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Abstract

Systems subject to uncertain inputs produce uncertain responses. Uncertainty quantifi-

cation (UQ) deals with the estimation of statistics of the system response, given a computa-

tional model of the system and a probabilistic model of its inputs. In engineering applications

it is common to assume that the inputs are mutually independent or coupled by a Gaussian

or elliptical dependence structure (copula).

In this paper we overcome such limitations by modelling the dependence structure of

multivariate inputs as vine copulas. Vine copulas are models of multivariate dependence

built from simpler pair-copulas. The vine representation is flexible enough to capture com-

plex dependencies. This paper formalises the framework needed to build vine copula models

of multivariate inputs and to combine them with virtually any UQ method. The frame-

work allows for a fully automated, data-driven inference of the probabilistic input model on

available input data.

The procedure is exemplified on two finite element models of truss structures, both subject

to inputs with non-Gaussian dependence structures. For each case, we analyse the moments

of the model response (using polynomial chaos expansions), and perform a structural re-

liability analysis to calculate the probability of failure of the system (using the first order

reliability method and importance sampling). Reference solutions are obtained by Monte

Carlo simulation. The results show that, while the Gaussian assumption yields biased statis-

tics, the vine copula representation achieves significantly more precise estimates, even when

its structure needs to be fully inferred from a limited amount of observations.

Keywords: uncertainty quantification, input dependencies, vine copulas, reliability anal-

ysis, polynomial chaos expansions
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1 Introduction

Uncertainty Quantification (UQ) estimates statistics of the response of a system subject to

stochastic inputs. The system is usually described by a deterministic computational model

M (e.g., a finite element code). The input consists of M possibly coupled parameters,

modelled by a random vector X with joint cumulative distribution function (CDF) FX and

probability density (PDF) fX . The computational model transforms X into an uncertain

output Y =M(X), which here we take to be a univariate random variable. The extension

to multivariate outputs is straightforward.

Of interest in UQ problems are various statistics of Y , such as its CDF FY , its moments,

the probability of extreme events (i.e., of small or large quantiles), the sensitivity of Y to the

different components Xi of X, and others. Because M is typically a complex model which

is not known explicitly, analytical solutions are in general not available. The model behavior

can only be known point-wise in correspondence with inputs x(j) sampled from FX , where it

produces responses y(j) =M(x(j)) (non-intrusive, or black-box approach). The classical and

most general strategy to solve this class of problems is by Monte Carlo simulation (MCS).

MCS draws the x(j) as i.i.d samples from FX , which requires the sample size n to be large

enough to cover the input probability space sufficiently well. When M is computationally

expensive and the available computational budget is limited to a few dozens to hundreds of

runs, alternative approximation techniques are used instead of MCS. Examples include the

first and second order reliability methods (FORM (Hasofer and Lind, 1974), SORM (Fiessler

et al., 1979)), importance sampling (IS, Melchers (1999)) and subset simulation (Au and

Beck, 2001) in reliability analysis for the estimation of small failure probabilities (see also

Ditlevsen and Madsen (1996); Lemaire (2009)), and polynomial chaos expansions (PCE, Li

and Ghanem (1998)), Kriging (Matheron, 1967), and other metamodelling techniques for the

estimation of the moments.

Since M is a deterministic code, all uncertainty in Y is due to the uncertainty in X.

Therefore, regardless of the approach (MCS or others) chosen to estimate the statistics of Y

of interest, a suitable model of FX is critical to obtain accurate estimates. Historically, the

components Xi of X are assumed to be mutually independent, or to have the dependence

structure of a multivariate elliptical distribution (Lebrun and Dutfoy, 2009a). Among the lat-

ter, Gaussian distributions are often employed because they are simple to model and to fit to

data, since they only require the computation of pairwise correlation coefficients. In addition,

some advanced UQ techniques take advantage of (or require) mutually independent inputs.

These include FORM, SORM, IS, some types of subset simulation (e.g., Papaioannou et al.

(2015)), PCE. The most general transformation to map the input vector X onto a vector

Z with independent components, the Rosenblatt transform (Rosenblatt, 1952), requires the

computation of conditional PDFs, which are hardly known in practical applications. How-

ever, when FX has a Gaussian dependence structure, this map is known and is equivalent
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to the well known Nataf transform (Nataf, 1962; Lebrun and Dutfoy, 2009a). The Gaussian

assumption introduces thus a convenient representation of input dependencies. When the

real dependence structure deviates from this assumption, it may however introduce a bias

in the resulting estimates. The validity or the impact of the Gaussian assumption, though,

are typically not quantified. Novel methodologies in UQ largely focus on providing better

estimation techniques rather than on allowing for different probabilistic input models.

Recently, dependence modelling has seen significant advances in the mathematical com-

munity with the widespread adoption of copula models, and of vine copulas in particular.

Copula theory allows to separately model the dependence (by multivariate copula functions)

and the marginal behaviour (by univariate CDFs) of joint distributions. This provides a flex-

ible way to build multivariate probability models by selecting each ingredient individually

(Nelsen, 2006; Joe, 2015). Copulas have recently been used in various studies in engineering,

such as in earthquake (Goda, 2010; Goda and Tesfamariam, 2015; Zentner, 2017) and sea

waves (Michele et al., 2007; Masina et al., 2015; Montes-Iturrizaga and Heredia-Zavoni, 2016)

engineering. Applications, however, are often limited to low-dimensional (typically bivariate)

problems, or to relatively simple copula families, prominently the Gaussian or Archimedean

families (Nelsen, 2006). In higher dimensions, building and selecting copulas that properly

represent the coupling of the phenomena of interest may be a complex problem. Vine cop-

ulas, first established by Joe (1996) and Bedford and Cooke (2002), ease this construction

by expressing multivariate copulas as a product of simpler bivariate copulas among pairs of

random variables. As a result, vine models offer an easy interpretation and are extremely

flexible. Vine copulas have been extensively employed, for instance, in financial applications

(Aas, 2016). In engineering, these models have been, so far, largely overseen. Recently,

Wang and Li (2017c,a) proposed their application in the context of reliability analysis, for

the special case when only partial information (correlation coefficients) is available. In a

later study, they used vine copulas in combination with MCS for reliability analysis (Wang

and Li, 2017b).

This manuscript proposes a general framework to use vine copulas to model model in-

put dependencies in UQ problems. The flexibility of these models guarantees an accurate

description of the input dependence properties that shape the output statistics. Besides,

since algorithms to compute the Rosenblatt transform of vine copulas are available, these

dependence models are applicable also in combination with UQ techniques that work in

probability spaces with independent variables. Algorithms to infer the structure and fit the

parameters of vine models to data, for instance based on maximum likelihood or Bayesian

estimation, also exist, making these models suitable for data driven applications (Aas et al.,

2009; Schepsmeier, 2015).

After recalling fundamental results of copula and vine copula theory (Sections 2-3), we

combine three established UQ methodologies, FORM, IS and PCE, with vine copula models
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of the input dependencies (Section 4). In Sections 5-6 we apply the methodology to two

truss models. We show that modelling non-Gaussian input dependencies with the Gaussian

copula yields wrong estimates of the failure probability and of the response moments. The

problem cannot be amended by using different UQ methods, since it is inherent to the wrong

representation of the input uncertainty. Reliable estimates are obtained instead by using a

suitable vine representation of the input, also when the vine is purely inferred from available

data. The method’s advantages and current limitations are discussed in Section 7.

2 Copulas and vine copulas

Multivariate inputs in UQ problems are generally modelled as random vectors. The statistical

properties of an M -dimensional random vector X are fully described by its joint CDF

FX(x) = P(X1 ≤ x1, . . . , XM ≤ xM ).

The joint CDF defines both the marginal CDF of each component Xi of X, i.e., Fi(xi) =

FXi(xi) = P(Xi ≤ xi), i = 1, . . . ,M , and the dependence properties of the variables. As

such, prescribed parametric families of joint CDFs dictate specific parametric forms for the

marginal and joint properties of the random variables. More flexible models should be com-

patible with inference techniques, to be applicable when only a finite number of realisations

of the input X is available. They should also optimally provide the isoprobabilistic map

that decouples their random variables, such to be usable in combination with UQ techniques

that assume mutually independent inputs. This section introduces vine copula models and

illustrates how they meet the requirements listed above.

2.1 Copulas and Sklar’s theorem

An M -copula is defined as an M -variate joint CDF C : [0, 1]M → [0, 1] with standard uniform

marginals, that is, such that

C(1, . . . , 1, ui, 1, . . . , 1) = ui ∀ui ∈ [0, 1], ∀i = 1, . . . ,M.

Sklar’s theorem (Sklar, 1959) allows one to express joint CDFs in terms of their marginal

distributions and a copula.

Theorem (Sklar). For any M -variate CDF FX with marginals F1, . . . , FM , an M -copula

CX exists, such that for all x ∈ RM

FX(x) = CX(F1(x1), . . . , FM (xM )). (1)

Besides, CX is unique on Ran(F1) × . . . × Ran(FM ), where Ran is the range operator. In

particular, CX is unique on [0, 1]M if all Fi are continuous, and it is given by

CX(u) = FX(F−1
1 (u1), . . . , F−1

M (uM )), u ∈ [0, 1]M . (2)
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Conversely, for any M -copula C and any set of M univariate CDFs Fi with domain Di,
i = 1, . . . , M , the function F : D1 × . . .×DM → [0, 1] defined by

F (x1, . . . , xM ) := C(F1(x1), . . . , FM (xM )) (3)

is an M -variate CDF with marginals F1, . . . , FM .

The representation (1) guarantees that any joint CDF can be expressed in terms of its

marginals and a copula. In the following we work with joint CDFs FX having continuous

marginals Fi.

Copulas of known families of joint CDFs can be derived from (2). Finally, one can use (3)

to build a multivariate CDF F by separately specifying and combining M univariate CDFs

Fi and a copula C. The univariate CDFs describe the marginal behaviour, while the copula

describes the dependence properties. Sklar’s theorem thus allows one to split the problem of

modelling the joint behaviour of the components of X into two separate problems. One first

models the marginals Fi, then transforms the original components Xi into uniform random

variables Ui = Fi(Xi), leading to the transformation

T (U) : X 7→ U = (F1(X1), . . . , FM (XM ))
T
. (4)

The joint CDF of U = (U1, . . . , UM )T is the associated copula.

Sklar’s theorem can be re-stated in terms of probability densities. If X admits PDF

fX(x) :=
∂MFX(x)

∂x1 . . . ∂xM
and copula density cX(u) :=

∂MCX(u)

∂u1 . . . ∂uM
, then the following relation

holds:

fX(x) = cX(F1(x1), . . . , FM (xM )) ·
M∏

i=1

fi(xi). (5)

2.2 Copula-based measures of dependence

Since copulas fully describe multivariate dependencies, it is natural to introduce dependence

measures based on the copula only, and not on the marginals. Several such measures, also

known as measures of concordance, exist. An example is Spearman’s correlation coefficient,

defined for a random pair (X1, X2) as

ρS(X1, X2) := ρP (F1(X1), F2(X2)),

where ρP is the classical Pearson correlation coefficient. Another example is Kendall’s tau

τK(X1, X2) := P((X1 − X̃1)(X2 − X̃2) > 0)− P((X1 − X̃1)(X2 − X̃2) < 0),

where (X̃1, X̃2) is an independent copy of (X1, X2). If the copula of (X1, X2) is C, then

ρS(X1, X2) = 12

∫∫

[0,1]2
C(u, v)dudv − 3 = 3− 12

∫∫

[0,1]2
u
∂C(u, v)

∂u
, (6)

and

τK(X1, X2) = 4

∫∫

[0,1]2
C(u, v)dC(u, v)− 1 = 1− 4

∫∫

[0,1]2

∂C(u, v)

∂u

∂C(u, v)

∂v
dudv, (7)
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where the RHS in both equations is well defined if the copula partial derivatives exist and

are not degenerate at the borders (Joe, 2015).

One can show that τK = 0 and ρS = 0 if (X1, X2) are independent, that τK = 1 ⇔
ρS = 1 ⇔ X1 = α(X2) for some strictly increasing α(·), and that τK = −1 ⇔ ρS = 1 ⇔
X2 = β(X1) for some strictly decreasing β(·) (Embrechts et al., 1999). Other copula based

measures of pairwise concordance exist (Scarsini, 1984), as well as multivariate extensions

(Taylor, 2007). A discussion of such measures is beyond the scope of this paper.

Asymptotic tail dependence (hereinafter, simply tail dependence) of a random pair (X1, X2)

is another example of dependence property that is completely described by the copula and

not by the marginals. The joint distribution of (X1, X2) is said to be upper tail dependent

if the probability that one of the two variables takes values in its upper tail (i.e., high quan-

tiles), given that the other has taken values in its upper tail, does not decay to zero. Lower

tail dependence is defined analogously for low quantiles. Tail dependence thus allows for

simultaneous extremes, and is for instance used to model systemic risks. Formally, (X1, X2)

with marginals F1 and F2 are upper tail dependent if

lim
u↑1−

P(X1 > F−1
1 (u)|X2 > F−1

2 (u)) = λu > 0, (8)

and are lower tail dependent if

lim
u↓0+

P(X1 < F−1
1 (u)|X2 < F−1

2 (u)) = λl > 0, (9)

given that these limits exist; λu and λl are called the upper and lower tail dependence

coefficients, and can be expressed in terms of the copula C of (X1, X2) by

λu = lim
u↑1−

1− 2u+ C(u, u)

1− u , λl = lim
u↓0+

C(u, u)

u
. (10)

2.3 Copula examples

Here we provide three families of copulas that will be used in Section 5 and Section 6 to

model different dependence structures among input loads on a truss model. A list of classical

families of copulas and their properties can be found in Nelsen (2006); Joe (2015). A summary

of 19 families of bivariate copulas used for inference in this study and of their dependence

properties is provided in Tables 11-12.

The independence copula

C(Π)(u) =
M∏

i=1

ui (11)

describes the case of mutual independence among the random variables. For M = 2, C(Π)

has Spearman’s rho ρ
(Π)
S = 0, Kendall’s tau τ

(Π)
K = 0, and tail dependence coefficients

λ
(Π)
u = λ

(Π)
l = 0.

A Gaussian random vector X with correlation matrix R = (ρij)
M
i,j=1 and marginals
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Fi ∼ N (µi, σ
2
i ), i = 1, . . . ,M , has copula

C(N )(u) =
1√

det R
exp



−1

2




Φ−1(u1)
...

Φ−1(uM )




T

·
(
R−1 − I

)
·




Φ−1(u1)
...

Φ−1(uM )






, (12)

where Φ is the univariate standard normal CDF and I is the identity matrix of rank M .

C(N ) is called Gaussian copula or normal copula. One can prove that, if M ≥ 3 variables

are coupled by a Gaussian copula with correlation matrix R, any pairs (Xi, Xj) are coupled

by a Gaussian pair copula with correlation matrix
[

1 ρij
ρij 1

]
. If so, their Spearman’s rho is

ρ
(N )
S = 6

π arcsin(
ρij
2 ), their Kendall’s tau is τ

(N )
K = 2

π arcsin(ρij), and their tail dependence

coefficients are λ
(N )
u = λ

(N )
l = 0. Therefore, multivariate Gaussian copulas assign negligible

probabilities to joint extremes.

A pair copula that contemplates upper tail dependence is the bivariate Gumbel-Hougaard

(or Gumbel, for brevity) copula

C(GH)(u, v) = exp
(
−
[
(− log u)θ + (− log v)θ

]1/θ)
, θ ∈ [1, +∞). (13)

In particular, if θ = 1 then C(GH)(u, v) = uv (the independence copula). C(GH) has Kendall’s

tau τ
(GH)
K = (θ−1)/θ and upper tail dependence coefficient λ

(GH)
u = 2−21/θ, which increases

from 0 to 1 as θ increases from 1 to +∞. Finally, λ
(GH)
l = 0.

2.4 Vine copulas

When the input dimension M grows, defining a suitable M -copula which properly describes

the pairwise and higher-order dependencies among the input variables becomes increasingly

difficult. Multivariate extensions of several families of pair-copulas exist, but they rarely

fit real data well. Bedford and Cooke (2002) proved that, instead, one may construct any

M -copula by a product of simpler 2-copulas. Some are unconditional copulas among pairs

of random variables, others are conditioned on the values taken by other variables. Here

we briefly introduce this construction, known as pair copula or vine copula construction,

and recall some important features. For details, we refer to the cited literature (see also

Klüpperberg and Czado (date)). A recent review with a focus on financial applications can

be found in Aas (2016).

Let ui be the vector obtained from the vector u by removing its i-th component, i.e.,

ui = (u1, . . . , ui−1, ui+1, . . . , uM )T. Similarly, let u{i,j} be the vector obtained by removing

the i-th and j-th component, and so on. For a general subset A ⊂ {1, . . . , M}, uA is defined

analogously. Also, FA|A and fA|A indicate the joint CDF and PDF of the random vector XA

conditioned on XA; A = {i1, . . . , ik} and A = {j1, . . . , jl} form a partition of {1, . . . , M},
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that is, A ∪A = {1, . . . , M} and A ∩A = ∅. Using (5), fA|A can be expressed as

fA|A(xA|xA) =cA|A(Fj1|A(xj1 |xA), Fj2|A(xj2 |xA), . . . , Fjl|A(xjl |xA))×

×
∏

j∈A
fj|A(xj |xA),

(14)

where cA|A is an l-copula density – that of the conditional random variables (Xj1|A, Xj2|A, . . . , Xjl|A)T

– and fj|A is the conditional PDF of Xj given XA, j ∈ A. Following Joe (1996), the uni-

variate conditional distributions Fj|A can be further expressed in terms of any conditional

pair copula Cji|A\{i} between Xj|A\{i} and Xi|A\{i}, i ∈ A:

Fj|A(xj |xA) =
∂Cji|A\{i}(uj , ui)

∂ui

∣∣
(Fj|A\{i}(xj |xA\{i}), Fi|A\{i}(xi|xA\{i})). (15)

An analogous relation readily follows for conditional densities:

fj|A(xj |xA) =
∂Fj|A(xj |xA)

∂xj

=cji|A\{i}(Fj|A\{i}(xj |xA\{i}), Fi|A\{i}(xi|xA\{i}))×

× fj|A\{i}(xj |xA\{i}).

(16)

Substituting iteratively (15)-(16) into (14), Bedford and Cooke (2002) expressed fX as

a product of pair copula densities multiplied by
∏
i fi. Recalling (5), it readily follows that

the associated joint copula density c can be factorised into pair copula densities. Copulas

expressed in this format are called vine copulas.

The factorisation is not unique: the pair copulas involved in the construction depend on

the variables chosen in the conditioning equations (15)-(16) at each iteration. To organise

them, Bedford and Cooke (2002) introduced a graphical model called the regular vine (R-

vine). An R-vine among M random variables is represented by a graph consisting of M − 1

trees T1, T2, . . . , TM−1, where each tree Ti consists of a set Ni of nodes and a set Ei of edges

e = (j, k) between nodes j and k. The trees Ti satisfy the following three conditions:

1. Tree T1 has nodes N1 = {1, . . ., M} and M − 1 edges E1

2. for i = 2, . . . , M − 1, the nodes of Ti are the edges of Ti−1 : Ni = Ei−1

3. Two edges in tree Ti can be joined as nodes of tree Ti+1 by an edge only if they share

a common node in Ti (proximity condition)

To build an R-vine with nodes N = {N1, . . . , NM−1} and edges E = {E1, . . . , EM−1}, one

defines for each edge e linking nodes j = j(e) and k = k(e) in tree Ti, the sets I(e) and D(e)

as follows:

• If e ∈ E1 (edge of tree T1), then I(e) = {j, k} and D(e) = ∅,

• If e ∈ Ei, i ≥ 2, then D(e) = D(j)∪D(k)∪ (I(j)∩I(k)) and I(e) = (I(j)∪I(k))\D(e).

I(e) contains always two indices je and ke, while D(e) contains i− 1 indices for e ∈ Ei. One

then associates each edge e with the conditional pair copula Cje,ke|D(e) between Xje and Xke

8
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Figure 1: Graphical representation of C- and D-vines. The pair copulas in each tree of

a 5-dimensional C-vine (left; conditioning variables are shown in grey) and of a 5-dimensional

D-vine (right; conditioning variables are those between the connected nodes).

conditioned on the variables with indices in D(e). An R-vine copula density with M nodes

can thus be expressed as Aas (2016)

c(u) =
M−1∏

i=1

∏

e∈Ei
cje,ke|D(e)(uje|D(e), uke|D(e)). (17)

Two special classes of R-vines are the drawable vine (D-vine, (Kurowicka and Cooke,

2005)) and the canonical vine (C-vine, (Aas et al., 2009)). Denoting F (xi) = ui and

Fi|A(xi|xA) = ui|A, i /∈ A, a C-vine density is given by the expression

c(u) =

M−1∏

j=1

M−j∏

i=1

cj,j+i|{1,...,j−1}(uj|{1,...,j−1}, uj+i|{1,...,j−1}), (18)

while a D-vine density is expressed as

c(u) =
M−1∏

j=1

M−j∏

i=1

ci,i+j|{i+1,...,i+j−1}(ui|{i+1,...,i+j−1}, ui+j|{i+1,...,i+j−1}). (19)

The graphs associated to a 5-dimensional C-vine and to a 5-dimensional D-vine are shown

in Figure 1. Note that this simplified illustration differs from the standard one introduced

in Aas et al. (2009) and commonly used in the literature.

2.5 Vine inference in practice

Building a vine copula model that properly describes the dependencies among the inputs

involves the following steps:

1. selecting the structure of the vine (for C- and D-vines: selecting the order of the nodes);
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2. modelling each pair copula in the vine by a suitable parametric family (based on expert

knowledge, when available, or learning from data);

3. assigning the copula parameters (from prior knowledge, or by fitting to data).

Steps 1-2 solve the representation problem, by providing a parametric model of the input

dependencies. Step 3 uniquely determines the copula to be assigned to the inputs. We

restrict our attention to the case where expert knowledge is not available and the vine has to

be learned entirely from available data. Aas et al. (2009) provided algorithms to compute the

likelihood of a C- or D-vine model given a sample {x̂(1), . . . , x̂(n)} of observations. Joe (2015)

presented a likelihood estimation algorithm for general R-vines. These algorithms enable,

for a given parametric model (that is, once the vine structure and comprising pair copula

families have been selected), parameter estimation (step 3) based on maximum likelihood.

The estimation could then in principle be iterated across all possible structures (step

1) and pair copula families (step 2) to find the most likely model describing the observed

dependence properties. The number of possibilities to loop across, however, is extremely

large: an M -copula density admits 2(M−2
2 )−1M ! different R-vine factorisations (Morales-

Nápoles, 2011), M ! of which are C- or D- vines. This approach is thus computationally

demanding in the presence of even a moderate number of inputs. In the case studies examined

in this work we take a different approach, originally proposed by Aas et al. (2009) and

commonly preferred in applications, and first solve step 1 separately. The optimal vine

structure is found heuristically by ordering the variables Xi such that pairs (Xi, Xj) with

the strongest dependence are captured first, i.e., fall in the first trees of the vine. The

Kendall’s tau τK;ij defined in (7) is taken as the measure of dependence. For a C-vine, this

means selecting the central node in tree T1 as the variable Xi1 that maximises
∑
j 6=i1 τK;i1j ,

then the node of tree T2 as the variable Xi2 which maximises
∑
j /∈{i1,i2} τK;i2j , and so on.

For a D-vine, this means ordering the variables Xi1 , Xi2 , . . . , XiM in the first tree so as to

maximise
∑M−1
k=1 τK;ikik+1

, which we solve as an open travelling salesman problem (OTSP)

(Applegate et al., 2006). An open source Matlab implementation of a genetic algorithm to

solve the OTSP is provided in Kirk (2014). An algorithm to find the optimal structure for

R-vines has been proposed in Dißmann et al. (2013).

Once the vine structure has been selected, steps 2 and 3 are solved together by an

iterative procedure. For each pair copula composing the vine, and for each parametric

families allowed for that copula, the parameters of the family are fitted to the available

data based on maximum likelihood (other approaches, such as Bayesian estimation, may be

followed (Gruber and Czado, 2015)). The parametric family which best fits the data is then

chosen as the family that minimizes the Akaike information criterion (AIC)

AIC = −2 logL+ 2k,

where k is the number of parameters of the pair copula and logL is its log-likelihood. The AIC

penalises models with a larger number of parameters (which typically yield higher likelihood
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and would otherwise be preferred), thus preventing overfitting. Alternatives to the AIC

have been proposed, for instance the Bayesian information criterion (BIC) and the copula

information criterion (CIC; (Grønneberg and Hjort, 2014)). Also, one may alternatively opt

for various goodness of fit tests (Schepsmeier, 2015; Fermanian, 2012). We did not consider

these different approaches here. For a comparison of some of them, see Manner (2007).

Optionally, once each pair copula has been separately selected by this iterative approach

(sequential fitting), the selected pair-copula families are retained and the parameters of

the vine are globally fitted to the data. This step, however, may be computationally very

demanding if M is large.

To facilitate inference we rely on the commonly used simplifying assumption that the pair

copulas Cj(e),k(e)|D(e) in (17) only depend on the variables with indices in D(e) through the

arguments Fi(e)|D(e) and Fj(e)|D(e) (Czado, 2010). While being exact only in particular cases,

this assumption is usually not severe (Haff et al., 2010). In Stöber et al. (2013) construction

techniques for non-simplified vine copulas were proposed.

Table 11 shows the list of the 19 simplified pair copula families used for vine copula

construction in this study, and implemented in the VineCopulaMatlab package by Kurz

(2015). A summary of their properties is reported in Table 12. In addition to these copulas,

their rotated versions were also considered. A rotation by 180◦ transforms a copula into its

survival version. A rotation by 90◦ or 270◦ implements negative dependencies. Including

the rotated copulas, 62 families were considered in total for inference.

3 Vine representations for UQ methods assuming inde-

pendent inputs

Some advanced UQ techniques require or benefit from inputs X with independent compo-

nents. For instance, PCE (Section 4.2) exploits independence to build a basis of polynomials

orthonormal with respect to FX by tensor product. This in turn simplifies the construction

of a metamodel that expresses Y as a polynomial of the inputs. FORM and SORM (Sec-

tion 4.3), as well as other reliability methods, take advantage of the probability measure of

the standard normal space to approximate low probability mass regions. When the com-

ponents of X are mutually dependent but independence is needed, it is therefore custom

to transform X into a vector Z with independent components. The transformation T that

performs this mapping thus changes the copula CX of X into the independence copula C(Π)

defined in (11). When T also makes FZ rotationally invariant, it is called an isoprobabilistic

transform. This section discusses existing isoprobabilistic transformations, relates them to

copula theory, and highlights the existence of algorithms for their computation when CX

is expressed as an R-vine. By doing so, we demonstrate that vine copulas provide effective

models of complex input dependencies also in combination with UQ approaches designed for
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independent inputs.

3.1 Compositional models for dependent inputs

Consider a generic UQ method that works in a probability space where input parameters

are independent and have marginal distributions Gi. Assume that the input X to the model

M has a joint CDF FX for which an invertible isoprobabilistic transform T : X 7→ Z is

known, and that T −1 : Z 7→ X is also known. Then, the system response Y =M(X) can

be expressed as a function of Z by

Y = (M◦ T −1)(Z). (20)

The compositional model M ◦ T −1 can be seen as a black box model which combines

the known map T −1 with the original computational model M. The UQ method of choice

can then be applied on the input Z and the model M◦ T −1: the statistics of the output of

M◦ T −1 in response to Z are identical to the statistics of the output of M in response to

X.

Given FX andM, determining the compositional model requires then to determine T −1,

which depends on FX . However, a general closed form expression for T −1 is in most cases

unknown, even when FX is known. This problem is associated exclusively to the copula CX

of X, and not to its marginals Fi. Indeed, X can be mapped by the transformation T (U)

defined in (4) onto U ∼ U([0, 1]M ), whose joint CDF is CX . Thus, one can always write

T = T (U) ◦ T (Π), (21)

where T (U) – which depends on the marginals only – is known for a given FX , while T (Π) :

U 7→ Z is to be determined.

3.2 Isoprobabilistic transforms and copulas

The most general isoprobabilistic transform T , valid for any continuous FX , is the Rosenblatt

transform (Rosenblatt, 1952), which reads

T (R)
1 : X 7→W , where





W1 = F1(X1)

W2 = F2|1(X2|X1)

...

WM = FM |1,...,M−1(XM |X1, . . . , XM−1)

. (22)

Following (21), and as first noted in Lebrun and Dutfoy (2009a), one can rewrite T (R)
1 =

T (Π,R)
1 ◦ T (U), where

T (Π,R)
1 : U 7→W , with Wi = Ci|1,...,i−1(Ui|U1, . . . , Ui−1). (23)
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Here, Ci|1,...,i−1 are conditional copulas of X (and therefore of U), obtained from CX by

differentiation. The problem of obtaining an isoprobabilistic transform of X is thus reduced

to the problem of computing derivatives of CX .

The variables Wi are mutually independent and marginally uniformly distributed in [0, 1].

To assign Wi any other marginal distribution Ψi, one can define the generalised Rosenblatt

transform as a map T (R) = T (R)
2 ◦ T (R)

1 = T (R)
2 ◦ T (Π,R)

1 ◦ T (U), where

T (R)
2 : W 7→ Z, with Zi = Ψ−1

i (Wi). (24)

When Ψi = Fi for all i, i.e., T (R)
2 ≡

(
T (U)

)−1
, T (R) maps X onto a random vector Z with

same marginals but independent components.

Each continuous joint CDF FX defines multiple transforms of the type (23), one per

permutation of the indices {1, . . . , M}. However, these transforms involve conditional prob-

abilities which are not generally available in closed form. A notable exception is the multi-

variate Gaussian distribution, where independence can be obtained by diagonalisation of the

correlation matrix (e.g., by Choleski decomposition). The Rosenblatt transform in this case

(and in this case only, see Lebrun and Dutfoy (2009a)) is equivalent to the Nataf transform

(Nataf, 1962), which is commonly used in engineering applications.

A generalized Nataf transform for elliptical copulas was proposed in Lebrun and Dutfoy

(2009b). The generalization enables the mapping of random vectors with elliptical copulas

into their standard spherical representative, having uncorrelated (but not mutually inde-

pendent, except for the Gaussian case) components with elliptical, unit variance marginal

distributions. Adopting the generalized Nataf transform instead of the Rosenblatt transform

for inputs with non-elliptical copulas, of for inputs with elliptical copulas when a transforma-

tion to independent components is needed, may cause non-negligible errors on the estimates

computed by UQ methods.

3.3 Rosenblatt transform and resampling for R-vines

Aas et al. (2009) provided algorithms to compute the Rosenblatt transform (23) and its

inverse when CX is a given C- or D-vine. Given the pair-copulas Cij in the first tree of

the vine, the algorithms first compute their derivatives Ci|j . Higher-order derivatives Ci|ijk,

Ci|ijkh, . . . are obtained from the lower-order ones and their inverses by iteration. The deriva-

tives of continuous pair copulas are available analytically in few cases (see, e.g., Schepsmeier

and Stöber (2014)) and numerically otherwise. Since these functions are monotone increasing

distributions, their inverses are numerically cheap to compute by rootfinding, when not avail-

able analytically. An algorithm for the computation of the Rosenblatt and inverse Rosenblatt

transforms for general R-vines was proposed in Schepsmeier (2015). These algorithms can

be trivially implemented so as to process n samples in parallel.

In addition, (T (R))−1 allows to sample from the vine model by transforming independent

points uniformly distributed in [0, 1]M . Space filling samples in the probability space can
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be obtained analogously (e.g., by Sobol sequences or Latin Hypercube sampling, (McKay

et al., 1979)). Given in particular a vine model of the input dependencies (obtained, e.g.,

from expert knowledge or by inference from available data), the inverse Rosenblatt transform

enables resampling from this model.

4 UQ for mutually dependent inputs

After recalling convergence properties of MC estimates, we summarise here three established

UQ methods used in the numerical experiments carried out in Sections 5 and 6: PCE, FORM,

and IS. Several other methods exist to solve the same problems, and we do not advocate for

the ones considered here over others. Importantly, the framework demonstrated for these

three methods extend to basically any UQ technique designed for problems with a finite

number of coupled inputs.

PCE is a spectral method that expresses the system response as a polynomial of the input

variables. It is used to estimate moments of the response, to compute sensitivity indices, or

to perform resampling efficiently. FORM is a reliability analysis method designed to approx-

imate small failure probabilities Pf numerically. IS is a stochastic sampling method that

combines FORM with MC to obtain more robust estimates of Pf . When the computational

budget is limited and only few runs of the computational model can be afforded, these meth-

ods provide significantly better estimates of their target statistics than MCS with the same

number of observations. However, these methods strongly rely on an accurate representation

of the input dependencies. Besides, some of them strongly benefit from the possibility of

mapping the input random vector onto a vector with independent components.

Here we describe how to combine these methods with the vine representation of the input

CDF illustrated in Section 2. The flexibility of R-vine models expands the applicability of

these methods drastically.

4.1 Convergence of MC estimates

MC (or sample) estimates of a statistic η = η(Y ) are obtained as functions η̂n = η̂n(Y ) of

n i.i.d realisations {ŷ(j)}nj=1 of Y . Three statistics considered in the applications in Sections

5-6 are the mean µ(Y ) of Y , its standard deviation σ(Y ), and failure probabilities of the type

Pf ;y∗(Y ) = P(Y ≥ y∗), where y∗ is a critical threshold (see Table 1, first row). Their sample

estimators are the sample mean µ̂n(Y ), the corrected sample standard deviation σ̂n(Y ), and

the sample survival function evaluated at y∗, P̂f ;y∗,n(Y ). Their analytical expression is given

in Table 1, second row.

If η̂n(Y ) is an unbiased estimator of η(Y ) and η(Y ) 6= 0, the reliability of η̂n(Y ) can be

quantified by its coefficient of variation (CoV), given by

CoV(η̂n(Y )) =
σ(η̂n(Y ))

µ(η̂n(Y ))
=
σ(η̂n(Y ))

η(Y )
.
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η(·): µ(Y ) =
∫
R yfY (y)dy σ(Y ) =

√∫
R(y − µ(Y ))2fY (y)dy Pf ;y∗(Y ) =

∫
{Y≥y∗} fY (y)dy

η̂n(·): µ̂n(Y ) =
1

n

∑

j

ŷ(j) σ̂n(Y ) =

√
1

n− 1

∑

j

(
ŷ(j) − µ̂n(Y )

)2
P̂f ;y∗(Y ) =

1

n

∑

j

1{ŷ(j)>y∗}

CoV(η̂n):
σ(Y )

µ(Y )

1√
n

≈ 1√
2n

√
1− Pf
nPf

Table 1: Some MC sample estimates and their CoV. The first row of the table defines

the mean, standard deviation, and failure probability of the random variable Y . The second

row shows their sample estimators, and the bottom row the CoV of such estimators (exact for

σ̂n(Y ) only if Y is normally distributed).

It is common in engineering applications to accept estimates whose CoV is not larger

than 0.1 (10%). The CoV of all statistics in Table 1, third row (approximate for σ̂n(Y ))

is proportional to 1/
√
n and thus decays to 0 as n increases, however at a slow pace. The

expression for CoV(σ̂n(Y )) is obtained from the fact that σ(σ̂Y ) = σ(Y )/
√

2N +O(N2) if

Y is normally distributed (see Romanovsky (1925)).

4.2 Polynomial Chaos Expansion

PCE is a spectral method that represents a model M of finite variance as a linear sum of

orthogonal polynomials (Ghanem and Spanos, 2003; Xiu and Karniadakis, 2002). As such,

the parameters of the resulting representation have a statistical interpretation. For instance,

the first two moments of the PCE model are encoded in the coefficients of the obtained

polynomial. The model is also computationally cheap to evaluate, enabling an efficient

evaluation of other global statistics of Y (higher order moments, the PDF, etc.) that would

otherwise require an excessive number of runs of M.

Building a PCE representation of the output is relatively simple, as recalled below, for

independent inputs. For this reason, if X has non mutually independent components, it is

convenient to first map it onto such a vector Z by an isoprobabilistic transform. Modelling

the copula CX of X as an R-vine provides the Rosenblatt transform (23)-(24) needed to this

end.

Given an isoprobabilistic transform T such that Z = T (X), it follows that Y = (M◦
T −1)(Z) = M′(Z). In the following, Y is assumed to have finite variance. The PCE of

Y =M′(Z) is defined as

Y =
∑

α∈NM
yαΨα(Z), (25)

where the Ψα are multivariate polynomials orthonormal with respect to fZ , i.e.,

∫

DZ

Ψα(z)Ψβ(z)fZ(z)dz = δαβ.
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Here, δαβ is the Kroenecker delta symbol.

Since Z has independent components, each Ψα can be obtained as a tensor product of

M univariate polynomials φ
(i)
αi (xi) orthonormal with respect to the marginals gi of Zi:

Ψα(z) =
M∏

i=1

φ(i)
αi (zi).

The polynomial basis is guaranteed to exist if the marginals distributions all have finite

moments of any order. A unique representation exists if additionally the marginals are

uniquely represented by the sequence of their moments. For details, as well as for sufficient

conditions that guarantee uniqueness, see Ernst et al. (2012). For instance, the φ
(i)
αi are

Hermite polynomials if Zi is standard normal, i.e., if gi(z) = ϕ(z) = exp(−z2/2)/
√

2π. In

the applications illustrated in Section 5 we work with this choice, although other choices may

be favoured in different applications. An investigation of optimal choices for the marginal

distributions of Z is an open question that will be investigated in a future study. Classical

families of polynomials are described in Xiu and Karniadakis (2002).

The sum in (25) comprises an infinite number of terms. For practical purposes, it is

truncated to a finite sum (Marelli and Sudret, 2017). Given a truncation scheme and the

corresponding set A of multi-indices, the coefficients yα in

YPC(Z) =
∑

α∈ A
yαΨα(Z) (26)

are evaluated on a set {(ẑ(j) = T −1(x̂(j)), ŷ(j)}nj=1 of observations (the experimental design).

Many strategies exist to accomplish this task, such as projection methods based on Gaus-

sian (Le Mâıtre et al., 2001) or sparse quadrature (Keese and Matthies, 2003; Xiu, 2010),

least-squares minimisation (Berveiller et al., 2006), and different adaptive sparse methods

(Doostan and Owhadi, 2011; Jakeman et al., 2015), hybridised into a single methodology by

(Blatman and Sudret, 2011). The latter is particularly suitable when M is large, because it

achieves a sparse basis out of a very large initial set of possible polynomials, and is therefore

the method of choice in this study.

Once a PCE metamodel (26) of the compositional model M′ is built, the first two mo-

ments of the response are encoded in the coefficients of the expansions. Indeed, due to

orthonormality of the polynomial basis,

µ(YPC) = y0, σ2(YPC) =
∑

α∈A\{0}
y2
α. (27)

Higher-order moments, as well as other statistics, can be efficiently estimated by simula-

tion.

4.3 First order reliability method

Let Y =M(X) be the uncertain, scalar output of the computational model M in response

to an uncertain M -variate input X with joint CDF FX , joint PDF fX and domain DX .
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Suppose that the system fails if Y ≥ y∗, where y∗ is a critical threshold. The failure condition

is usually rewritten as g(x) ≤ 0, with g(x) = y∗ −M(x).

Reliability analysis concerns the evaluation of the failure probability Pf = P(g(X) ≤ 0),

i.e., of the probability mass over the failure domain Df = {ω : g(X(ω)) ≤ 0}. Df is

typically known only implicitly, preventing a direct estimation of Pf .

Using the indicator function

1Df (x) =





1 if g(x) ≤ 0

0 if g(x) > 0

,

Pf can be expressed as

Pf =

∫

DX

1Df (x)fX(x)dx = µ(1Df (X)), (28)

where µ(·) is the mean operator with respect to fX .

If X is multivariate normal with independent components, FORM (Hasofer and Lind,

1974; Hohenbichler and Rackwitz, 1983) approximates Df with an hyperplane tangent to the

limit-state surface {ω : g(X(ω)) = 0} in its point closest to the origin (the design point x∗).

The rationale is that the standard normal density is a fast decaying function of the norm of

its argument, so that – assuming the uniqueness of the design point – the probability mass

of Df concentrates around x∗ (see also Der Kiureghian and Liu (1986)).

If X is not multivariate normal, but has a normal copula, the Nataf transform (which is

equivalent to the Rosenblatt transform in the Gaussian case, see Lebrun and Dutfoy (2009a)

and Section 3.3) is used map X into a standard normal random vector Z = T (X), and

FORM can then be used to search for the design point z∗ in the standard normal space.

If X has a more general elliptical copula, the generalized Nataf transform can be employed

to map X into a vector Z whose components are uncorrelated (but not independent) and

have elliptical marginals with unit variance (Lebrun and Dutfoy, 2009b). In this case, the

probability density of Z is again a rapidly decreasing function of the norm of its argument,

and FORM can be used analogously to the standard normal case.

If X has a non-elliptical copula, employing the generalized Nataf transform would yield

biased estimates of the failure probability. One has to resort to different isoprobabilistic

transformations, the most general being the Rosenblatt transform, to map X into a standard

normal (or into a spherical elliptical) random vector Z = T (X), thus reconducting the

problem to one of the two cases above. To treat this more general case, we express FX in

terms of its marginals Fi and of its copula CX as in (1), and we model CX as an R-vine (see

Section 2.4). The Rosenblatt transform of the latter is available (see Section 3.3), allowing

X to be mapped onto the standard normal space, where the classical version of FORM can

be used.
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4.4 Importance sampling

In the context of reliability analysis, IS is used to combine the convergence speed of FORM

with the robustness of MC sampling. For a general, non-standard-normal input vector X

admitting Rosenblatt transform Z = T (N )(X), (28) can be recast as

Pf =

∫

RM
1Df

(
T −1(z)

) ϕM (z)

ψ(z)
ψ(z)dz = µψ

(
1Df

(
T −1(Z)

) ϕM (Z)

ψ(Z)

)
, (29)

where ϕM (·) is the M-variate standard normal density, ψ(·) is a suitable M-variate density

(the importance density) and µψ is the mean operator with respect to ψ. Melchers (1999)

recommends to assign ψ as the standard normal density centered at the design point found

by FORM: ψ(z) = ϕM (z − z∗).

Given a sample {ẑ(1), . . . , ẑ(n)} of ψ(Z), the IS estimator of Pf is the sample estimator

P̂f ;IS =
1

N
exp(||z∗||2/2)

n∑

j=1

1Df
(
T −1(ẑ(j))

)
exp(−ẑ(j) · z∗),

which has variance

σ2(P̂f ;IS) ≈ 1

n(n− 1)

n∑

j=1

(
1Df

(
T −1(ẑ(j))

) ϕM (ẑ(j))

ϕM (ẑ(j) − z∗)
− P̂f ;IS

)2

and CoV(P̂f ;IS) ≈ σ(P̂f ;IS)/P̂f ;IS. Since the latter is given in terms of P̂f ;IS, it is unknown

until P̂f ;IS is computed. One can progressively increase the sample size n until CoV(P̂f ;IS)

drops below a desired level.

5 Results on a horizontal truss model

We first demonstrated the analysis workflow developed above on a horizontal truss model.

Estimates based on advanced and computationally efficient UQ techniques were compared

to reference MCS estimates. Earlier work on vine representations combined with MCS can

be found in Wang and Li (2017b), limited to reliability analysis.

The analysis was run in Matlab (The Mathworks Inc., 2016). Specifically, the vine copula

inference was performed using the open source package VineCopulaMatlab (Kurz, 2015).

We enriched this toolbox with functionalities for the computation of the Rosenblatt and

inverse Rosenblatt transforms of C- and D- vines, and for the calculation of the optimal

D-vine structure on data, implemented as an open travelling salesman problem (Applegate

et al., 2006). The UQ analyses were performed with the free Matlab-based software UQLab

(Marelli and Sudret, 2014).

5.1 Computational model

The horizontal truss model, already used in Blatman and Sudret (2011), comprises 23 bars

connected at 6 upper nodes, as shown in Figure 2. The structure is 24 meters long and 2
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Figure 2: Scheme of the horizontal truss model. Modified from Blatman and Sudret

(2011).

meters high. Six random loads P1, P2, . . . , P6 were applied onto the structure, one on each

upper node. As a result, the structure exhibited a downward vertical displacement at each

node. The largest displacement ∆ was always at the center. Excess displacement leads to

failure.

5.2 Probabilistic input model

We considered the case of uncertain loads Pi, causing uncertainty in the output response

∆. The bar properties of the truss, differently from Blatman and Sudret (2011), were kept

constant. The loads X = (P1, P2, . . . , P6) were modelled by assigning separately their

marginals Fi and their copula CX . We fixed the marginals to univariate Gumbel CDFs with

mean µ = 5× 104 N and standard deviation σ = 0.15µ = 7.5× 103 N:

Fi(x;α, β) = e−e
−(x−α)/β

, x ∈ R, i = 1, 2, . . . , 6, (30)

where β =
√

6σ/π, α = µ− γβ, and γ ≈ 0.5772 is the Euler-Mascharoni constant.

We then investigated how different copulas affect the statistics of the truss response. First,

we employed the independence copula C(Π) defined by (11), which implies independence

among the loads.

Loads on a truss structure may be expected to be positively correlated: higher loads on

one node increase the chance to have higher loads on other nodes (e.g. due to snow or traffic

jam on a bridge). To account for this, we selected next a 6-dimensional Gaussian copula

C(N ) (12). We assigned the copula parameters ρ1j , j = 2, . . . , 6, such that the Spearman’s

correlation coefficients (6) would be ρS;1j = 0.135, resulting in ρ1j = 0.141 (and Kendall’s

tau τK;1j ' 0.0904). Besides, we set ρS;ij|1 = 0 for each i 6= j, i, j 6= 1, so that all loads

other than P1 would be conditionally independent given P1.

Beside being positively correlated, in a realistic scenario loads are likely to be upper

tail dependent: an extremely large load on one node increases the chance to have large

loads elsewhere (e.g., when due to a heavy snowfall or to a traffic jam). Therefore, we last

investigated a scenario with tail dependent loads (see Section 2.2). We modelled upper tail

dependence by means of a C-vine C(V). We selected P1 as the first node of C(V), and we set

the pair copulas in the first tree to bivariate Gumbel-Hougaard copulas C
(GH)
1j (13) between
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P1 and Pj , j = 2, . . . , 5. We took the parameter θ1j = 1.1, j = 2, . . . , 6, yielding Spearman’s

correlation coefficients ρS;1j = 0.135 as for the Gaussian copula. This choice resulted in

τK;1j = 0.0909 (close to the value determined by the Gaussian copula) but also determined

an upper tail dependence coefficient λu;1,j = 0.122 between P1 and Pj . We further set the

other pair copulas of the vine, i.e., all conditional pair copulas, to the independence copula,

ensuring conditional independence of (Pi, Pj) given P1 for each i, j 6= 1. The resulting vine

C(V) had density

c(V)(u1, . . . , u6) =
6∏

j=2

c
(GH)
1j (u1, uj). (31)

Note that other vine structures could have been used to model tail dependent loads: for

instance, a D-vine whose first tree couples the loads on neighbouring nodes of the truss.

Expert knowledge and available input data may provide guidance in this selection process.

We finally investigated the viability of the vine representation when the vine itself is

not known and has to be fully inferred from data. To this end, we sampled m = 300

realisations from C(V) and learned from them the vine structure, its pair copula families

and their parameters, as detailed in Section 2.5. The pair copulas were chosen among the

parametric families listed in Table 11 and their rotated versions defined by (33). The inferred

pair copulas comprising Ĉ(V) are summarised in Table 2, along with their Kendall’s tau and

upper tail dependence coefficients. In real applications, the input observations needed for

the inference procedure may be obtained by monitoring of the loads themselves, or may be

estimated from available data (e.g., weather or traffic conditions), and do not require any

model evaluation. The resulting C-vine Ĉ(V) had a different structure, only two of the five

pair copulas in the first tree were of the Gumbel-Hougaard family, and one of the conditional

copulas in the second tree was not the independence copula. All other pair copulas were

correctly found to be independence copulas. Despite the differences from the true vine C(V),

using Ĉ(V) provided very good quality estimates of the statistics of the truss deflection, as

shown below.

5.3 Analysis of the moments for different load couplings

For each probabilistic model of the loads, we analysed the mean µ(∆) and standard deviation

σ(∆) of the resulting system response by MCS and by PCE.

The MC estimates were computed as sample estimates on {δ̂i = M(x̂i)}107

i=1, where

{x̂i}107

i=1 was a set of i.i.d input realisations. The vertical deflections δi were computationally

affordable to compute due to the simplicity of the model. The results are summarised in

Table 3, together with the CoV of the estimates (see Table 1).

While µ(∆) was virtually identical across the input model, σ(∆) exhibited non-negligible

changes. For instance, it increased by almost 10% from the independence to the vine copula.

As a consequence, if C(V) were the true copula among the loads, an MC estimate of σ(∆)
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Copula Family Parameter values τK λu

C13 Clayton, rotated 180 θ = 0.1806 0.0828 0.0215

C12 Tawn-2 θ1 = 1.439, θ2 = 0.3406 0.1522 0.1975

C16 Gumbel θ = 1.103 0.0934 0.1254

C14 Tawn, rotated 180 θ1 = 7.506, θ2 = 0.05197, θ3 = 0.2982 0.0454 0

C15 Clayton, rotated 180 θ = 0.3794 0.1595 0.1609

C35|1 Tawn θ1 = 11.05, θ2 = 0.1338, θ3 = 0.1178 0.0658 0.1151

Table 2: Pair copulas of inferred C-vine for loads on horizontal truss. Pair copulas of

the C-vine model Ĉ(V) for the loads on the horizontal truss model, obtained from 300 samples of

C(V). The pair copulas found to be independence copulas are not shown. The last two columns

indicate the Kendall’s tau and the upper tail dependence coefficient of each pair copula.

C(Π) C(N ) C(V) Ĉ(V)

µ̂MC(∆) (cm): µ̂
(Π)
MC = 7.78 µ̂

(N )
MC = 7.78 µ̂

(V)
MC = 7.78 µ̂

(V̂)
MC = 7.78

CoV(µ̂MC(∆)) (×10−5): 2.1 2.3 2.4 2.4

σ̂MC(∆) (cm): σ̂
(Π)
MC = 0.528 σ̂

(N )
MC = 0.566 σ̂

(V)
MC = 0.581 σ̂

(V̂)
MC = 0.593

CoV(σ̂MC(∆)) (×10−4): 2.2 2.2 2.2 2.2

Table 3: Moments of horizontal truss deflection for different load couplings. MC

estimates µ̂MC(∆) and σ̂MC(∆) for different copulas of the loads, based on 107 samples, and

their CoV. Reference solutions in bold.

based on the independence assumption would be biased. Conversely, fitting a Gaussian

copula or a C-vine to data yielded more accurate estimates.

MC estimates converge slowly (see Section 4.1) and therefore need to be computed on

large samples. Figure 3 shows by solid lines the errors on MC estimates drawn for the

four different copulas on 10, 100, . . . , 105 samples. The reference solutions were the MC

estimates µ̂
(V)
MC, σ̂

(V)
MC obtained through 107 samples under C(V). The errors of estimates µ̃,

σ̃ were defined as

E
(µ)
rel =

∣∣∣∣∣
µ̃

µ̂
(V)
MC

− 1

∣∣∣∣∣ , E
(σ)
rel =

∣∣∣∣∣
σ̃

σ̂
(V)
MC

− 1

∣∣∣∣∣ . (32)

Note that, due to the CoV of the reference solutions, reported in Table 3, the errors shown

in Figure 3 are reliable only down to approximately 10−4 for the means and 10−3 for the

standard deviations.

We further estimated for each copula the error on µ(∆) and σ(∆) yielded by PCE,
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Figure 3: Estimates of the deflection moments. Estimates of the errors on µ(∆) (left panel)

and on σ(∆) (right panel) obtained using an increasing number of samples by MCS (solid lines)

and by PCE (dashed lines), for loads coupled by C(Π) (yellow), C(N ) (red), C(V) (blue) and Ĉ(V)

(green). Reference solution: MC estimate obtained on 107 samples with copula C(V).

which is known to converge faster than MCS (see Section 4.2). We increased the size of

the experimental design from 10 to 1000 sample points. The errors on the PCE estimates

are shown in Figure 3 by dashed lines (again, reliable only down to the above mentioned

precision). Notably, for the same number n of samples the PCE error is significantly smaller

than the MCS error, demonstrating that the vine representation is fully compatible with

PCE metamodelling.

5.4 Reliability analysis for different load couplings

The truss model was set to fail if the deflection ∆ reached or exceeded the critical threshold

δ∗ = 11 cm. Reliability analysis was performed to evaluate the failure probability Pf =

P(∆ ≥ δ∗) = 1− F∆(δ∗).

For each probabilistic input model (i.e. for each copula CX , combined with the marginals

in (30)), we first obtained reference solutions by MCS. Using the n = 107 i.i.d. realisations

{δ̂i =M(x̂i)}107

i=1 obtained for the analysis of the moments, we estimated Pf as the fraction

of observed deflections δ̂i larger than 11 cm. Then, we drew estimates by FORM, applied on

the compositional model resulting from decoupling the loads via Rosenblatt transformation

(see Sections 3 and 4.3). The results are summarised in Table 4.

The failure probability estimated by MCS with the independence copula C(Π) was P̂
(Π)
f =

(1.5± 0.1)× 10−5. The FORM estimate was P̂
(Π)
f ;FORM = 0.37× 10−5, obtained by 219 runs

of the computational model. Figure 4B shows, in yellow, the empirical survival function of

∆ obtained under C(Π), for values of δ ranging from 6 cm to 12 cm. The vertical dashed line

marks the critical threshold δ∗, whereas the square indicates the FORM estimate of Pf .

The MC estimate of Pf under the Gaussian copula C(N ) was P̂
(N )
f ;MC = (3.4± 0.2)× 10−5
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Method: MCS FORM

Copula: C(Π) C(N ) C(V) Ĉ(V) C(Π) C(N ) C(V) Ĉ(V)

P̂f (×10−4): 0.15± 0.01 0.34± 0.02 5.04± 0.07 3.30± 0.06 0.037 0.10 4.88 2.94

CoV(P̂f ) (%): 8.2 5.4 1.4 2.3 — — — —

# runs: 107 107 107 107 219 219 108 128

Table 4: Estimates of the truss failure probability. Estimates of Pf obtained with different

copulas and methods (for MCS with standard deviation of the estimator; reference solution in

bold), CoV of the MC estimate (see Table 1), and number of runs of the computational model

needed to obtain the solution.

(Figure 4, orange line: empirical survival function of ∆ under C(N )). Compared to the

independent case, the failure probability increased by a factor of over 2, as a result of the

positive correlations among the loads. The FORM estimate was P̂
(N )
f ;FORM = 1.0 × 10−5,

obtained again by 219 runs.

The MC estimate of Pf under the C-vine C(V) was P̂
(V)
f ;MC = (5.04±0.07)×10−4 (Figure 4,

blue line: empirical survival function of ∆ under C(V)). This value was over 33 times larger

than the case of independent loads and 14 times larger than the Gaussian case, despite

the marginal distributions of the loads being identical across all cases, and the Spearman’s

correlation coefficients being identical between C(V) and C(N ). The FORM estimate using

C(V) was P̂
(V)
f ;FORM = 4.88× 10−4, obtained by only 108 runs.

Finally, the MC estimate of Pf assuming Ĉ(V) was P̂
(V̂)
f ;MC = 3.30 × 10−4, about 35%

smaller than the reference solution P̂
(V)
f ;MC (Figure 4, green line: empirical survival function

of ∆ under Ĉ(V)). The FORM estimate, obtained with 128 runs of the computational model,

was P̂
(V̂)
f ;FORM = 2.94× 10−4 (42% smaller than P̂

(V)
f ;MC).

In light of these results, in a scenario where the true dependence among the loads is

described by (31), assuming independence or a Gaussian copula would cause a severe un-

derestimation of the failure probability of the system, even when relying on a large MCS

strategy. Properly capturing the dependencies (in particular, the tail dependencies) among

the inputs is thus more critical towards getting accurate estimates of Pf than using more

precise estimation algorithms (FORM combined with C(V) outperforms MCS on 107 sam-

ples combined with C(N )). Furthermore, the error on Pf remains small when the vine is

entirely inferred from available input data, because the tail dependencies are properly cap-

tured (see Table 2). This demonstrates the viability of the vine copula modelling framework

in reliability analysis for purely data driven inference.

The results above show that the failure probability is heavily misestimated when inputs

coupled by a C-vine with tail dependencies are modelled by a Gaussian copula. A natural
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Figure 4: Reliability analysis of the truss structure. Solid lines: MC estimate of the

survival function P(∆ > δ) for loads coupled by the independence copula C(Π) (yellow), the

Gaussian copula C(N ) (red), the C-vine with known parameters C(V) (blue, mostly overlapping

with green), and the C-vine with fitted parameters Ĉ(V) (green). The vertical dashed line marks

the critical threshold δ∗. Squares: estimates of Pf obtained by FORM.

question that arises is the following: is the opposite also true? In other words, how well can

the C-vine family capture input dependencies described by a Gaussian copula? To answer this

question, we performed additional simulations with C(N ) as the true input copula (having

associated failure probability P̂
(N )
f ;MC = (3.4 ± 0.2) × 10−5). We sampled 300 observations

from C(N ), and inferred a C-vine from those. The pair copula families were selected as

before by AIC among the parametric families listed in Table 11 and their rotated version,

and their parameters were fitted by maximum likelihood. The resulting estimate of Pf

was (2.2 ± 0.2) × 10−5, only 35% smaller than the reference value. This demonstrates that

the C-vine family is an effective dependence model also in the presence of simple Gaussian

dependencies. In conclusion, this class of models covers a larger range of dependence scenarios

than Gaussian (or elliptical) copulas, enabling UQ also in cases where the classical use of

the Nataf transform would lead to wrong estimates.

6 Results on a dome truss model under asymmetric

loads

We further considered a more complex model of a three-dimensional 120-bar dome truss. The

model was used to demonstrate the applicability of our novel copula-based UQ framework

on a more realistic case study than the one previously analysed. Due to the computational

complexity of this model (∼ 15 seconds/run), large MCS was not affordable.
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Copula Family Parameter values τK λu

C12 Partial Frank θ = 1.363 0.1189 0

C13 Partial Frank θ = 1.320 0.1166 0

C14 IterFGM θ1 = 0.8832, θ2 = −0.8688 0.1536 0

C15 AMH θ = 0.4297 0.1080 0

C16 Gaussian θ = 0.1726 0.1104 0

Table 5: Pair copulas of inferred C-vine for horizontal truss, under Gaussian assump-

tion. Pair copulas of the C-vine model for the loads on the horizontal truss model, obtained

from 300 samples of C(N ). The pair copulas found to be independence copulas are not shown.

The last two columns indicate the Kendall’s tau and the upper tail dependence coefficient of

each pair copula.

6.1 Computational model

The dome structure, illustrated in Figure 5A from the top and in Figure 5B from the front,

consists of 120 bars connected to a total of 49 nodes. Nodes 1 to 37 (grey dots) are un-

supported and therefore, when subject to vertical loading, exhibit a displacement from the

original position in possibly all directions. The spatial dimensions of the structure are re-

ported in panel B.

The computational model was implemented in the finite element software Abaqus (Smith,

2009). This structure was previously analysed in Kaveh and Talatahari (2009) to obtain opti-

mal sizing variables so as to minimise the total structural weight. The authors distinguished

7 groups of bars, and optimised the cross-sections of each group to minimise the total struc-

tural weight of the structure under 4 different types of stress and displacement constraints.

We considered in particular their case 2, where stress and displacement constraints (±5 mm)

in the x− and y- directions were enforced. In Kaveh and Talatahari (2009) it was further

assumed that each unsupported node is subject to vertical loading, taken as 60 kN at node 1,

30 kN at nodes 2-14, and 10 kN at nodes 15− 37. Under these conditions, the optimal cross

sections reported in Table 6 were obtained, yielding a total structural weight of 89, 35 kN.

6.2 Probabilistic input model

Here we were interested in analysing the displacement of the nodes, considered as a risk

factor potentially leading to failure.

First, we assigned uncertainty to the bar cross-sections. We modelled the 7 previously

identified groups by independent log-normal random variables with mean given by the values

in Table 6 and CoV σ/µ = 0.03. We assigned the bars in each of the 7 groups identical cross-
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Figure 5: Dome structure and average response to loads. A) Truss model, consisting

of 37 central nodes (grey dots, 1-37), 12 support nodes (black squares, 37-49) and 120 bars

connecting them, divided into 7 groups. B) Profile of the dome with spatial dimensions. C)

Sectors of the dome surface and nodes in each sector. The color of each sector represents the

total average load weighing on each node in the sector (left color bar). The color of each node

marks the average vertical displacement of that node in response to the loading, calculated over

1000 Monte Carlo simulations.
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Optimal cross-sectional areas (cm2) Weight (kN) Loads (kN)

Group: 1 2 3 4 5 6 7
89.35

Node: 1 2-13 14-37

Area: 24.38 21.79 26.61 17.64 10.38 22.79 16.38 Load: 60 30 10

Table 6: Dome’s structural parameters and loads. Cross-section of each group of bars that

minimises the total structural weight under stress and x-, y- displacement constraints, resulting

structural weight, and additional loads on each node. Values provided by Kaveh and Talatahari

(2009).

sections.

We further assigned uncertainty to the loads applied on each node. We modelled a sce-

nario where loads are distributed asymmetrically over the structure. A preliminary analysis

showed that asymmetric loads yielded higher maximum vertical displacement compared to

symmetric loads. We divided the 37 central nodes into 9 groups, named A to I, correspond-

ing to different sectors of the surface of the dome. Sector A contains solely node 1, sector

B contains nodes 2, 3 and 4, and so on, as shown in Figure 5 and in the upper two rows of

Table 7. We considered the nodes in each group to be subject to the same load, and mod-

elled the loads on the 9 groups by a 9-dimensional random vector with prescribed marginals

and copula. The marginals were taken to be Gumbel distributions (30), whose moments,

shown in the bottom two rows of Table 7, were determined as follows. We assigned to each

sector a Gumbel-distributed load, having mean 1 kN/m2 for the top and north-east sectors

A,B,F, 0.5 kN/m2 for the north-west and south-east sectors C, E, G and I, and 0.25 kN/m2

for the south-west sectors D and H. The different mean values could model, for instance,

snow falling on the dome from the north-east direction. The average external weight on each

node (third-last row of the table) was obtained by multiplication with the total area of the

node’s sector (fourth row) and by division with the number of nodes in that sector. The

CoV of each distribution was set to 0.2. Finally, deterministic service loads similar to those

suggested by Kaveh and Talatahari (2009) were added: 60 kN on node 1, 30 kN on nodes

2-13, 10 kN on nodes 14− 37.

We coupled the 9 loads by three different copulas: the independence copula C(Π) (11),

the Gaussian copula C(N ) (12), and a 9-dimensional C-vine C(V) (31). The C-vine consisted

of Gumbel-Hougaard pair-copulas (13), each with parameter θ = 5, between sector A and

sectors B, . . . , I for the first tree, and independence conditional pair-copulas for the other

trees. This choice assigns the loads between nodes in sector A and any other loads a Kendall’s

correlation coefficient τK = 0.8 and an upper tail dependence coefficient λu = 0.85. Thus,

CV assigns a strong positive correlation to the loads and a high probability of having joint

extremes if one of the loads takes values in its upper tail. The Gaussian copula was taken
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Sector A B C D E F G H I

Nodes 1 2–4 5–7 8–10 11–13 14–19 20–25 26–31 32–37

Lfix/Node (kN) 60 30 each 10 each

Sector’s Area (m2) 37.84 257.00 each 496.38 each

Area/Node (m2) 37.84 86.33 each 82.73 each

Lext/m2 (kN) 1 1 0.5 0.25 0.5 1 0.5 0.25 0.5

µ(Lext/Node) (kN) 37.84 21.58 10.79 5.40 10.79 20.68 10.34 5.17 10.34

µ(Ltot/Node) (kN) 97.84 51.58 40.79 35.40 40.79 30.68 20.34 15.17 20.34

σ(Ltot/Node) (kN) 7.57 4.32 2.16 1.08 2.16 4.14 2.07 1.03 2.07

Table 7: Load statistics on each dome sector. For each node sector from A to I: nodes in

the sector, structural load Lfix per node , average external load Lext per node, moments of the

total load Ltot.

such that its correlation matrix would match the correlation coefficients determined by the

C-Vine.

We further inferred a C-vine Ĉ(V) from 300 samples obtained from C(V). The resulting

vine Ĉ(V), whose comprising pair copulas are listed in Table 8, had the same structure as

C(V), Gumbel-Hougaard copulas CAB , CAC , . . . , CAH , and Tawn-2 copula CAI . The Tawn-

2 copula is a generalization of the Gumbel copula with right-skewed asymmetry in relation

to the main diagonal. It is obtained from the three-parameters Tawn copula (Tawn, 1988) by

setting one of its two asymmetry parameters to 1 (see Tables 11-12, row 17). All conditional

copulas of Ĉ(V), finally, were correctly found to be independence copulas.

6.3 Model response to the uncertain input

The output of the model in response to a single instance of the input is a list of displacements

in the x-, y- and z- directions, one per node, as well as the tension (or compression) of each

bar. We restricted our attention to displacements only, which, if excessive (11 mm in any

direction), lead to failure of the structure.

We first performed a preliminary Monte-Carlo analysis based on 1000 simulations of the

input (with loads coupled by CV) and corresponding output displacements. Figure 5C shows

in two different color codes the average weights on the nodes in each sector (left color bar)

and the resulting average vertical displacement of each node (right color bar). Negative

displacement indicates that the node moved downwards. Some nodes exhibited positive

displacements, i.e., uplifting.
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Copula Family Parameter values τK λu

CAB Gumbel θ = 5.093 0.8037 0.8542

CAC Gumbel θ = 4.836 0.7932 0.8459

CAD Gumbel θ = 5.151 0.8059 0.8560

CAE Gumbel θ = 4.775 0.7906 0.8438

CAF Gumbel θ = 4.631 0.7841 0.8385

CAG Gumbel θ = 5.018 0.8007 0.8519

CAH Gumbel θ = 4.712 0.7878 0.8415

CAI Tawn-2 θ1 = 5.257, θ2 = 0.967 0.7875 0.8445

Table 8: Pair copulas of inferred C-vine for loads on dome structure. Pair copulas

of the C-vine model Ĉ(V) for the loads on the dome structure, obtained from 300 samples of

C(V). The pair copulas found to be independence copulas are not shown. The last two columns

indicate the Kendall’s tau and the upper tail dependence coefficient of each pair copula.

For all simulations and all nodes, the vertical displacement always exceeded in absolute

value the displacement in the x- and y- directions. This was expected, considering that the

average bar’s cross-sections were optimised to minimise the latter two. Besides, the absolute

vertical displacement was always maximal at node 2, except for 17 out of 1000 simulations

where the maximal absolute displacement was observed at node 3, but was never critical

(that is, was always < 11 mm). Thus, we reduced the model’s response to the vertical

displacement ∆ of node 2:

∆ =M(X), X = (A1, . . . , A7, LA, . . . , LI).

6.4 Analysis of the moments

For each copula mentioned above, we evaluated the mean µ(∆) and the standard deviation

σ(∆) of the deflection ∆ at node 2 both by MCS and by PCE. The estimates were based

on samples of size n increasing from 10 to 1000. Due to the generally faster convergence of

PCE with respect to MCS for small sample sizes, the PCE estimates built on 1000 samples

were taken as reference values for each of the four copula models (see Table 9). The values

obtained indicate that the independence, Gaussian and vine copulas yielded for ∆ similar

means but different standard deviations.

Taken in particular C(V) to be the true copula among the loads, and the corresponding

PCE estimates µ̂
(V)
PCE and σ̂

(V)
PCE based on 1000 points to be the reference solutions, we com-

puted the relative error of all other estimates. The errors, defined analogously to (32), are

shown in Figure 6. From these results, three main conclusions can be drawn. First, if C(V)
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C(Π) C(N ) C(V) Ĉ(V)

µ̂PCE(∆) (mm): µ̂
(Π)
PCE = −7.193 µ̂

(N )
PCE = −7.183 µ̂

(V)
PCE = −7.182 µ̂

(V̂)
PCE = −7.182

σ̂PCE(∆) (mm): σ̂
(Π)
PCE = 1.164 σ̂

(N )
PCE = 0.588 σ̂

(V)
PCE = 0.552 σ̂

(V̂)
PCE = 0.560

Table 9: Moments of dome’s deflection for different load couplings. PCE estimates of

µ(∆) and σ(∆) for different copulas among the loads, based on 1000 observations. Reference

solutions in bold.
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Figure 6: Errors on moments of dome’s deflection ∆. Estimates of the errors on µ(∆) (left

panel) and on σ(∆) (right panel) obtained using an increasing number of samples by MCS (solid

lines) and by PCE (dashed lines), for loads coupled by C(Π) (yellow), C(N ) (red), C(V) (blue)

and Ĉ(V) (green). Reference solutions: PCE estimates µ̃(V), σ̃(V) obtained on 1000 samples with

copula C(V).

was the true copula among the loads, neither C(Π) nor C(N ) would offer adequate alternative

representations, since the associated standard deviations differ significantly (by 111% and

6.5%, respectively) from their reference value. Second, by employing the inferred vine Ĉ(V)

in combination with MCS (green solid line) it is possible to approximate the moments with

higher precision than by the Gaussian (red) or independence (yellow) copulas. Finally, PCE

combines well with the vine representation (dashed lines), yielding the smallest errors. It is

worth noting, however, that using a proper copula model (a vine instead of a Gaussian or

independence copula) is more important to obtain accurate estimates (particularly for σ(∆))

than using a more advanced UQ method (PCE instead of MC).

6.5 Reliability analysis

The dome structure was further set to fail if the displacement ∆ was equal to or lower than

the critical threshold δ∗ = −11 mm. We performed reliability analysis to estimate the failure
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Figure 7: Dome failure probability. The solid lines show the MC estimates of the response

CDF F∆(δ) = P(∆ ≤ δ) (for values down to 10−3) under loads coupled by C(Π) (yellow), C(N )

(red), C(V) (blue) and Ĉ(V) (green). The vertical dashed line represents the critical threshold δ∗.

The squares and triangles on it indicate the FORM and IS estimates of the failure probability,

respectively, obtained for each copula model.

probability Pf = P(∆ ≤ δ∗) = F∆(δ∗) of excessive downward vertical displacement.

We performed 5000 simulations by MCS for each copula of the input model, keeping

the marginals identical across the models. Figure 7 shows the CDFs resulting from copulas

C(V) (blue), Ĉ(V) (green), C(N ) (red), and C(Π) (yellow), evaluated for probabilities down

to 10−3.

The MC estimate of Pf under C(Π) was P̂
(Π)
f ;MC = (6.8±1.2)×10−3. For copulas C(N ), C(V)

and Ĉ(V) no simulations led to values of ∆ below δ∗. We then resorted to FORM to evaluate

Pf for each copula, obtaining the estimates P̂
(Π)
f ;FORM = 8.0× 10−3, P̂

(N )
f ;FORM = 2.50× 10−4,

P̂
(V)
f ;FORM = 2.53× 10−5, and P̂

(V̂)
f ;FORM = 2.54× 10−5. Since MC estimates were not available

or not reliable here in light of the small sample being available, we further performed IS to

improve the FORM estimates and to get confidence intervals (see Section 4.4). We increased

the IS sample size in steps of 100, until the CoV of the estimate was lower than 10%.

We obtained the estimates P̂
(Π)
f ;IS = (7.13 ± 0.70) × 10−3, P̂

(N )
f ;IS = (2.47 ± 0.24) × 10−4,

P̂
(V)
f ;IS = (3.13± 0.29)× 10−5, and P̂

(V̂)
f ;IS = (3.27± 0.30)× 10−5.

The results, summarized in Table 10, show that the failure probability of the structure

decreases by an order of magnitude from C(Π) to C(N ), and by another order of magni-

tude from C(N ) to C(V) and Ĉ(V). Highly asymmetric loads (as due to C(Π) and, to a

minor extent, to C(N )) may create a deformation mechanism in the structure that favours

large displacements of the most heavily loaded nodes (here, node 2). In contrast, the more

symmetric loading determined by the C-vine results in a more evenly distributed load path

that ultimately leads to a safer structure. For loads actually coupled by C(V), assuming
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Method: MCS FORM IS

Copula: C(Π) C(N ) C(V) Ĉ(V) C(Π) C(N ) C(V) Ĉ(V) C(Π) C(N ) C(V) Ĉ(V)

P̂f (×10−5): 680± 120 – – – 800 25 2.53 2.56 713± 70 24.7± 2.4 3.13 ± 0.29 3.27± 0.30

CoV(P̂f ) (%): 17.6 – – – – – – – 9.9 9.9 9.3 9.3

tot. # runs: 5000 5000 5000 5000 182 349 276 181 482 749 876 781

Table 10: Estimates of the dome failure probability. Estimates of Pf obtained with

different copulas and methods (reference solution in bold), CoV of the MC and IS estimates,

and number of runs needed for the estimation.

the independence or Gaussian copulas thus leads to highly overestimating Pf . Conversely,

building the vine by purely data-driven inference recovers the reference solution P̂
(V)
f ;IS with

high precision. Again, the input model used for the analysis is more important to get an

accurate estimate than the particular UQ method (FORM or IS) employed.

7 Discussion

We proposed a general framework that enables uncertainty quantification (UQ) for problems

where the input parameters of the system exhibit complex, non-Gaussian, non-elliptical

dependencies (copulas). The joint CDF of input parameters is expressed in terms of marginals

and a copula, which are modelled separately. The copula is further modelled as a vine copula,

i.e., a product of simpler 2-copulas. This specification eases its construction, especially in

high dimension, and offers a simple interpretation of the dependence model. A wide range

of different dependence structures can be modelled using this approach.

Our framework focuses in particular on regular (R-) vines, for which algorithms exist to

compute the likelihood on available data, thus enabling parameter fitting and data driven

inference. In addition, R-vines offer algorithms to compute the associated Rosenblatt trans-

form and its inverse on data, used to map the original input random vector into a vector

with independent components and back. Thus, UQ techniques that benefit from input in-

dependence can be applied to any inputs coupled by R-vines. In this work we restricted

our attention to inputs with continuous marginals, which cover a large class of engineering

problems. Extensions of R-vines to discrete (e.g., categorical and count) data have been

recently proposed (Panagiotelis et al., 2012, 2017).

The methodology was first demonstrated on a simple horizontal truss model, for which

Monte Carlo solutions were computationally affordable, and then replicated on a more com-

plex truss model of a dome. Both structures deflected in response to loads on different

nodes. Changing the copula among the loads from the independence to a Gaussian to a

tail-dependent C-vine copula changed the statistics of the deflection, in particular its vari-

ance and upper quantiles. Taken the vine copula as the true dependence structure among
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the loads, the independence and Gaussian assumptions thus led to biased estimates of these

statistics. The failure probability of the two systems, in particular, was mis-estimated by

one to two orders of magnitude. This was true regardless of the particular UQ method used

for the estimation. Using instead a vine copula model of the input dependencies and fitting

the model to relatively few input observations yielded far better estimates.

These results demonstrate that using a proper dependence model for the inputs can

be more critical to get high-accuracy estimates of the output statistics than employing a

superior UQ algorithm. Our framework encompasses both aspects, allowing highly flexible

probabilistic models of the input to be combined with virtually any UQ technique designed

to solve problems characterized by (finitely many) coupled inputs. Also, we demonstrated

that a suitable vine representation can be properly inferred on data also in the presence of

simple Gaussian dependencies. Thus, this class of dependence models effectively covers a

broader range of problems than the Nataf transform (also in its generalized form by Lebrun

and Dutfoy (2009b)) does.

Selecting a vine that properly represents the dependencies of multivariate inputs may be

challenging. We discussed and employed existing methods to perform fully automated infer-

ence on available data. When the dimension of the input is large or the parametric families

of pair copulas considered for the vine construction are many, this approach may become

computationally prohibitive. A-priori information on the input statistics may be used to ease

the selection, for instance by Bayesian methods (Gruber and Czado, 2015). The problem of

selecting suitable vines, however, remains open in very high dimension (say, > 50) or on very

large samples. Also, computing the Rosenblatt and inverse Rosenblatt transforms in these

cases may be computationally demanding or lead to numerical instability. Separating the

inputs into mutually independent subgroups, by expert knowledge or by statistical testing,

and inferring a (vine) copula for each separately, may reduce this problem significantly. Ad-

ditionally, vine inference on samples of large size can become computationally demanding.

Estimation techniques based on parallel computing have been recently proposed to solve this

issue (Wei et al., 2016). Additional work is foreseen to address these challenges.
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Applegate, D. L., R. E. Bixby, V. Chvátal, and W. J. Cook (2006). The Traveling Salesman

Problem: A Computational Study. NewJersey: Princeton University Press.

Au, S. and J. Beck (2001). Estimation of small failure probabilities in high dimensions by

subset simulation. Prob. Eng. Mech. 16 (4), 263–277.

Bedford, T. and R. M. Cooke (2002). Vines – a new graphical model for dependent random

variables. The Annals of Statistics 30 (4), 1031–1068.

Berveiller, M., B. Sudret, and M. Lemaire (2006). Stochastic finite elements: a non intrusive

approach by regression. Eur. J. Comput. Mech. 15 (1-3), 81–92.

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on

Least Angle Regression. J. Comput. Phys 230, 2345–2367.

Czado, C. (2010). Pair-Copula Constructions of Multivariate Copulas, pp. 93–109. Berlin,

Heidelberg: Springer Berlin Heidelberg.

Der Kiureghian, A. and P. Liu (1986). Structural reliability under incomplete probability

information. J. Eng. Mech. 112 (1), 85–104.

Dißmann, J., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating

regular vine copulae and application to financial returns. Computational Statistics and

Data Analysis 59, 52–69.

Ditlevsen, O. and H. Madsen (1996). Structural reliability methods. J. Wiley and Sons,

Chichester.

Doostan, A. and H. Owhadi (2011). A non-adapted sparse approximation of PDEs with

stochastic inputs. J. Comput. Phys. 230 (8), 3015–3034.

Embrechts, P., A. McNeil, and D. Straumann (1999). Correlation and dependence in risk

management: Properties and pitfalls. In Risk Management: Value at Risk and beyond,

pp. 176–223. Cambridge University Press.

Ernst, O. G., A. Mugler, H.-J. Starkloff, and E. Ullmann (2012). On the convergence of

generalized polynomial chaos expansions. ESAIM: M2AN 46 (2), 317–339.

34



Fermanian, J.-D. (2012). An overview of the goodness-of-fit test problem for copulas. In
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Nataf, A. (1962). Détermination des distributions dont les marges sont données. C. R. Acad.

Sci. Paris 225, 42–43.

Nelsen, R. (2006). An introduction to copulas (Second ed.). Springer Series in Statistics.

Springer-Verlag New York.

Panagiotelis, A., C. Czado, and H. Joe (2012). Pair copula constructions for multivariate

discrete data. J. Amer. Statist. Assoc. 107, 1063–1072.
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A Some families of pair copulas and their properties

Table 11 lists the 19 parametric families of pair copulas implemented in the VineCopulaMat-

lab toolbox (Kurz, 2015) used here for vine inference. Each pair copula in the inferred vines

was chosen among these families and their rotated versions defined by (33), by selecting the

family yielding the lowest AIC. The rotations of a pair-copula distribution C are defined,

here and in most references, by

C(90)(u, v) = v − C(1− u, v),

C(180)(u, v) = u+ v − 1 + C(1− u, 1− v), (33)

C(270)(u, v) = u− C(u, 1− v).

(Note that C(90) and C(270) are obtained by flipping the copula density c around the horizon-

tal and vertical axis, respectively; some references provide the formulas for actual rotations:

C(90)(u, v) = v − C(v, 1− u), C(270)(u, v) = u− C(1− v, u)). Including the rotated copulas,

62 families were considered in total for inference in our study.

The analytical expressions for the Kendall’s tau and for the coefficients λl, λu of lower and

upper tail dependence of the non-rotated families, when available, are reported in Table 12.

We derived ourselves a few of these expressions, as indicated in the table, since we could not

find them in the existing literature (see notes (a) and (c) in the table’s caption). Note also

that λl and λu switch when a copula density is rotated by 180◦ and becomes its survival

version. This allows copulas with lower tail dependence to be used to model upper tail

dependence, and vice versa, by 180◦ rotation. Copulas rotated by 90◦ and 270◦ model

negative dependence.
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ID Name CDF Parameter range

1 AMH
uv

1− θ(1− u)(1− v)
θ ∈ [−1, 1]

2 AsymFGM uv
(
1 + θ(1− u)2v(1− v)

)
θ ∈ [0, 1]

3 BB1

(
1 +

(
(u−θ2 − 1)θ1 + (v−θ2 − 1)θ1

)1/θ1
)−1/θ2

θ1 ≥ 1, θ2 > 0

4 BB6 1−
(

1− exp

{
−
[
(− log(1− (1− u)θ2))θ1 + (− log(1− (1− v)θ2))θ1

]1/θ1
})1/θ2

θ1 ≥ 1, θ2 ≥ 1

5 BB7 ϕ(ϕ−1(u) + ϕ−1(v)), where ϕ(w) = ϕ(w; θ1, θ2) = 1−
(
1− (1 + w)−1/θ1

)1/θ2
θ1 ≥ 1, θ2 > 0

6 BB8
1

θ1

(
1−

(
1− (1− (1− θ1u)θ2)(1− (1− θ1v)θ2)

1− (1− θ1)θ2

)1/θ2
)

θ1 ≥ 1, θ2 ∈ (0, 1]

7 Clayton (u−θ + v−θ − 1)−1/θ θ > 0

8 FGM uv(1 + θ(1− u)(1− v)) θ ∈ (−1, 1)

9 Frank −1

θ
log

(
1− e−θ − (1− e−θu)(1− e−θv)

1− e−θ
)

θ ∈ R\{0}

10 Gaussian Φ2;θ

(
Φ−1(u),Φ−1(v)

)
(a)(see (12), with d = 2) θ ∈ (−1, 1)

11 Gumbel exp
(
−((− log u)θ + (− log v)θ)1/θ

)
θ ∈ [1,+ inf)

12 Iterated FGM uv(1 + θ1(1− u)(1− v) + θ2uv(1− u)(1− v)) θ1, θ2 ∈ (−1, 1)

13 Joe/B5 1−
(
(1− u)θ + (1− v)θ + (1− u)θ(1− v)θ

)1/θ
θ ≥ 1

14 Partial Frank
uv

θ(u+ v − uv)
(log(1 + (e−θ − 1)(1 + uv − u− v)) + θ) θ > 0

15 Plackett
1 + (θ − 1)(u+ v)−

√
(1 + (θ − 1)(u+ v))2 − 4θ(θ − 1)uv

2(θ − 1)
θ ≥ 0

16 Tawn-1 (uv)
A
(

log v
log(uv)

;θ1,θ3
)
, where A(w; θ1, θ3) = (1− θ3)w +

[
wθ1 + (θ3(1− w))θ1

]1/θ1
θ1 ≥ 1, θ3 ∈ [0, 1]

17 Tawn-2 (uv)
A
(

log v
log(uv)

;θ1,θ2
)
, where A(w; θ1, θ2) = (1− θ2)(1− w) +

[
(θ2w)θ1 + ((1− w))θ1

]1/θ1
θ1 ≥ 1, θ2 ∈ [0, 1]

18 Tawn (uv)A(w;θ1,θ2,θ3), where w =
log v

log(uv)
and

A(w; θ1, θ2, θ3) = (1− θ2)(1− w) + (1− θ3)w +
[
(θ2w)θ1 + (θ3(1− w))θ1

]1/θ1
θ1 ≥ 1, θ2, θ3 ∈ [0, 1]

19 t- t2;ν,θ

(
t−1
ν (u), t−1

ν (v)
)

(b) ν > 1, θ ∈ (−1, 1)

Table 11: Distributions of bivariate copula families used for inference of vine copulas.

The copula IDs are reported as assigned in the VineCopulaMatlab toolbox used here (Kurz,

2015). (a) Φ is the univariate standard normal distribution, and Φ2;θ is the bivariate normal

distribution with zero means, unit variance and correlation parameter θ. (b) tν is the univariate

t distribution with ν degrees of freedom, and tν,θ is the bivariate t distribution with ν degrees

of freedom and correlation parameter θ.
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ID Name τK λl λu Special cases

1 AMH 1− 2θ + 2(1− θ)2 ln(1− θ)
3θ2

0.5 · 1{θ=1} 0 —

2 AsymFGM
θ

18
(a) 0 0 —

3 BB1 1− 2

θ1(θ2 + 2)
2−1/(θ1θ2) 2− 21/θ1 Clayton (θ1 = 1),

Gumbel (θ2 ↓ 0+)

4 BB6 numerical 0 2− 21/(θ1θ2) Joe (θ1 = 1),

Gumbel (θ2 = 1)

5 BB7 see (Schepsmeier, 2010) 2−1/θ1 2−1/θ2 Joe (θ1 ↓ 0+),

Clayton (θ2 = 1)

6 BB8 numerical 0 0 for θ1 6= 1 Joe (θ1 ↓ 0+),

Frank (θ2 = 1)

7 Clayton
θ

θ + 2
2−1/θ 0 —

8 FGM
2θ

9
0 0 —

9 Frank 1 +
4

θ
(
1

θ

∫ θ

0
t(et − 1)−1dt− 1) 0 0 —

10 Gaussian
2

π
arcsin(θ) 0 0 —

11 Gumbel
θ − 1

θ
0 2− 21/θ —

12 Iterated FGM
2θ1

9
+

(25 + θ1)θ2

450

(a)

0 0 FGM (θ2 = 0)

13 Joe/B5 1 +
2

2− θ (z(2)−z(
2

θ
+ 1)) (b) 0 2− 21/θ —

14 Partial Frank (Spanhel and Kurz, 2016) numerical 0 0 —

15 Plackett numerical 0 0 —

16 Tawn-1 numerical 0 (c) 1 + θ3 −
(

1 + θθ13

)1/θ1
(c) Gumbel (θ3 = 1)

17 Tawn-2 numerical 0 (c) 1 + θ2 −
(

1 + θθ12

)1/θ1
(c) Gumbel (θ2 = 1)

18 Tawn numerical 0 (c) θ2 + θ3 −
(
θθ12 + θθ13

)1/θ1
(c) Tawn-1 (θ2 = 1),

Tawn-2 (θ3 = 1),

Gumbel (θ2 = θ3 = 1)

19 t-
2

π
arcsin(θ) λl = λu = (d) —

= 2tν+1

(
−
√

(ν + 1)(1− θ)/(1 + θ)
)

Table 12: Some properties of the considered pair copulas. Kendall’s tau, tail dependence

coefficients, subfamilies of pair copulas that obtain for specific parameter values. (a) We derived

the analytical expression of τK for the asymmetric and iterated FGM copulas using the RHS

of (7). (b) z is the digamma function. (c) We derived the analytical expression of the tail

dependence coefficients by using (10), by noting that A(w) = 1 + 1
2

(
(θθ12 + θθ13 )1/θ1 − (θ2 + θ3)

)

when u = v and, for λu, by calculating the limit through first order Taylor expansion. (d) tν is

the univariate t distribution with ν degrees of freedom.
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