Time warp invariant dictionary learning for time series clustering: application to music data stream analysis

Abstract : This work proposes a time warp invariant sparse coding and dictionary learning framework for time series clustering, where both input samples and atoms define time series of different lengths that involve variable delays. For that, first an l0 sparse coding problem is formalised and a time warp invariant orthogonal matching pursuit based on a new cosine maximisation time warp operator is proposed. A dictionary learning under time warp is then formalised and a gradient descent solution is developed. Lastly, a time series clustering based on the time warp sparse coding and dictionary learning is presented. The proposed approach is evaluated and compared to major alternative methods on several public datasets, with an application to deezer music data stream clustering.
Type de document :
Communication dans un congrès
ECML/PKDD, 2018, Sep 2018, Dublin, Ireland
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01898905
Contributeur : Ahlame Douzal <>
Soumis le : vendredi 19 octobre 2018 - 09:25:50
Dernière modification le : samedi 16 mars 2019 - 02:01:51
Document(s) archivé(s) le : dimanche 20 janvier 2019 - 13:13:18

Fichier

44.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01898905, version 1

Citation

Saeed Yazdi, Ahlame Douzal-Chouakria, Patrick Gallinari, Manuel Moussallam. Time warp invariant dictionary learning for time series clustering: application to music data stream analysis. ECML/PKDD, 2018, Sep 2018, Dublin, Ireland. 〈hal-01898905〉

Partager

Métriques

Consultations de la notice

57

Téléchargements de fichiers

58