N

N
N

HAL

open science

K-spectral centroid: extension and optimizations

Brieuc Conan-Guez, Alain Gély, Lydia Boudjeloud, Alexandre Blansché

» To cite this version:

Brieuc Conan-Guez, Alain Gély, Lydia Boudjeloud, Alexandre Blansché. K-spectral centroid: exten-
sion and optimizations. ESANN 2018 - 26th European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, Apr 2018, Bruges, Belgium. pp.603-608.

01901251

HAL Id: hal-01901251
https://hal.science/hal-01901251
Submitted on 19 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01901251
https://hal.archives-ouvertes.fr

K-Spectral Centroid : Extension and
Optimizations

Brieuc Conan-Guez, Alain Gély, Lydia Boudjeloud-Assala, Alexandre Blansché

Université de Lorraine, CNRS, LORIA, F-57000 Metz, France
{brieuc.conan-guez, alain.gely, lydia.boudjeloud-assala, alexandre.blansche}
@univ-lorraine.fr

Abstract. In this work, we address the problem of unsupervised clas-
sification of large time series datasets. We focus on K-Spectral Centroid
(KSC), a k-means-like model, devised for time series clustering. KSC relies
on a custom dissimilarity measure between time series, which is invariant
to time shifting and Y-scaling. KSC has two downsides: firstly its dissimi-
larity measure only makes sense for non negative time series. Secondly the
KSC algorithm is relatively demanding in terms of computation time. In
this paper, we present a natural extension of the KSC dissimilarity mea-
sure to time series of arbitrary signs. We show that this new measure is
a metric distance. We propose to speed up this extended KSC (EKSC)
thanks to four exact optimizations. Finally, we compare EKSC to a similar
model, K-Shape, on real world datasets.

1 Extension of K-Spectral Centroid

1.1 Introduction

Unsupervised classification of time series has been receiving a great deal of at-
tention for many years. In this work, we focus on a specific model, K-Spectral
Centroid (KSC)[1], a K-means-like algorithm devised for time series clustering.
KSC distinguishes itself from other classic partitioning models by relying on a
specific shape-based dissimilarity measure: this measure is invariant to Y-scaling
and global time shifting (contrary to the classic DTW measure which applies a
non uniform transformation of the time axis). Invariance to scaling (magnitude
in Y values) is classically addressed through a Y-normalization, whereas invari-
ance to shift-lag is obtained by testing all possible time translations of one time
series with respect to the other time series. This shape based measure is well
adapted to time series for which it is difficult to define a time origin.

Even if KSC has been succesfully applied to several real world problems (e.g.
the temporal evolution of hashtags on Twitter [1]), this model suffers from two
downsides: firstly its dissimilarity measure can only handle non negative time
series. Secondly, KSC has a running time complexity which is cubic in the time
series length. Processing massive data is therefore very time consuming.

In this work, we address these two downsides. We show that KSC can nat-
urally be extended to cope with time series of arbitrary signs by generalizing
its dissimilarity measure. We denote EKSC this extension of KSC. Moreover,
we prove that the new dissimilarity measure is a metric distance (the triangle
inequality). In the second part of this work, we reduce the complexity and the



running time of EKSC thanks to four exact optimizations. In particular, we
apply Elkan’s algorithm [2] which relies on the triangle inequality to cut off a
lot of distance evaluations.

In the experimental part, we focus on evaluating the solution quality of
EKSC. K-Shape [3], which is a similar model, is used as comparison. Finally,
EKSC accelerations obtained thanks to the four optimizations are reported.

1.2 K-Spectral Centroid for arbitrary time series

Let = and y be two discrete one-dimensional time series. Time series lengths,
L(z) and L(y), can be different. Adding two time series is carried out thanks
to a suitable null padding. We recall the expression of d, the shape based
dissimilarity measure used in KSC to compare non negative time series:
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||l.]| is the Euclidean norm, and 7, is the time shift operator of parameter o (a
signed integer). Minimization with respect to « (a real number) addresses the
problem of magnitude scale, whereas minimization with respect to o provides a
time series alignment which is time-shift invariant.

In [1], Yang and Leskovec show that this dissimilarity measure is symmetric
thanks to a simple reformulation of d;. If we denote g(c) = V1 —c? and z -y
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The measure dy is only defined for non-negative time series (the notation

uses subscript + for this purpose). Indeed, d; collates a time series x and its
opposite (¢ = —1 as « is not constraint to be non negative), which makes no
sense in many real case applications. In this work, we propose to define a new
measure d, an extension of d' to time series of arbitrary signs. We denote

d(z,y) =g (W) d is symmetric, and we have dy(z,y) < d(z,y).

We have an equality for non negative time series.

We show now that d verifies the triangle inequality : d is a metric distance.
Let 0., be the angle between x and y: 0., = arccos m (we denote acos in
the proof). We denote sin™ (z) the function such that sin™ (z) = sin(z) on [0, 7/2]
and sin™(z) = 1 on [7/2,7]. We can remark that sin® (acos(c)) = V1 —c2 =
g(c) for ¢ € [0,1]. Finally, as time series have finite support, max,cz = - 7,(y) is
always non negative. We use now the fact that the angular distance is metric:

the scalar product (with null padding), we have dy(z,y) = minyez g (
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This last inequality is obtained because arccos is non increasing. The next
inequality uses the fact that sin® is non decreasing and subadditive (see [4]).
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d(z,y) < d(z,2)+d(z,y)

We consider now N time series {x;}1<i<n. We denote L the average length
of these time series. Let K be the number of clusters, denoted C}, and uy be the
barycenter of cluster Ck. As explained in the introduction, EKSC, which uses
d as dissimilarity measure, is a variant of the well-known K-means clustering
model. It seeks to minimize the within-cluster sum of squares:

K
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EKSC proceeds by alternating between two steps: the assignment step which
produces a new partition thanks to the metric distance d, and the update
step which computes the new centroids (cluster barycenters). Contrary to the
Euclidean case, computing a cluster barycenter is more technical when d (or
d4) is used as dissimilarity measure. Barycenter py is obtained by minimizing
pe = argming, - d*(p, ;). Yang and Leskovec [1] assume that the optimal
time shifts o; have already been found during the previous assignment step. This
allows for an exact extraction of uj thanks to the minimization of the following
Rayleigh quotient: p) = argmin, "”fu% with T}, = Zafieck (Id — ﬁ), where
Ti = To, (x;). pr is therefore an eigenvector associated to the smallest eigenvalue
of matrix T;. In [1], a complete diagonalization of T} is carried out to obtain
the desired eigenvector. This approach is very costly (cubic complexity in L).

Two remarks can be made concerning the barycenter extraction procedure.
We recall that if p is an eigenvector, —pu is also an eigenvector. In the case
of non negative time series, we can prove that the barycenter can be chosen
as non negative. Moreover, in the case of arbitrary time series, the extraction
procedure provides p and —p as solutions. But only one makes sense with respect
to dissimilarity d. In order to choose between p and its reverse counterpart, we
memorize in each cluster the closest time series z; to the barycenter. x; is some
kind of medoid. If d(ug,z;) < d(—pk,x;), we choose py as the barycenter,
otherwise we choose —puy.

1.3 Fast Implementation

Yang and Leskovec [1] point out the scalability issue of the KSC algorithm
due mainly to the cubic complexity of the update step. In this section, we



propose four exact optimizations of EKSC (these optimizations can be applied
to the original KSC as well). Thanks to these optimizations, the running time
complexity of EKSC is reduced, which leads to large acceleration factors.

Computation of measure d thanks to Fourier transforms: As ex-
plained in [3], we can avoid testing all possible time shifts during the evaluation
of measure d (this brute force approach has quadratic complexity in L). In-
deed, we seek to maximize the cross-correlation function: CC(0) = x - 7,(y).
We denote z° the vector x right padded with zeros. We denote %y, the vector
y left padded with zeros. We set L(z°) = L(%y) = L(z) + L(y) — 1. Tt is well
known that CC = F~! (F(2°) F*(°y)), where F (resp. F~') is the Fourier
transform (resp. the inverse Fourier transform), and * is the conjugate operator.
Each evaluation of measure d therefore involves three Fourier transforms. With
a fast algorithm (for instance, in the specific case of padded vectors, for which
lengths are power of 2), the running time complexity is reduced from O(L?) to
O(L1In(L)). One interesting element which doesn’t appear in [3] is that even if
time series haven’t got the same length, it is possible to precompute spectra once
and for all before running the EKSC algorithm (initialization step). Thanks to
this precomputation, during EKSC iterations, the evaluation of measure d in-
volves only the computation of the inverse transform F~!'. This remark leads
to quite an important speed up.

Elkan’s algorithm|[2]: This algorithm, initially devised for K-Means, avoids
a lot of measure evaluations thanks to the triangle inequality. It uses two cut off
strategies. Let u(x) be the currently assigned barycenter to the time series z.
The first strategy is based on the fact that if another barycenter u is located far
enough from p(x), then z can’t be reassigned to p. And therefore, the evaluation
of d(u,x) is avoided. The second strategy leverages the temporal continuity of
the K-Means process: if the new position of the barycenter is close enough to
the previous one, there is no reason for a time series to leave its current cluster.
Once again, distance evaluations are avoided.

Power method: Firstly we can remark that the problem of a barycenter ex-
traction is equivalent to this new maximization problem: u; = argmax, %,
where Sy, = Em co % The eigenvector associated to the largest eigenvalue
of this Rayleigh problem is the solution. We can prove that all eigenvalues are
non negative, and therefore, we can use the power method which extracts the
eigenvalue of largest magnitude. Therefore complete diagonalization of matrices
Sk can be avoided, which is very efficient (diagonalization has cubic complexity).
The power method is an iterative algorithm, which starts with an estimate of the
desired eigenvector, and which produces a better approximation of the solution
after each iteration. Each iteration simply involves a matrix vector product:
Sii. As a barycenter tends to move slowly during the end of the clustering
process, the power method only has to carry out a few iterations to converge
towards the updated barycenter.

Incremental computation of matrices Si: At each iteration of EKSC,
computing the K matrices Sy from scratch is time consuming. When the number
of cluster modifications or shift modifications is low, it is more efficient to store



the matrices Sk in the memory, and to maintain them thanks to an incremental
strategy. If the shift o; or the assigned cluster of x; is modified during the

assignment step, the previous contribution ﬁ is removed from the previous
matrix and the new contribution is added to the new matrix. In the case of
a shift modification, the previous and the new matrices are the same ones. A
broad rule to decide which of both computation strategies (incremental or from
scratch) has to be prefered at each EKSC iteration can be easily devised: for
instance we can compute the number of addition operations implied by both

methods.

1.4 Centering time series

For the original KSC, the question of data centering was not addressed in [1].
Indeed, time series were assumed to be non negative, and therefore a represen-
tative barycenter has to be non negative. In this work, as we extend KSC to
arbitrary time series, we may want to apply centering to the data. And more-
over, we may wish to obtain centered barycenters. We follow the same path as
in [3]. We consider the centering matrix Q = Id — %1. 1d is the identity matrix
and 1 is the square matrix with only 1 as values. @ is symmetric and idempotent
(Q% = Q). We maximize the Rayleigh quotient under the constraint Qu = p.

t )t
We have pj, = argmax, %

This time, the solution is obtained as an
eigenvector associated to the largest eigenvalue of matrix Q'S,Q. As Q'SiQ
is symmetric and positive semidefinite, the power method can be used again
(the largest eigenvalue is the largest eigenvalue in magnitude). Moreover, the
incremental computation of matrices S can also be conserved if we center u
and Siu at each iteration of the power method (u€ is p after centering). In this
case, no product with matrix ) has to be computed.

We show now that the solution py, is centered. We have Q*SrQuir = Mmazflh-
By multiplying by @, we obtain QQ'SiQuir = MmazQ@ur. And as QQLSLQui =
Q'SQui, we obtain Aozttt = Amaz@uk. This implies pup = Qug: py is centered.

2 Experiments

In these experiments, we compare EKSC to a similar clustering model: K-shape
[3]. K-Shape (KS) is based on a distinct dissimilarity measure dgs(x,y) =

1-— %ﬂ;ﬂ(y) EKSC and K-Shape share the same update step. For EKSC, we

present acceleration factors obtained thanks to the four optimizations. These
optimizations are applied identically to K-Shape apart from Elkan’s cut off.
Indeed, the K-Shape dissimilarity dx g is not metric [4].

We use five datasets, each with a ground truth partition (see the UCR archive
www.cs.ucr.edu/~eamonn/time_series_data): ECG5000 (E), WordSynonyms
(S), Fish (F), Non-Invasive Fetal ECG Thorax1 (N), Haptics (H). Table 1 re-
ports dataset information. In all cases, the centered EKSC and KS are carried
out ten times with random initializations. Parameter K is set to the number of
classes of the ground truth partition. The stopping criterion is a threshold on



the relative inertia gain. As EKSC and KS don’t have the same dissimilarity
measure, inertia can’t be compared. Therefore, we evaluate both models thanks
to the Rand-Index measure (ground truth vs produced partitions). RI results
are quite similar for both models, but thanks to Elkan, EKSC is significantly
faster. Table 2 reports the acceleration factors for the three steps of EKSC:
assignment, matrix computation, barycenter extraction. For the fourth dataset,
the fully optimized EKSC is 405 times faster than EKSC with no optimization.

Data EKSC KS
Size Len | Cl RI It | Elkan | Etkan Base RI It | OKS
E | 5000 140 5| 0.720 | 156 8 19 171 | 0.669 | 168 21
S 905 270 | 25 | 0.946 | 184 13 41 1301 | 0.946 | 173 40
F 350 463 7| 0.829 | 178 3 6 487 | 0.776 | 145 6
N | 1965 750 | 42 | 0.971 | 194 51 316 | 20860 | 0.971 | 168 277
H 463 | 1092 5 0.781 | 134 16 23 5852 | 0.743 94 19

Table 1: Size: nb of time series - Len: time series length - Cl : nb of classes - RI:
Rand-Index - It: cumulated nb of iterations (10 runs) - Elkan: optimized EKSC -
Elkan : optimized EKSC with Elkan disabled - Base: EKSC with no optimization -
OKS : optimized KS - Elkan, Elkas, Base, OKS : cumulated running times in seconds

EBlZilen Elkan ass. EB;Zbaen 3SS. Flkan mat. Er);zzen bar. E%z;en
E 21 2.3 19 2.7 5.1 112
S 101 3.2 53 4.5 4.0 258
F 159 1.9 82 3.3 6.7 358
N 405 6.1 388 11.0 7.4 678
H 364 1.4 96 2.4 4.8 1029

Table 2: Quotient: acceleration factor compared to Base or Etkan
Steps: assignment (ass.), matrix computation (mat.), barycenter extraction (bar.)

3 Conclusion

In this work, we present a natural extension of K-Spectral Centroid (EKSC) to
arbitrary time series. We show that the new dissimilarity measure is a metric
distance. Finally, we propose to speed up EKSC thanks to four exact optimiza-
tions, and show that this model is significantly faster than K-Shape.
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