved by cheapening the incurred computational costs, that is, lowering the number of necessary model runs. With this in mind, a regularity-exploiting metamodeling technique is proposed that enables fast uncertainty quantification. Principal component analysis is used for output dimensionality reduction and sparse polynomial chaos expansions are used for the emulation of the reduced outputs. Sensitivity measures such as the Sobol indices are obtained directly from the expansion coefficients. Bayesian inference via Markov chain Monte Carlo posterior sampling is drastically accelerated.
Type de document :
Rapport
[Research Report] ETH Zurich, Switzerland. 2017
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01902014
Contributeur : Maliki Moustapha <>
Soumis le : mardi 23 octobre 2018 - 14:04:12
Dernière modification le : jeudi 1 novembre 2018 - 01:10:36

Fichier

RSUQ-2017-010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01902014, version 1

Collections

Citation

J Nagel, J Rieckermann, B. Sudret. Uncertainty quantification in urban drainage simulation: fast surrogates for sensitivity analysis and model calibration. [Research Report] ETH Zurich, Switzerland. 2017. 〈hal-01902014〉

Partager

Métriques

Consultations de la notice

4

Téléchargements de fichiers

2