Skip to Main content Skip to Navigation
Conference papers

Time warp invariant dictionary learning for time series clustering: application to music data stream analysis

Abstract : This work proposes a time warp invariant sparse coding and dictionary learning framework for time series clustering, where both input samples and atoms define time series of different lengths that involve variable delays. For that, first an l0 sparse coding problem is formalised and a time warp invariant orthogonal matching pursuit based on a new cosine maximisation time warp operator is proposed. A dictionary learning under time warp is then formalised and a gradient descent solution is developed. Lastly, a time series clustering based on the time warp sparse coding and dictionary learning is presented. The proposed approach is evaluated and compared to major alternative methods on several public datasets, with an application to deezer music data stream clustering.
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01898905
Contributor : Ahlame Douzal <>
Submitted on : Friday, October 19, 2018 - 9:25:50 AM
Last modification on : Wednesday, December 18, 2019 - 5:26:09 PM
Document(s) archivé(s) le : Sunday, January 20, 2019 - 1:13:18 PM

File

44.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01898905, version 1

Citation

Saeed Yazdi, Ahlame Douzal-Chouakria, Patrick Gallinari, Manuel Moussallam. Time warp invariant dictionary learning for time series clustering: application to music data stream analysis. ECML/PKDD, 2018, Sep 2018, Dublin, Ireland. ⟨hal-01898905⟩

Share

Metrics

Record views

155

Files downloads

306