, concrete: Mechanisms of moisture interaction, SynerCrete'18 International Conference on Interdisciplinary Approaches for Cement-based Materials and Structural, vol.39, pp.809-815, 2006.

T. Honorio, L. Brochard, and M. Vandamme, Effective stresses and estimations of the apparent Biot coefficient in stacked clay nanolayers, Géotechnique Lett, 2018.

T. Honorio, L. Brochard, and M. Vandamme, Hydration Phase Diagram of Clay Particles from Molecular Simulations, Langmuir, vol.33, pp.12766-12776, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695174

S. Masoumi, H. Valipour, A. Qomi, and M. J. , Intermolecular Forces between Nanolayers of Crystalline Calcium-Silicate-Hydrates in Aqueous Medium, J Phys Chem C, vol.121, pp.5565-5572, 2017.

P. A. Bonnaud, C. Labbez, and R. Miura, Interaction grand potential between calciumsilicate-hydrate nanoparticles at the molecular level, Nanoscale, vol.8, pp.4160-4172, 2016.

M. Wyrzykowski, P. J. Mcdonald, K. Scrivener, and P. Lura, Water Redistribution within the Microstructure of Cementitious Materials Due to Temperature Changes Studied with 1H NMR, J Phys Chem C, 2017.

T. J. Tambach, P. G. Bolhuis, E. Hensen, and B. Smit, Hysteresis in Clay Swelling Induced by Hydrogen Bonding: Accurate Prediction of Swelling States, Langmuir, vol.22, pp.1223-1234, 2006.

R. Shahsavari, R. Pellenq, and F. Ulm, Empirical force fields for complex hydrated calcio-silicate layered materials, Phys Chem Chem Phys, vol.13, pp.1002-1011, 2010.

M. G. Martin, MCCCS Towhee: a tool for Monte Carlo molecular simulation, Mol Simul, vol.39, pp.1212-1222, 2013.

S. ?. Hamid, The crystal structure of the 11 Ä natural tobermorite Ca2.25, Z Für Krist-Cryst Mater, vol.154, pp.189-198, 1981.

Z. P. Bazant and M. Z. Bazant, Theory of sorption hysteresis in nanoporous solids: Part I. Snap-through instabilities, J Mech Phys Solids, vol.60, pp.1644-1659, 2012.

J. E. Oh, S. M. Clark, and P. Monteiro, Does the Al substitution in C-S-H(I) change its mechanical property?, Cem Concr Res, vol.41, pp.102-106, 2011.

J. E. Oh, S. M. Clark, H. Wenk, and P. Monteiro, Experimental determination of bulk modulus of 14 Å tobermorite using high pressure synchrotron X-ray diffraction, Cem Concr Res, vol.42, pp.397-403, 2012.

R. Shahsavari, M. J. Buehler, R. Pellenq, and F. Ulm, First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite, J Am Ceram Soc, vol.92, pp.2323-2330, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00447709

S. Brunauer, Surfaces of solids, Pure Appl Chem, vol.10, pp.293-308, 1965.

S. Brunauer, D. L. Kantro, and C. H. Weise, The Surface Energy of Tobermorite, Can J Chem, vol.37, pp.714-724, 1959.
DOI : 10.1139/v59-097

URL : http://www.nrcresearchpress.com/doi/pdf/10.1139/v59-097

M. Bauchy, H. Laubie, and M. Qomi, Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations, J Non-Cryst Solids, vol.419, pp.58-64, 2015.
DOI : 10.1016/j.jnoncrysol.2015.03.031

URL : http://arxiv.org/pdf/1410.2915

R. Pellenq, N. Lequeux, and H. Van-damme, Engineering the bonding scheme in C-S-H: The iono-covalent framework, Cem Concr Res, vol.38, pp.159-174, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00265858