An image based high throughput screen to identify regulators of Imp containing RNP granules

Fabienne de Graeve, Somia Rahmoun, Djampa Kozlowski, Nicolas Cedilnik, Eric Debreuve, Xavier Descombes, Florence Besse

To cite this version:

Fabienne de Graeve, Somia Rahmoun, Djampa Kozlowski, Nicolas Cedilnik, Eric Debreuve, et al.. An image based high throughput screen to identify regulators of Imp containing RNP granules. 32nd French Drosophila Meeting, Oct 2018, Hyères, France. hal-01900773

HAL Id: hal-01900773
https://hal.archives-ouvertes.fr/hal-01900773
Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An image based high throughput screen to identify regulators of Imp containing RNP granules

Fabienne De Graeve¹, Somia Rahmoun², Djampa Kozlowski², Nicolas Ceddini³, Eric Debureux³,⁴
Xavier Descombes³, Florence Besse³,⁴
¹ UCA, INSA, 547 CNRS UMR 7277, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
² UCA, INRIA, 135 2000, route des Lucioles - Les Algorithmes - Tel: Euclide B - BP 121, 06905 Sophia Antipolis Cedex, France
³ UCA, INRA, 2006, route des Lucioles - Les Algorithmes - Tel: Euclide B - BP 121, 06905 Sophia Antipolis Cedex, France
⁴ Lirmop team numbers

I. Context

In vitro, RNAs and proteins are frequently packaged into diverse dynamic macromolecular structures named RNP granules. These assemblies form upon phase separation of individual RNA and protein components, a process involving the establishment of multivalent weak interactions and their regulations via post-translational modifications. Defects in their properties have been associated with several human pathologies. However, our knowledge of these dynamic structures relies essentially on the study of Φ bodies and stress granules.

We are interested in the highly conserved RNA binding protein Imp whose mammalian counterpart's overexpression correlates with poor prognosis in several cancers. In vitro, Imp is present in cytoplasmic RNP granules, distinct from Φ-bodies and visible both in neuronal cell bodies and axons. They are also detected in Drosophila S2R+ cultured cells.

II. Pilot screen

Plate map

<table>
<thead>
<tr>
<th>Well</th>
<th>Imp granules</th>
<th>GFP MIP images</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20000 cells</td>
<td>20000 cells</td>
</tr>
</tbody>
</table>

IV. Experimental procedure quality check and selection of healthy cells

- For each well 20,000 cells were transiently transfected (L : low, M : medium, A : high level of GFP-Imp expression).
- Two sublibraries were obtained: Phosphatase - Kirasus sublibrary: 765 genes, 5 plates RNA Binding Proteins sublibrary: 496 genes, 4 plates
- Experiments done in replicates: 24 plates×10 wells×15 views×7 stacks×5 channels = 1,104,912 images

IV. Experimental procedure quality check and selection of healthy cells

- For each view
 - DAPI signal MIP
 - 931 004 MIP

Distribution of the output scores from the pilot screen among living cells is ranked two ways median normalization per plate (excluding controls). In the pilot screen, 812 different RNA targets were used to reduce the expression of one of the 696 genes encoding a RNA binding protein. A 306 different RNA targets were used to reduce the expression of one of the 576 genes encoding a kinase or protein phosphatase (III). Similarly to those of opt, we found that opt and cap69 (RNA degradation factor) cell death and cell survival respectively.

V. Semi-Automatic Cell Segmentation : from GFP MIP images to cell masks

GFP MIP images (A) are first locally-normalized to reduce the effect on a non-uniform illumination. Then, a watershed-based segmentation produces the corresponding oversegmented (superpixels) image (B). Finally, the interface allows to manually select the superpixels to segment the cells of interest by creating masks (B). In the future, an automatic process for superpixels mapping will be developed.

VII. SPADE : an algorithm for small particle detection

The mask generated by the supervised segmentation algorithm (A) is used to extract from the original MIP image processed for enhanced contrast normalization (B), the GFP positive cytoplasm of healthy cells whose intensity ranges from 100 to 1000 (C).

VIII. Perspectives

- Automate the merging process for image treatment
- Develop the statistical framework to deduct hits

- Improve the experimental readout using additional markers (phaloidin, organelle markers)

VIII. Collaborators

- DRSC (Harvard, USA) - high throughput RNAi screen

VIII. Fundings

- Les Algorithmes
- gforge