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Abstract. This work proposes a time warp invariant sparse coding and
dictionary learning framework for time series clustering, where both in-
put samples and atoms define time series of different lengths that involve
variable delays. For that, first an l0 sparse coding problem is formalised
and a time warp invariant orthogonal matching pursuit based on a new
cosine maximisation time warp operator is proposed. A dictionary learn-
ing under time warp is then formalised and a gradient descent solution is
developed. Lastly, a time series clustering based on the time warp sparse
coding and dictionary learning is presented. The proposed approach is
evaluated and compared to major alternative methods on several public
datasets, with an application to deezer music data stream clustering.
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1 Introduction

Sparse coding and dictionary learning become popular methods in machine learn-
ing and pattern recognition for a variety of tasks as feature extraction, recon-
struction and classification. The aim of sparse coding methods is to represent
input samples as a linear combination of few basis functions called atoms com-
posing a given dictionary. Sparse coding problem is formalised basically as an
optimisation problem that minimises the error of the reconstruction under l0 or
l1 sparsity constraints. The l0 constraint leads to a non convex and NP-hard
problem, that can be solved efficiently by pursuit methods such as orthogonal
matching pursuit omp [15]. Relaxing the sparsity constraint from l0 to l1 norm
yields a convex sparse coding problem, also known as lasso problem [14]. The
dictionary for the sparse representation can be selected among pre-specified fam-
ily of basis functions (e.g. gabor) or be learned from the training data to sparse
represent the input data. A two-step strategy is commonly used: 1) keep the



dictionary fixed and find a sparse representation by using a sparse approxima-
tion, 2) keep the representation fixed and update the dictionary, either all the
atoms at once [6] or one atom at a time [2]. In the context of classification, the
dictionary is generally learned from the labeled training dataset and the sparse
codes of the testing samples are used for their classification [9,10,17]. In cluster-
ing setting, we distinguish two principal sparse coding and dictionary learning
approaches. The first category of approaches assumes the data structured into a
union of subspaces [3,5,16,18] where each sample may be represented as a linear
combination of some input samples that ideally belong to the same subspace.
Several of these approaches are related to sparse subspace clustering where sam-
ples are first sparse coded based on the input set as a dictionary [5, 18], then a
spectral clustering [11] of the sparse codes is used to cluster the data. The num-
ber of subspaces as well as their dimension may be fixed beforehand or induced
from the affinity graph. In the second category of approaches, a sparse coding
and dictionary learning framework is proposed to simultaneously learn a set of
dictionaries, one for each cluster, to sparse represent and cluster the data [12].

For temporal data analysis, sparse coding and dictionary learning are espe-
cially effective to extract class specific latent temporal features, reveal salient
primitives and sparsely represent complex temporal features. However, what
makes temporal data particularly challenging is that salient events may arise
with varying delays, be related to a part of observations that may appear at
different time stamps. This work addresses the problem of time series cluster-
ing under sparse coding and dictionary learning framework, where both input
samples and atoms define time series that may involve varying delays and be
of different lengths. For that, in the first part, an l0 sparse coding problem is
formalised and a time warp invariant orthogonal matching pursuit based on a
new cosine maximisation time warp operator is proposed. Subsequently, the dic-
tionary learning under time warp is formalised and a gradient descent solution
is developed. In the second part, a time series clustering approach based on the
time warp invariant sparse coding and dictionary learning is proposed. The main
contributions of the paper are:

1. We propose a time series clustering approach under sparse coding and dic-
tionary learning setting.

2. We propose a tractable solution for time warp invariant orthogonal matching
pursuit based on a new cosine maximisation time warp operator.

3. We provide a sparse representation of the clustered time series and learn,
for each cluster, a sub-dictionary composed of the most discriminative prim-
itives.

4. We conduct experiments on several public and real datasets to compare the
proposed approach to the major alternative approaches, with an application
to deezer music data stream clustering.

The reminder of the paper is organised as follows. Section 2 formalises the time
series clustering problem under sparse coding and dictionary learning setting.
Section 3 proposes a solution for sparse coding and dictionary learning under
time warp, then presents the time series clustering method. Finally, Section 4



presents the experiments and discusses the results obtained.

2 Problem statement

This Section formalises the time warp invariant sparse coding and dictionary
learning for time series clustering. In the following, bold lower case letters are
used for vectors and upper case letters for matrices. Let X = {xi}Ni=1 be a set
of N input time series xi = (xi1, ..., xiqi)

t ∈ Rqi of length qi. We formalise the
problem of time series clustering under the sparse coding and dictionary learning
setting as the estimation of: a) the partition C = {Cl}Kl=1 of X into K clusters
and b) the K sub-dictionaries {Dl}Kl=1, to minimise the inertia goodness criterion
(i.e., the error of reconstruction) as:

min
C,D

K∑
l=1

∑
xi∈Cl

E(xi, Dl) (1)

where Dl = {dlj}
Kl
j=1 the sub-dictionary of Cl is composed of Kl time series

atoms dlj ∈ Rpj . Note that, both input samples xi and atoms dlj define time
series of different lengths that may involve varying delays. E(xi, Dl) the error of
reconstruction, under time warp, of xi based on the sub dictionary Dl = {dlj}

Kl
j=1

is formalised as:

E(xi, Dl) = min
αi

‖xi −Fi(Dl)α
l
i‖22 s.t.‖αli‖0 ≤ τ. (2)

where Fi(Dl) = [fi(d
l
1), ..., fi(d

l
Kl

)] ∈ Rqi×Kl is the transformation of Dl to

a new dictionary composed of warped atoms fi(d
l
j) ∈ Rqi aligned to xi to resorb

the involved delays w.r.t xi. α
l
i = (αl1i, ..., α

l
Kli

)t is the sparse codes of xi under
Dl and τ the sparsity factor under the l0 norm.

3 Proposed solution

To resolve the clustering problem defined in Eq. 1, we use a two steps iterative
refinement process, as in standard kmeans clustering. In the cluster assignment
step,Dl’s are assumed fixed and the problem remains to resolve the sparse coding
based on the warped dictionary Fi(Dl) defined in Eq. 2. The cluster assignment
is then obtained by assigning each xi to the cluster Cl whose sub dictionary Dl

minimises the reconstruction error. In the dictionary update step, the learned
sparse codes and the clusters Cl are that time fixed and the problem in Eq. 1
defines a dictionary learning problem to minimise the clustering inertia criterion
and represent sparsely samples within clusters. For the cluster assignment, we
propose in Section 3.1, a time warp invariant orthogonal matching pursuit based
on a new cosine maximisation time warp operator. In Section 3.2, a gradient
descent solution for dictionary learning under time warp is developed, then the
clustering algorithm for time series under sparse coding and dictionary learning
setting is given in Section 3.3.



3.1 Time warp invariant sparse coding

For the sparse coding under time warp problem given in Eq. 2, we define Fi(Dl)
as a linear transformation of Dl based on the warping function fi(d

l
j) = ∆l

ijd
l
j ,

where the projector ∆l
ij ∈ {0, 1}qi×pj specifies the temporal alignment that re-

sorbs the delays between xi and dlj . The problem given in Eq. 2 is then formalised
as:

min
αi, ∆l

i

‖xi −
Kl∑
j=1

∆l
ij d

l
j α

l
ji‖22 (3)

s.t. ‖αli‖0 ≤ τ, ∆l
ij ∈ {0, 1}qi×pj , ∆l

ij1pj = 1qi .

with ∆l
i = {∆l

ij}
Kl
j=1. The last constraint is a row normalisation of the estimated

∆l
ij to ensure for xi equally weighted time stamps. To resolve this problem,

we propose an extended variant of omp that can be mainly summarised in the
following steps:

1. For each dlj , estimate ∆l
ij by dynamic programming to maximise the cosine

between xi and dlj .

2. Use the projector ∆l
ij to align dlj to xi.

3. Estimate the sparse codes αli based on the aligned atoms.

For that and to estimate ∆l
i, we propose a new operator costw to estimate the

cosine between two time series under time warp. To the best of our knowledge, it
is the first time that the cosine operator is generalised to time series under time
warp. Then, we present a time warp invariant omp (twi-omp), that extends the
standard omp approach to sparse code time series under non linear time warping
transformations.

Cosine maximisation time warp (costw): The problem of estimating the
cosine between two time series comes to find an alignment between two time
series that maximises their cosine. Let x = (x1, ..., xqx), y = (y1, ..., yqy ) be two
time series of length qx and qy. An alignment π of length |π| = m between x
and y is defined as the set of m increasing couples:

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(m), π2(m)))

where the applications π1 and π2 defined from {1, ...,m} to {1, .., qx} and {1, .., qy}
respectively obey the following boundary and monotonicity conditions:

1 = π1(1) ≤ π1(2) ≤ ... ≤ π1(m) = qx

1 = π2(1) ≤ π2(2) ≤ ... ≤ π2(m) = qy

and ∀ l ∈ {1, ...,m},

π1(l + 1) ≤ π1(l) + 1 , π2(l + 1) ≤ π2(l) + 1,

(π1(l + 1)− π1(l)) + (π2(l + 1)− π2(l)) ≥ 1



Algorithm 1 MaxTriplet(u, v, z)

Input: u, v and z.
1: if f(u) ≥ f(v) and f(u) ≥ f(z) then
2: return u;
3: else if f(v) ≥ f(u) and f(v) ≥ f(z) then
4: return v;
5: else
6: return z;
7: end if

Intuitively, an alignment π between x and y describes a way to associate each
element of x to one or more elements of y and vice-versa. Such an alignment
can be conveniently represented by a path in the qx × qy grid, where the above
monotonicity conditions ensure that the path is neither going back nor jumping.
We will denote A as the set of all alignments between two time series. The cosine
maximisation time warp can be formalised as:

costw(x,y) = s(π∗) (4)

π∗ = arg max
π∈A

s(π)

s(π) =

∑|π|
i=1 xπ1(i) yπ2(i)√∑|π|

i=1 x
2
π1(i)

√∑|π|
i=1 y

2
π2(i)

where s(π) is the cost function of the alignment π. The solution for costw is
obtained by dynamic programming thanks to the recurrence relation detailed
here after.

Let xqx−1 = (x1, ..., xqx−1), yqy−1 = (y1, ..., yqy−1) be two sub-time series
composed of the qx − 1 and qy − 1 first elements of x and y, respectively. In the
case of aligned time series, that do not include delays and with the same length
(i.e., qx = qy) the following incremental property of the standard cosine can be
established:

cos(xqx−1,yqy−1) = f(< xqx−1,yqy−1 >, ‖xqx−1‖2, ‖yqy−1‖
2)

cos(x,y) = f((< xqx−1,yqy−1 >, ‖xqx−1‖2, ‖yqy−1‖
2)⊕ (xqx , yqy )) (5)

where f is a real function defined as f(a, b, c) = a√
b
√
c

with (b, c ∈ R∗+) and ⊕ is

an operator that associates to a triplet (a, b, c) and a couple (u, v) a new triplet
as:

(a, b, c)⊕ (u, v) = (a+ uv, b+ u2, c+ v2)

For time series including delays and based on the incremental property given in
Eq. 5, let us introduce the computation and recurrence relation that allows to
estimate the alignment π∗ that maximises costw(x,y) in Eq. 4.

Computation and recurrence relation: Let us define M ∈ Rqx×qy the ma-
trix mapping x and y of general term Mi,j = (ai,j , bi,j , ci,j). Based on the



Algorithm 2 twi-omp(x, D, τ)

Input: x, D = {dj}Kj=1, τ
Output: α, ∆

1: r = x, Ω = {φ}
2: while |Ω| ≤ τ do
3: Select the atom dj (j /∈ Ω) that maximizes |costw(r,dj)|
4: Update the set of selected atoms Ω = Ω ∪ {j} and SΩ = [∆jdj ]j∈Ω
5: Update the coefficients: αΩ = (STΩSΩ)−1(STΩx)
6: Estimate the residual: r = x− SΩαΩ
7: end while

incremental property established in Eq. 5, computing recursively for (i, j) ∈
{1, ..., qx} × {1, ..., qy} the terms Mi,j as:

∀ i ≥ 2, j = 1 Mi,1 = (ai−1,1, bi−1,1, ci−1,1)⊕ (xi, y1)

∀ j ≥ 2, i = 1 M1,j = (a1,j−1, b1,j−1, c1,j−1)⊕ (x1, yj)

and ∀ i ≥ 2, j ≥ 2

Mi,j = MaxTriplet


(ai,j−1, bi,j−1, ci,j−1)⊕ (xi, yj)

(ai−1,j , bi−1,j , ci−1,j)⊕ (xi, yj)

(ai−1,j−1, bi−1,j−1, ci−1,j−1)⊕ (xi, yj)

and M1,1 = (x1y1, x
2
1, y

2
1), we obtain costw(x,y) = f(Mqx,qy ) with a quadratic

complexity of O(qxqy). The two first equations give the first row and column
updates, the third equation gives the recurrence formula that ensures the cosine
maximisation at each Mi,j cell and MaxTriplet function (Algorithm 1) retains
the triplet that maximises the cosine at Mi,j .

Time warp invariant OMP (twi-omp): Based on the defined costw, let
us present the time warp invariant omp (twi-omp) to sparse code a given time
series x based on a dictionary D = {dj}Kj=1 under time warp conditions (Algo-
rithm 2). The proposed twi-omp follows the three steps given in the previous
section. First, perform a costw between x and each dj to estimate ∆ = {∆j}Kj=1

and find the atom dj that maximises costw(x,dj) (line 3 in Algorithm 2).
Then, update the set Ω of the yet selected projected atoms and the dictionary
SΩ = [∆jdj ]j∈Ω of the yet selected warped atoms (line 4). The updated SΩ
is then used to estimate the sparse coefficients of x (line 5-6). The process is
reiterated on the residuals of x until the sparsity factor τ is reached.

3.2 Time warp invariant dictionary learning

For the dictionary learning step, the problem in Eq. 1 becomes to learn the
dictionary D under time warp where, that time, the sparse codes αli and ∆l

i are



assumed fixed as:

min
D

K∑
l=1

∑
xi∈Cl

‖xi −
Kl∑
j=1

∆l
ij d

l
j α

l
ji‖22 s.t.‖dlj‖2= 1. (6)

This problem is then resolved as K single dictionary learning problems to learn
each sub-dictionary Dl that minimises the inertia of the cluster Cl:

Jl = min
Dl

∑
xi∈Cl

‖xi −
Kl∑
j=1

∆l
ij d

l
j α

l
ji‖22 (7)

which is equivalent to

Jl = min
Dl

∑
xi∈Cl

qi∑
t=1

(xit −
Kl∑
j=1

αlji
∑

(t,t′)∈π∗ij

dljt′)
2 (8)

s.t. ‖dlj‖2= 1

where xit is the tth time instant of xi and π∗ij denotes the optimal alignment

path between xi and dlj . To resolve the Eq. 8, we propose a gradient descend

method based on the following update rule at iteration m for the atom dlj :

d
l(m+1)
jt′ = d

l(m)
jt′ − η

m ∂Jl
∂d

l(m)
jt′

(9)

d
l(m+1)
j =

d
l(m+1)
j

‖dl(m+1)
j ‖2

with,

∂Jl
∂dljt′

=
∑
xi∈Cl

qi∑
t=1

−2αlji(xit − αljidljt′ − αlji
∑

(t,t
′′
)∈π∗ij

(t
′′ 6=t
′
)

dl
jt
′′ (10)

−
∑
j′ 6=j

αlj′i
∑

(t,t
′′
)∈π∗

ij′

dl
j′t′′ )

where η is the learning rate. In the following section, we show how the time warp
invariant omp and dictionary learning are involved for time series clustering.

3.3 Time warp invariant dictionary learning for time series
clustering

For time series clustering, the clustering criterion given in Eq. 1 is minimised
by an iterative process involving, respectively, time warp invariant sparse cod-
ing (twi-omp) and dictionary learning for cluster assignments and dictionary



Algorithm 3 twi-dlclust(X,K, τ)

Input: X = {xi}Ni=1, K, τ .
Output: {C1, ..., CK}, {D1, ..., DK}

1: {Clustering Initialisation:}
2: Define the affinity matrix S ∈ RN×N of general term:
3: sii′ =costw(xi,xi′)
4: Apply the affinity propagation (or spectral clustering) to cluster S into
5: K clusters: C1, ..., CK
6: {Sub-dictionary initialisation:}
7: for l = 1, ...,K do
8: Initialise Dl randomly from Cl
9: repeat

10: Sparse code each xi ∈ Cl: [αli,∆
l
i] =twi-omp(xi, Dl, τ)

11: Update each dlj ∈ Dl by using Eq. 9 and 10.
12: until Convergence (stopping rule)
13: end for
14: repeat
15: {Cluster assignment:}
16: Sparse code each xi ∈ X based on each Dl (l = 1, ...,K):
17: [αli,∆

l
i] =twi-omp(xi, Dl, τ)

18: Assign xi to the cluster Cl whose Dl minimises E(xi, Dl):

19: Cl = {xi / l = min
l′
‖xi −

∑Kl′
l′=1∆

l′
ij d

l′
j α

l′
ji‖22}

20: {Dictionaries update:}
21: for l = 1, ...,K do
22: Update each dlj ∈ Dl by using Eq. 9 and 10.
23: end for
24: until Convergence (no changes in cluster assignments)

update steps (Algorithm 3). In the initialisation step, a clustering (e.g., spec-
tral clustering, affinity propagation) is performed on the costw matrix S to
determine an initial partition {Cl}Kl=1 of X (line 1-5). A sparse coding and a dic-
tionary learning are then performed on the samples of each cluster to initialise
the sub-dictionaries {Dl}Kl=1 (line 6-13). Based on the initial partition {Cl}Kl=1

and sub-dictionaries {Dl}Kl=1, the cluster assignment step consists to perform a
sparse coding of each input sample based on each dictionary Dl, then to assign
it the cluster whose dictionary minimises its reconstruction error (line 15-19).
Subsequently, in the dictionary update step, the atoms dlj of each dictionary are
updated by using the formula given in Eq. 9 and 10 (line 20-23).

4 Experimental study

In this section, we evaluate the proposed time series clustering under dictionary
learning setting (twi-dlclust) on several synthetic and real datasets, including
multivariate and univariate time series, that may involve varying delays and be
of different or equal lengths. The proposed twi-dlclust clustering method is



compared to two major alternative approaches, the subspace sparse clustering
(ssc) [5] and the Dictionary Learning with Structured Incoherence (dlsi) [12].
For ssc, two variants ssc-bp [5] and ssc-omp [18] are studied for a sparse coding
under l0 and l1 norms, where an orthogonal matching pursuit and a basis pursuit
methods are used respectively. For dlsi, both sample-based and atom-based
affinity matrix initialisations proposed in [12] are studied. The Matlab codes of
these methods are available online 4.

4.1 Data description

We have considered in Table 1 two groups of datasets. The first group is com-
posed of the top 12 datasets for which the ground truth clustering is given.
The four first datasets are composed of public multivariate time series that have
different lengths and involve varying delays. In particular, digits, lower, and
upper datasets give the description of 2-D air-handwritten motion gesture of
digits, upper and lower case letters performed on a Nintendo (R) Wii device by
several writers [4]. The char-traj dataset gives the 2-dimensional handwrit-
ten character trajectory performed on a Wacom tablet by the same user [1].
The ecg-mit dataset was obtained from the mit-bih Arrhythmia [7] database
where the heartbeats represented by qrs complexes. The 7 remaining datasets
are composed of univariate time series of the same lengths that involve signif-
icant delays [8]. The last two datasets are provided by deezer 5, the online
music streaming service that offers access to the music content of nearly 40
million licensed tracks. deezer data, for which we have no ground truth, give
the description of streaming data of music albums, randomly selected among
105 French user streams and recorded from October 2016 to September 2017.
They are composed of univariate time series that give the daily total number
of streams per album from its release date to September 2017; this study con-
sider only the streams of a duration ≥ 30 seconds. In particular, deezer15 and
deezer30 are provided for the streams analysis over the crucial early period af-
ter the album release date. They give the description of the prefix time series on
the early period covering a cumulative number of 103 streams (in red in Figure
1). In addition, for the pertinence of the analysis, the prefix time series of length
< 7 days are extended to 15 days in deezer15 and to 30 days in deezer30.
Table 1 gives some characteristics of the studied datasets: the size of the clusters
when the ground truth is known, the size of the validation and evaluation sets
and the length of the time series that may be variable or fixed.

4.2 Validation protocol

For the top 12 datasets in Table 1, for which the ground truth partition is
known, the proposed method twi-dlclust as well as the alternative clustering

4 ssc-omp: https://goo.gl/E6khsq, ssc-bp: https://goo.gl/719pvx and dlsi:
https://goo.gl/X5nZgE.

5 https://www.deezer.com/fr/

https://goo.gl/E6khsq
https://goo.gl/719pvx
https://goo.gl/X5nZgE
https://www.deezer.com/fr/


Table 1. Data description

Dataset Nb. class Valid. set Eval. set Length range
size size

digits 10 100 100 29∼218
lower 26 130 260 27∼163
upper 26 130 260 27∼412
char-traj 20 100 200 109∼205
ecg-mit 4 40 160 541
cbf 3 30 900 128
facefour 4 24 88 350
lightning2 2 60 61 637
lightning7 7 70 73 319
cc 6 300 300 60
trace 4 100 100 275
ecg200 2 100 100 96

deezer15 - - 281 15∼301
deezer30 - - 278 30∼301

0 10 20 30 40 50 60 70 80
Day

0

10

20

30

40

50

60

70

80

N
b.

 s
tr

ea
m

s

Fig. 1. An album streaming time series, in red the prefix time series covering a cumu-
lative number of 103 streams.

approaches are applied to cluster the data. For alternative methods, time series
of different lengths are zero padded beforehand. The adjusted Rand index [13] is
then used to evaluate the goodness of the obtained clusterings. The Rand index
lies between 0 and 1, it measures the agreement between the obtained clusters
and the ground truth ones. The higher the index, the better the agreement is.
In particular, the maximum value ”1” of the Rand index is reached when the
obtained partition and the ground truth one are identical. For deezer datasets,
the ground truth being unknown, a dtw-based within-class Wr ratio 6 is used.
The lower the within-class ratio Wr, the better the clustering is. Wr is as well
used to select the optimal number of clusters. Finally, the parameters related to
each studied method, indicated in Table 2, are learned by line/grid search on
the validation set, the best parameters are then used to perform the clustering

6 Wr =
∑K

l=1

∑
x,y∈Cl

dtw(x,y)∑
x,y∈X dtw(x,y)



Table 2. Parameter Line/Grid values

Method Line / Grid values Desc.

ssc-omp τ ∈ {1, 2, 3, 4, 5} l0 sparsity threshold
ssc-bp λ ∈ {0.001, 0.01}, lag of 0.01 l1 sparsity regularisation
dlsi λ ∈ {0.001, 0.01}, lag of 0.01 l1 sparsity regularisation

η ∈ {0, 0.1, 0.01} dictionary incoherence regularisation
Kl = 5, ∀ l ∈ {1, ...,K} Sub-dictionary Dl size

twi-dlclust sc ∈ [0, 100], lag of 10 Sakoe-Chiba band width
τ ∈ {1, 2, 3, 4, 5} l0 sparsity threshold
Kl = 5, ∀ l ∈ {1, ...,K} Sub-dictionary Dl size

on the evaluation set. The process is iterated over 10 runs and the averaged
performances are reported in Tables 3 and 4.

Table 3. Adjusted Rand index

Dataset ssc-omp (τ) ssc-bp dlsi-s dlsi-a twi-dlclust (τ)

digits 0.839 (2) 0.856 0.854 0.841 0.940 (1)
lower 0.935 (3) 0.943 0.937 0.934 0.970 (1)
upper 0.940 (2) 0.942 0.940 0.938 0.942 (1)

char-traj 0.947 (5) 0.977 0.978 0.971 0.965 (3)
ecg-mit 0.327 (2) 0.789 0.772 0.773 0.792 (2)

cbf 0.558 (2) 0.668 0.599 0.601 0.770 (2)
facefour 0.810 (5) 0.722 0.767 0.769 0.776 (3)
lightning2 0.559 (2) 0.559 0.559 0.519 0.559 (2)
lightning7 0.793 (2) 0.808 0.724 0.747 0.814 (3)

cc 0.736 (5) 0.630 0.813 0.791 0.910 (1)
trace 0.680 (5) 0.752 0.755 0.753 0.805 (1)
ecg200 0.547 (4) 0.631 0.689 0.664 0.653 (3)

Nb. Best 2 2 3 0 9
Avg. Rank 4.00 2.83 2.92 3.58 1.67

4.3 Results and discussion

Table 3 gives for the top 12 datasets the obtained adjusted Rand index values.
The best values are indicated in bold, the non significantly different ones from
the best (t-test at 5% risk) are in italic and the remaining results are signif-
icantly different from the bold values. For the two l0 sparse coding methods
ssc-omp and twi-dlclust, the learned sparsity coefficient τ is given between
brackets. The two last rows give, over all the datasets, the number of times a
method reaches the best value as well as its average ranking. From Table 3,
we can see that the proposed twi-dlclust reaches the best clustering results



Table 4. Within-class ratio Wr per number of clusters K.

Dataset K ssc-omp ssc-bp dlsi-s twi-dlclust
(τ = 5) (τ = 2)

deezer15 2 0.266 0.310 0.245 0.262
3 0.201 0.253 0.177 0.145
4 0.212 0.146 0.114 0.112
5 0.188 0.118 0.112 0.096
6 0.133 0.106 0.074 0.069

deezer30 2 0.339 0.348 0.322 0.303
3 0.226 0.292 0.273 0.173
4 0.175 0.241 0.133 0.127
5 0.154 0.119 0.110 0.096
6 0.100 0.080 0.085 0.085

Nb. Best 0 1 1 8
Avg. Rank 3.40 3.30 2.05 1.25

with 9 times (9 out of 12) as the best values, 2 times as significantly non dif-
ferent from the best and obtained the lowest average ranking. The second best
results are obtained by ssc-bp and dlsi-s, followed by ssc-omp. Although the
l1 sparse coding models (here ssc-bp and dlsi-s) are known to be more efficient
than the l0 models, twi-dlclust even involving an l0 sparse coding leads to the
best results. While twi-dlclust and dlsi-s involve smaller size sub-dictionaries
(Kl = 5), ssc-omp and ssc-bp are based on larger dictionary of the size of the
evaluation set (Table 1). Finally, by comparing the two l0 sparse coding methods
ssc-omp and twi-dlclust, we can see that twi-dlclust leads for all datasets
to sparser solutions with a lower or equal sparsity coefficient τ than ssc-omp.
For deezer data we have performed each clustering method for several num-
ber of clusters and the within-class ratio of the obtained partitions reported in
Table 4. For simplicity, the dlsi approach is conducted only with dlsi-s vari-
ant, dlsi-a being highly equivalent in Table 3. We can see easily that, for both
datasets and almost all the number of clusters, the best values are reached by
twi-dlclust, followed by the l1 sparse code approaches ssc-bp and dlsi-s,
then by ssc-omp. Finally, note that from both Tables 3 and 4, ssc-omp and
ssc-bp lead to the lowest performances with a slightly better results for ssc-bp
as using an l1 norm sparse coding. These results may be partly explained by the
fact that both ssc-omp and ssc-bp are purely sparse coding methods based on
one global dictionary fixed beforehand, unlike dlsi and twi-dlclust that learn
one sub-dictionary per cluster.
In the second study, we analyse more closely the obtained clusterings. For in-
stance, based on Figure 2 that displays the progression of the within-class ratio
w.r.t the number of clusters, a partitioning into four clusters is performed on
deezer30. Accordingly, Figure 3, shows for each of the four clusters (each row),
the profile of the medoids (in the first column), the closest albums to the medoid
in the second column and at the third column, the atom that most contributes
to sparse represent the cluster’s samples.
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Fig. 3. Four clusters partitioning of deezer30: Medoid profile (left column), Nearest
album to the medoid (middle column), the most contributing atom to the cluster (right
column).



deezer data provide additional album descriptive features as ”Full” (com-
posed of several tracks) or ”Single” (composed of one track), if it is a ”Deluxe”
edition, namely a re-edition of the album featuring extra contents related to the
album, as well as the artist popularity before and after the release. The analysis
of some album characteristics brings meaningful interpretation of the extracted
clusters (Figure 3).

The first cluster is composed of 71% of ”Full” albums and 15% of ”Deluxe”
editions. It corresponds to album releases with flat stream profiles. Such be-
haviour usually occurs when the content has already been published (”Deluxe”
versions) or for lesser-known artists, as assessed by the cluster medoid ”Em-
pereur du Sale” album of the rapper ”Lorenzo” that released several singles a
few weeks before the album release date and although not highly popular has
still a steady fan base.

In the second cluster, 75% of the albums are ”Single”. The fast decrease
stream profile just after the release date is not surprising for short albums (com-
posed of 1-4 tracks). Indeed, a ”Full” album is generally released shortly after the
”Single” release, inducing a decrease of streams for the ”Single” few weeks after
its release. The cluster medoid ”Ethologie” is produced by the rapper ”Dehmo”
that has not released albums since a long period, that may explain the burst of
streams for the new content just after its release.

The cluster 3 is composed of 69% of ”Full” albums mainly produced by
artists that became popular after their album release. This is reflected by the
stream profiles that initially evolve at low level then increase significantly several
days/weeks after the album release. This is confirmed by the medoid album ”Be
Mine” a single produced by ”Ofenbach” that was in fact revealed to the public
with that album.

Finally, the cluster 4 comprises a majority of ”Single” albums (84%) pro-
duced by very popular artists with a huge fan base and immediate success. The
medoid album ”Divide” produced by ”Ed Sheeran” was one of the biggest hits of
2017. Although the stream profiles of the clusters 4 and 2 seem similar, albums
of cluster 4 concern more established artists in their second/third albums while
cluster 2 is more related to emerging works and first successes.

The aim of the last study is to analyse the pertinence of the learned sub-
dictionaries {D1, ..., DK} for both dlsi and twi-dlclust; the dictionary for
the other methods ssc-omp and ssc-bp is not learned but fixed beforehand. For
that, for each method dlsi and twi-dlclust, the atoms of the learned sub-
dictionaries are gathered together to built one global dictionary ∪Kl=1Dl. Let us
denote DG1 and DG2 the global dictionaries obtained for dlsi and twi-dlclust,
respectively. Subsequently, the samples in X are sparse coded, by using first an
l1 norm regularisation based on DG1, then a twi-omp based on DG2.
For instance, for deezer30, Figure 4 shows for the 278 albums the learned
sparse codes based on DG1 (on left) and on DG2 (on right), organised for inter-
pretation purpose per cluster {C1, ..., C4} and per sub-dictionary {D1, ..., D4}. It
emerges from Figure 4, that sparse codes based on DG2 highlight clearly a block



Fig. 4. Sparse representations based on: DG1 learned by dlsi (left) and DG2 learned
by twi-dlclust (right).

structure that reflects the discriminative performance of the sub-dictionaries
composing DG2 (learned by twi-dlclust). Indeed, sparse codes show that each
sub-dictionary Dl is mainly involved to reconstruct samples of Cl. On the other
hand, the structure of the sparse codes based on DG1 (learned by dlsi) seems
much less sparser and less discriminative. We can note, in particular, that the
atoms d13, d

3
15, d

4
17 and d418 define common primitives involved to reconstruct the

samples of all the clusters.

5 Conclusion

This work proposes a time warp invariant sparse coding and dictionary learning
for time series clustering where both input samples and atoms define time series
that may have different lengths and involve varying delays. For that, first a time
warp invariant orthogonal matching pursuit based on a new cosine maximisa-
tion time warp operator is proposed. Then, a dictionary learning approach under
time warp is formalised and a gradient descent solution is developed. The pro-
posed time series clustering allows to sparse represent the clustered time series
and learn, for each cluster, a sub-dictionary composed of the most discrimina-
tive primitives. The conducted experiments show that although twi-dlclust
involves an l0 sparse coding approach based on a very small size sub-dictionaries,
it leads to the sparser and the best clustering results, while revealing atoms with
a good discriminative capacity to represent the time series of each cluster.
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