Numerical Scheme for a Stratigraphic Model with Erosion Constraint and Nonlinear Gravity Flux
Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf

To cite this version:
Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf. Numerical Scheme for a Stratigraphic Model with Erosion Constraint and Nonlinear Gravity Flux. Finite Volumes for Complex Applications 8, Jun 2017, Villeneuve d’Ascq, France. hal-01901984

HAL Id: hal-01901984
https://hal.archives-ouvertes.fr/hal-01901984
Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Objectives

- Simulate the evolution of sedimentary basins over large time and space scales:
 - dimension of domains: 10 ~ 100 km,
 - simulations times: 0.1 ~ 100 My.
- Take into account sedimentary processes:
 - gravity- and water-driven transport,
 - sediment accumulation and erosion.
- Improve classical numerical schemes [2, 3, 4] to better describe physical processes.

Simplified model

Sediment transport The sediment flux F, depending on the sediment height h, is nonlinearly proportional to the local slope ∇h:
$$ F = -K(h)|\nabla h|^{p-2} \nabla h = -|\nabla h|^{p-2} \nabla \psi(h), $$

where the diffusion coefficient K depends on maritime and continental domains, and $p > 2$ to ensure finite propagation speed.

Maximum erosion rate constraint The actual sediment flux is limited by the sediment availability, constrained by a maximum erosion rate $E > 0$. The diffusive flux F is multiplied by a factor λ so as to guarantee
$$ \partial_t h + E \leq 0, \quad \lambda \geq 0, \quad (\partial_t h + E)(1 - \lambda) = 0. $$

The complete system then reads

$$ \partial_t h + \nabla \cdot (\lambda F) = 0, $$

$$ \min \left(1 - \lambda, E - \nabla \cdot (\lambda F)\right) = 0. $$

References

Application

Physical data

- Dimensions: 180 x 180 km
- Diffusion coefficients:
 - continental: 500 km²/My
 - maritime: 10 km²/My
- Constraint: $E = 0.04$ km/My
- Sea level: $H = 0$ km
- Input fluxes: 2 sources
- Simulation time: $T = 1$ My

Numerical parameters

- Discretization: 361 x 361 cells
- Exponent value: $p = 2.5$
- Maximum time step: 10^{-3} My
- Solver: BiCGStab with ILU(0)

<table>
<thead>
<tr>
<th>Without constraint</th>
<th>With constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted time steps</td>
<td>1016</td>
</tr>
<tr>
<td>Refused time steps</td>
<td>0</td>
</tr>
<tr>
<td>Mean Newton iterations per accepted time step</td>
<td>1.98</td>
</tr>
<tr>
<td>Mean solver iterations per Newton iteration</td>
<td>1.99</td>
</tr>
<tr>
<td>Computing time (s)</td>
<td>783</td>
</tr>
</tbody>
</table>

Gradient norm reconstruction

Following [1], the term $|\nabla h|^2$ is approximated on each cell dual by the formula

$$ B_{i,j}^{n+1/2,j+1/2} = \frac{1}{2} \left(h_{i,j}^{n+1/2,j+1/2} - h_{i,j}^{n+1/2,j-1/2} \right)^2 + \frac{1}{2} \left(h_{i+1,j+1/2}^{n+1/2,j+1/2} - h_{i+1,j-1/2}^{n+1/2,j-1/2} \right)^2 + \frac{1}{2} \left(h_{i,j+1}^{n+1/2,j+1/2} - h_{i,j}^{n+1/2,j-1/2} \right)^2 + \frac{1}{2} \left(h_{i+1,j+1}^{n+1/2,j+1/2} - h_{i+1,j}^{n+1/2,j-1/2} \right)^2. $$

It is coercive in the sense $B_{i,j}^{n+1/2,j+1/2} = 0$ if and only if $h_{i,j}^{n+1} = h_{i,j}^{n} = h_{i+1,j}^{n+1} = h_{i+1,j}^{n}$. The normal flux λF is upwinded according to the sign of the flux:

$$ (\lambda F)_{i,j}^{n+1/2} = \lambda_{i,j}^{n+1/2} (F_{i,j}^{n+1/2})^+ - \lambda_{i,j+1}^{n+1/2} (F_{i,j+1/2}^{n+1/2})^-, $$

with $u^+ = \max(u, 0)$ and $u^- = -\min(u, 0)$. The normal flux $\mathbf{F} \cdot \mathbf{n}$ is discretized using the approximation of $|\nabla h|^2$ previously introduced:

$$ F_{i,j}^{n+1/2} = \frac{1}{2} \left[(B_{i,j+1/2,j+1/2}^{n+1/2})^{1/2} + (B_{i+1,j+1/2,j+1/2}^{n+1/2})^{1/2} \right] \psi(h_{i,j}^{n+1/2} - h_{i,j+1}^{n+1/2}) - \psi(h_{i+1,j}^{n+1/2} - h_{i,j+1}^{n+1/2}) \Delta x. $$

Complementarity equation

$$ \lambda_{i,j}^{n+1} = \min \left(1, \frac{\Delta x \Delta y E_{i,j} + \Delta y \lambda F_{i,j}^{n+1/2} + \Delta x \lambda E_{i+1,j}^{n+1/2}}{\Delta y (F_{i,j}^{n+1}) + \Delta x (F_{i+1,j}^{n+1/2})} \right), $$

where $h_{i,j}^{n+1}$ represents the outgoing flux from the cell i,j, and $F_{i,j}^{n+1/2}$ the limited incoming flux.