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ASYMPTOTIC DISTRIBUTION OF
PARAMETERS IN RANDOM MAPS

OLIVIER BODINI!, JULIEN COURTIEL2, SERGEY DOVGAL34,
AND HSIEN-KUEI HWANG?

ABSTRACT. We consider random rooted maps without regard to their genus,
with fixed large number of edges, and address the problem of limiting distri-
butions for six different parameters: vertices, leaves, loops, root edges, root
isthmus, and root vertex degree. Each of these leads to a different limiting
distribution, varying from (discrete) geometric and Poisson distributions to
different continuous ones: Beta, normal, uniform, and an unusual distribution
whose moments are characterised by a recursive triangular array.

1. INTRODUCTION

1.1. Motivation for our work. Rooted maps form a ubiquitous family of combi-
natorial objects, of considerable importance in combinatorics, in theoretical physics,
and in image processing. They describe the possible ways to embed graphs into
compact oriented surfaces [LZ04].

The present paper focuses on asymptotic enumeration of some parameters in
rooted maps with no restriction on genus. Strangely, this aspect has received lit-
tle attention in the literature. There exist certain results on the distributions of
patterns in planar maps: see e.g. a study of the number of vertices of given de-
gree [DP13]. One of the examples of non-Gaussian limit law in a combinatorial
structure is given in [BFSS01] with Airy distribution (this paper involves planar
maps as well). In [BBM17], differential equations for coloured planar maps are
considered.

Of closest connection to our study here is the paper by Arques and Béraud
[AB00], which contains several characterisations of the number of rooted maps
and their generating functions. In particular, they give an explicit formula for the
number of maps, expressed as an infinite sum, from which the asymptotic number of
maps with n edges can be deduced (which is (2n+1)!!). Recently, Carrance [Carl7]
obtained the distribution of genus in bipartite random maps. To our knowledge, no
other asymptotic distribution properties of maps have been properly stated so far.
It is also worth mentioning a paper by Flajolet and Noy [FNOO] where patterns in
chord diagrams are investigated, and [CY17] with the distribution of the so-called
terminal chords.
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2 ASYMPTOTIC DISTRIBUTION OF PARAMETERS IN RANDOM MAPS

From a generating function viewpoint, if the genus of the maps is not fixed,
then the generating function of rooted maps is non-analytic (namely, convergent
only at zero) and satisfies a Riccati differential equation. Such divergent Riccati
equations appear frequently in enumerative combinatorics. For example, at least
39 entries in Sloane’s OEIS [Slo] were found containing sequences whose generating
functions satisfy Riccati equations, including some entries related to the families of
indecomposable combinatorial objects, moments of probability distributions, chord
diagrams [CY17,CYZ16,FN00], Feynman diagrams [CacLP78], etc. Some of these
are closely connected to maps. Indeed, it is known that rooted maps with no genus
restriction also encode different combinatorial families such as chord diagrams and
Feynman diagrams on the one hand, and different fragments of lambda calculus
[BGJ13,ZG15] on the other hand. Thus most asymptotic information obtained on
maps can often be transferred to the aforementioned objects and lead to a better
understanding of them in their respective domains.

From an asymptotic point of view, the analysis of purely formal power series
requires tools rather different from the usual analytic combinatorial techniques
such as singularity analysis and saddle-point methods; see [FS09]. As Odlyzko
writes in his survey [Od195]: “There are few methods for dealing with asymptotics of
formal power series, at least when compared to the wealth of techniques available for
studying analytic generating functions.” We show the diverse limit laws mentioned
in the Abstract; the approaches we use may also be of potential application to other
closely related problems.

1.2. Definitions. For a rigorous definition of a rooted combinatorial map we refer,
for example, to [LZ04, AB00]. For our purposes in this extended abstract we use a
less formal but more intuitive definition.

Definition 1 (Maps). A map is a connected multigraph endowed with a cyclic
ordering of consequitive half-edges incident to each vertex. Multiple edges and loops
are allowed. Around each vertex, each pair of adjacent half-edges is said to form a
corner. If there is only one half-edge, there is only one corner. A rooted map is a
map with a distinguished corner.

Figure 1 shows some examples of rooted maps. Observe that the first two maps
are different since the cyclic ordering is different: in the first map, the pendant edge
follows counterclockwise the edge after the root (the node pointed to by an arrow),
while in the second map it precedes in counterclockwise order. In contrast, the last
two maps are equal: although the leaves are at different positions, one can find
an isomorphism between the two maps preserving the vertices, the root and the
cyclic orderings around each vertex. The corners of the leftmost map are displayed
in Figure 2 (left), showing all the possible rootings of this map.

l l |

Figure 1. Three rooted maps. Each root is marked by an arrow.
The two last maps are equal.

Definition 2 (Map features). A face can be obtained by starting at some corner,
moving along an incident half-edge, then switching to the next clockwise half-edge
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and repeating the procedure until the starting corner is met. A loop is an edge that
connects the same vertex. An isthmus is an edge such that the deletion of this edge
increases the number of connected components of the underlying graph. The degree
of a vertex is the number of half-edges incident to this vertex.

These definitions are illustrated in Figure 2 (right).

l l

Figure 2. Left. The triangles point at every corner of the map.
Right. The light-blue line marks the contour of one face of the
map. The overlined edges are the isthmuses of the map. The only
loop of the map is adjacent to the rightmost isthmus. The vertex
incident to this loop has degree 3.

Arques and Béraud [ABO0O] prove that the generating function of maps M (z) :=
ano my, 2", where m,, enumerates the number of maps with n edges, satisfies the
Riccati equation

(1) M(z) =1+ 2M(2) + 2M(2)? + 22°0, M(z2),

a typical Riccati equation whose first few Taylor coefficients read M (z) =1+ 2z +
2022 + 44423 + 1694424 + - - -

Table 1. Our results: limit laws for several parameters.

GF Pattern Differential equation Limit law
M maps (edges) M =1+ 2zM + zM? + 2220, M

L leaves not discussed Poisson(1)

X vertices X=v+2X+2X%+2220.X N(Inn,lnn)

C oot isthmic parts C =1+ 2C + vzC|,=1C +22%9.C 1+ Geometric(3)
E root edges E =14vzE+v2E|,=1 E+202°0,F Beta(1, 3)

— 2
D root degree D=1+4v"2D +vzDly=1 D) Uniform|0, 2]

+ 20220, D — v*(1 — v)20,D
Y =v+wvzY +02Y 1Y
+20220,Y + v?z(vw — 1)8,Y

D-.<

loops A new law™

1.3. Results and methods. We address in this paper the analysis of the extended
equations of (1) for bivariate (and in one case, trivariate) generating functions
M(z,v) = ka?o mn,kz"vk, where m,, , stands for the number of maps with n
edges and the value of the shape parameter equal to k. We obtain limit laws for
the distributions of six different parameters (see Figures 3 to 5).
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Figure 3. Left. Root vertex degree. Right. Number of root isthmic parts.

Figure 4. Left. Number of vertices. Right. Number of root edges.
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Figure 5. Left. Joint distribution of root vertex degree and the
number of loops. Right. Number of loops.

We collect the patterns studied here in Table 1 for comparison. Note that some
of the limit laws are discrete (Poisson and Geometric), one of the laws is Gaussian
with a logarithmic mean, and the other laws are continuous. For the last three lines
of the table, the limit law is obtained after dividing the random variable by n, the
total number of edges. The distribution of the number of loops follows a rather
unusual limit law in the sense that we can only characterise the limit law by its
moment sequence, described by a recurrence. The corresponding probability density
function of this law remains unknown and does not have an explicit expression at
this stage (see Figure 5). On the other hand, by the bijection from [CYZ16] and a
known property of chord diagrams in [FN00], it is possible to deduce the limit laws
for the number of leaves.
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The technique we use several times in our proofs is to linearise the differential
equations satisfied by the generating functions, by choosing a suitable transforma-
tion. When such a technique fails, we rely then on the method of moments, which
consists in computing all higher derivatives of M(z,v) at v = 1. Then we asymp-
totically examine the ratios [2"]0¥ M (z,v)|,=1/[2"]M (2, 1) which correspond to the
moments of random variable. Such a procedure also linearises to some extent the
more complicated bivariate nature of the differential equations and facilitates the
resolution complexity of the asymptotic problem.

1.4. Structure of the Paper. In Section 2 we obtain differential equations for the
corresponding generating functions. Then in Section 3 we analyse the differential
equations described in the previous section and explain how to obtain the limit
laws for five different parameters of maps. Finally, we present the combinatorial
approaches which supplement our techniques in Section 4, and analyse the sixth
parameter — the number of leaves — along with two additional parameters of the
dual nature: root face degree and the number of trivial loops.

2. DIFFERENTIAL EQUATIONS FOR MAPS

In this section, we describe the differential equations satisfied by the generating
functions with the additional variables counting the desired shape patterns, and
explain their origin.

2.1. Univariate generating function of maps. Since the Riccati equation (1)
lies at the basis of all other extended equations in Table 1, we give a quick proof
via the recurrence satisfied by m,,, the number of maps with n edges (see Figure 6):

(2) My = 1[n:0] + Z MEMp_1-k + (2n — 1)my, 1,
0<k<n

which then implies the Riccati equation (1).

map = | or or
p
[

g d

Figure 6. A symbolic construction of rooted maps.

There is only one map with 0 edges, so my = 1. Next, a map with n edges can
be formed either by connecting the roots of two maps (with k£ and n — k — 1 edges
respectively) with an isthmus, or by adding an edge to a map with n — 1 edges,
connecting the root and a corner. The number of possible ways to insert an edge
in this way is equal to 2n — 1, because there are 2n — 2 corners in a map of size
n — 1, and there are 2 possible ways to insert a new edge at the root corner (either
before, or after the root). This proves (2).
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2.2. Vertices. Consider now the bivariate generating function

X(z,v) = Z T 2"V,

n,k>0

where x, j, is equal to the number of rooted maps with n edges and k vertices.
Arques and Béraud [ABO00] showed that

(3) X(z,v) =v+ 2X(2,0) + 2X (2,v)* + 22°0.X (2, v).

This recurrence can be obtained from (2) by noticing that no new vertex is created
when we connect two maps with an isthmus, nor when we add a new root edge to
a map. Besides, X (z,v) satisfies another functional equation (see [AB00])

X(z,v) =v+4 2X(2,0) X (z,v + 1).

2.3. Root isthmic parts. In this section we count root isthmic parts which are
the number of isthmic constructions used at the root vertex. Note that isthmic
part may not necessarily be a bridge because the additional edge constructor may
induce additional connections.

We show that the bivariate generating function C(z,v) = >, ;5 Cn 2"k,
where c,, ;, enumerates the number of maps with n edges and k root isthmic parts

(4) C(z,v) = 1+ 20(2,v) + v20(2,v)C(2,1) + 2220.C(z,v).

In Figure 6, the number of root isthmic parts only changes whenever two maps
are connected by an isthmus. This yields vzC(z,v)C(z, 1) instead of 2C?.
2.4. Root edges. Similarly, consider E(z,v) = > -, en 2"k
counts the number of rooted maps with n edges and k root edges. We show that
E(z,v) satisfies

, where e,k

(5) E =1+ vzE +vzE|y—1 E + 202°0.F.

This again results from the recurrence (2) and from Figure 6: the non-root edges
come from the bottom map in the isthmic construction, hence the summand
vzE(z,v)E(z,1).

2.5. Root degree. Consider the degree of the root vertex. Note that this may be
different from the number of root edges because for the root degree, each loop edge
is counted twice, therefore the degree of the root vertex varies from 0 to 2n. By
duality, the distribution of the root face degree is the same as the distribution of
the root vertex degree.

Let D(z,v) =, k>0 d,, 12"v* denote the bivariate generating function for maps
with variable v marléing root degree. Then

(6) D =1+v*2D 4+ vzD|,=1 D + 20220, D — v*(1 — v)20,D.

In this case, the original construction in Figure 6 is not enough, so we need to
consider special cases in Figure 7. When an additional edge becomes a loop, it
increases the degree of the root vertex by 2. Otherwise, the root degree is just
increased by 1. The number of such special corners is equal to root vertex degree
plus one. Suppose that a map has n edges and k root edges. Then, the number of
root corners is k + 1. If m,, = Y, d,, ;. is the total number of maps with n edges,
then for the numbers d,, , we can write a reccurence from the symbolic construction

n—1
dn,k = 1[n:0] + Z mjdn—j—l,k—l + (277, —1- (k‘ + 1))mn_1,k_1 + (k‘ + 1)mn_17k_2.
=0
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After quick calculations, the desired differential equation is derived. Note that this
equation is now partial: the generating function is differentiated by two different
variables, which adds an extra difficulty to the analysis.

' | '

map = | or or
[ ]

Figure 7. Symbolic method to count root degree and loops in
rooted maps.

2.6. Loops. Finally, we look at the number of loops whose enumeration neces-
sitates the consideration of the joint distribution of the number of loops and
the number of root edges. So we consider the trivariate generating function
Y(z,v,w) = vakym yn’k,mz”vkwm, where y,, km denotes the number of rooted
maps with n edges, root degree equal to k, and m loops. We show that Y (z,v, w)
satisfies a partial differential equation

(7) Y =14 20 + 20Y |1 Y + 22%00.Y + zv*(vw — 1)4,Y.

As in the previous subsection, in the symbolic construction of Figure 7, a new
edge becomes a loop only if it is attached to one of the corners incident to the root
vertex. The differential equation (7) is then a modification of (6) with an additional
marking variable attached in the loop case.

Note that Equation (7) is catalytic with respect to the variable v, i.e. putting
v = 1 introduces a new unknown object 9,Y|,=1 entering the differential equa-
tion. One of the strategies for dealing with catalytic equations was developed by
Bousquet-Mélou and Jehanne [BMJO06], generalising the so-called kernel method
and quadratic method. However, their method does not work in our case because
our equation is differentially algebraic.

3. LIMIT LAWS

This section describes the techniques we use to establish the limit laws.

From now on, by a random map (with n edges) we assume that all rooted map
with n edges are equally likely. For notational convention, we use X’ = 9,X to
denote derivative with respect to z. Due to space limit, we give only the sketches
of the proofs.

3.1. Transformation into a linear differential equation. For most of the equa-
tions in the previous section, it turns out that a transformation similar to that used
for Riccati equations largely simplifies the resolution and leads to solvable recur-
rences, which are then suitable for our asymptotic purposes. We begin by solving
the standard Riccati equation (1) and see how a similar idea extends to other
differential equations.

Proposition 3. The number m,, of maps with n edges satisfies
(2n)!

Mo = (20 =1+ 0(n7")), where ¢, = 00 = (20— 11,
Proof. We solve the Riccati equation (1) by considering the transformation
2 /
(8) M(z) =14 22

¢(2)
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with ¢(0) = 1. Substituting this form into the equation (2), we get the second-order
differential equation 222¢” + (52 — 1)¢' + ¢ = 0. From there, the coefficients ¢,
must satisfy the recurrence ¢,+1 = (2n + 1)¢,,, which implies the double factorial
form of ¢,,.

Moreover, by extracting the coefficient of 2™ in Equation (8), we obtain a relation
between the coefficients my, and ¢,. By the inequality m, > (2n — 1)m,_1 (see
Equation (2)), we obtain the asymptotic relation m,, = ¢, (2n -1+ O(n_l)). O

Theorem 4. Let X,, denote the number of vertices in a random rooted map with
n edges. Then X, follows a central limit theorem with logarithmic mean and loga-
rithmic variance:

X, —E(X,)

V(X,) “HN(0,1), E(X,) ~Inn, V(X,)~Inn.

(9)
Proof. By a substitution similar to (8), we define a bivariate generating function
S(z,v) = 32,50 sn(v)2" such that

225’

S 3

Substituting this X (z,v) into (3) leads to a linear differential equation
438" —22(1 — (3 — 20)2)S" + v(1 4+ v)2S = 0.

X(z,v)=v+ S(0)=1.

from which one can extract the recurrence
2n+v—-2)2n+v—-1
ooy & ) )
n
We then find an explicit expression for s, (v),

1 T(v+2n)
~ 2np! INC)

Sn—1(v).

(10) sn (V)

from which we can deduce that
2@—1
E Xn — v—1 1 —1
@) = gy 7' (L O,

and conclude by applying the Quasi-Powers Theorem [FS09, Hwa98]. O

A finer Poisson(log n+ ¢) approximation, for a suitably chosen ¢, is also possible,

which results in a better convergence rate O(logn)~' instead of (logn)~2; see
[Hwa99] for details.

Theorem 5. Let C,, denote the number of root isthmic parts in a random rooted
map with n edges. Then,

1
Cp 4 + Geometric (2> .

Proof. Since C(1,z) = M(z), we use again the substitution (8) and apply it to (4):
22%(¢C" +v¢'C) = (1 — (1 +v)2)pC — ¢.

The trick here is to multiply both sides by ¢(z)"~! and set Q(z,v) = ¢*C(z,v).
We then obtain

222Q" = (1 — (1 +v)2)Q — ¢°.
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Set g, (v) := [2"]Q(z,v). Translating the differential equation into a recurrence for
normalised coefficients @, (v) := g, (v)/¢n, and by using an approximation [z"]¢¥ =
vén (1 + O(n~1)), we obtain a recurrence

N 2n—1+w
Gn(v) = —(———

2n+1
which, by iteration, becomes

~ i (v) 371(v) -1
an(v) +0(n™"),
T+l 2; (v)  2n+ 1)yn(v)

+0(n?)

v
(V) + 57

I'(k+3)
20 (k+ 254
can be approximated by

where v (v) = For large k and fixed v, the ratio of Gamma functions

kfv/Q

Y (v) = B (L+O0(k™)).

Finally, we find that the n-th coefficient of @) is proportional to

~ v ~ ny\v/2 172\ _ v _%
i) =5, (F) 007 = 55 407,

This corresponds to a (shifted by 1) geometric distribution with parameter =. By
the relation Q(z,v) = ¢C(z,v), we deduce that the limiting distribution of Cn is
also geometric with parameter % O

Theorem 6. Let E, denote the number of edges incident to the root vertex in a
random rooted map with n edges. Then E, follows asymptotically a Beta distribu-

tion: 5
d
7" — Beta(l7 %),

with the density function (1 —1t)~ 3 forte [0,1).
Proof. We use again the substitution F(z,1) = M(z) =1+ 22% so that

W22 (pE + ¢'E) = (1 — 202)pFE — ¢.
If we set Q(z,v) = ¢(2)E(z,v), we then obtain
(11) 202°Q" = (1 —2v2)Q — ¢.

This linear differential equation translates into a recurrence for the coeflicients g, (v)
of Q(z,v),

Gn(v) = 20n¢p—1 (V) + én,
which yields the closed-form expression

(12) )= 2™ vz( )4

Returning to E(z,v), we find that its coefficients asymptotically behave like g, (v).
This implies Beta limit law for random variable E,, /n since (2; )4‘j ~ % for large
values j.

Theorem 7. Let D,, denote the degree of the root vertex in a random rooted map
with n edges. Then, D, divided by the number of edges converges in law to the
uniform distribution on [0,2]:

Dn d

— — Uniform [0, 2] .
n
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Proof. The substitutions

D(z,1) = M(z) =1+ 2‘?, and  D(z,v) =

lead to a partial differential equation
(13) Q =2020.Q —v*(1 —v)20,Q + vz(1 +v)Q + ¢

with the boundary conditions Q(0,v) = 1 and Q(z,0) = ¢(z). This in turn yields
the recurrence for the coefficients g, (v) := [2"]Q(z,v):

(V) = V(20 — 1+ v)gn-1 — v*(1 = v)q;_1 (V) + ¢

with go(v) = 1. We then get the exact solution g,(v) = ¢n(1 + v + -+ + v2").
Accordingly, d,,(v) := [2"]|D(z,v) ~ g,(v). This implies a uniform limit law for the
random variable D,, /n. O

3.2. Approximation and method of moments. Unlike all previous proofs, we
use the method of moments to establish the limiting distribution of the number of
loops. The situation is complicated by the presence of the term involving 9,Y in
(7), which induces arbitrary order derivatives with respect to v if v = 1. We still
manage to prove the following theorem.

Theorem 8. Let Y,, denote the total number of loops in a random rooted map with
n edges. Then

(14) Yo d,p

n

where L is a continuous law with a computable density on [0, 1].

Proof. First, we show by induction that there exist constants Ny,e» Such that as
n — 0o,

15 20RO Y (z,0,w)| o~ e, k0> 0.
v Yw v=w=1 k4

For k = ¢ = 0 the statement clearly holds with 7y, = 2. For larger k and ¢
Let % be [z"]@fﬁfLY(zw,w)’v:w:l. By translating (7) into the corresponding
recurrence for the coefficients and by collecting the dominant terms (using the
induction hypothesis (15)), we obtain
ke k+1,0— k=1, k.

Y0~ @n+ k)Y + eyt (2kn — 2k)yl T + 1oyl
After normalizing by ¢,, i.e. by denoting @(11@,@) = y,(f’e)/qbn, we obtain
@\(k,@) - / ~(k+1,6—1) 2kn — Qk,\(kfl’g) n 2n + k + 1[k:0] ~(k,€)

1 Zhn = o .
(16) o — 171 o —1 In1 m—1  In1

After fitting %k’e) ~ nk)gn’”“l + dyn*+¢, we then deduce the recurrence

Mk, e (2K 1.0+ g i1,0-1)-

Ck+20+ 10
In particular, when ¢ = 0, we obtain the moments of the random variable FE,,,

k+1
the number of root edges: 7, o = %, which coincides with the moments of the
uniform random variable Uniform[0,2]. Finally, it is not complicated to check
that the numbers 7, , satisfy the condition of Hausdorff moment problem, i.e. 7,

uniquely determine the limiting random variable defined on the segment [0,1]. O
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Figure 8. Random rooted maps, respectively with 1000 and 20000 edges.

4. COMBINATORIAL APPROACHES

The answers provided by the previous section, because of their simplicity, raise
new questions. They suggest the existence of a combinatorial background which
should make the enumeration easier. This section gives new answers by introducing
the bijections with indecomposable chord diagrams.

A chord diagram with n chords is a set of vertices labelled with numbers
{1,2,...,2n} equipped with a perfect matching. A chord diagram is indecom-
posable if it cannot be expressed as a concatenation of two smaller diagrams.

4.1. Why the root degree follows a uniform law. In [Cor09], Cori described
a bijection between rooted maps and indecomposable diagrams. It turns out that
this bijection satisfies the following proposition.

Proposition 9. There exists a bijection between rooted maps of root degree d with
n edges, and indecomposable diagrams with n 4+ 1 chords such that vertex k — 2 is
matched with vertex 1.

This proposition proves Theorem 7 in a much simpler way: in a (non necessarily
indecomposable) diagram, the label of the vertex matched with 1 exactly follows
a uniform law on {2,...,2n}. But a diagram is almost surely an indecomposable
diagram (because their cardinalities are asymptotically the same), so the label of
the vertex matched with 1 divided by 2n asymptotically obeys a uniform law on
[0,1].

4.2. Uniform random generation. One also can use Cori’s bijection to write
a uniform generator for rooted maps. Uniform sampling a random diagram can
be accomplished by adding the chords sequentially. If the sampled diagram is not
indecomposable, it is rejected (it happens with probability close to 0). After that,
the diagram is transformed into a map thanks to Cori’s bijection. Figure 8 shows
examples of random maps thus generated.

4.3. Number of leaves. To obtain the asymptotic distribution of leaves, we use
another bijection coming from [CYZ16]. This bijection sends leaves of a map into
the isolated chords (that is, edges connecting vertices k and k + 1) of a indecom-
posable chord diagram. According to [FN0O, Theorem 2], the number of isolated
edges in a random chord diagram has a Poisson distribution with parameter 1. We
can then deduce the following theorem.
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Theorem 10. The number of leaves in a random map with n edges, follows asymp-
totically a Poisson law with parameter 1.

4.4. Two dual parameters. We briefly remark that two other parameters,
namely root face degree and the number of trivial loops cannot be easily examined
with the method of generating functions because marking them requires additional
nested information like the degrees of all the faces. However, such parameters can
be easily marked in their corresponding dual maps. Their distributions follow,
respectively, uniform and Poisson limit laws.
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