, Sin(?i)=si, Cos(?i)=ci with i=1 to 3 Maple symbolic calculations: with(Groebner), Notations

, =-392*c2*s1-(9475/100)*c2*c3*

, =c1*c2*c3-c1*c2*s3-c1*c3*s2-c1*s2*s3-c2*c3*s1-c2*s1*s3-c3*s1*s2 +s1*s2*s3

, =-c2*c3*s1-c1*c3*s2+c3*s1*s2-c1*c2*s3+c2*s1*s3+c1*s2*s3c1*c2*c3+s1*s2*s3-sqrt

, Groebner polynomial basis: EQ1:-54258895713987415992*sqrt, p.388332180977704960809

, +922584152329361887232*s3^2+(874147898398981466624*sqrt

, )+1575385983048+(1662712247616*sqrt(2) +6097273168)*, *s3 EQ2:-6060151255*sqrt

, *s3+4564384400*s1 EQ4:-2024917716*sqrt(2)+15578795+(-264196352*sqrt

, *s3+2104986688*c3 EQ5:-4479561+1179448*sqrt(2)+5331200*c2 EQ6:-493215819*sqrt(2)-4049835432+(-4274324544*sqrt

, *s3+4564384400*c1 Figure 39: Symbolic calculation for the example shown in Figure 38

W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing et al., Morethan-Moore, White paper, International Technology Roadmap for Semiconductors, 2010.

L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, vol.266, issue.5187, pp.1021-1024, 1994.

L. M. Adleman, Computing with DNA, Scientific American, vol.279, issue.2, pp.54-61, 1998.

G. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, Proceedings of the, pp.483-485, 1967.

S. Boldo, J. Filliâtre, and G. Melquiond, Combining Coq and Gappa for certifying floating-point programs, International Conference on Intelligent Computer Mathematics, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00432726

S. Aguado, D. Samper, J. Santolaria, and J. Aguilar, Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements, International Journal of Machine Tools & Manufacture, vol.53, pp.0-160, 2012.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., LAPACK Users' Guide, 1999.

M. Anderson, C. Tsen, L. Wang, K. Compton, and M. Schulte, Performance analysis of decimal floating-point libraries and its impact on decimal hardware and software solutions. Computer Design, ICCD, IEEE, pp.465-471, 2009.

G. Anthony, H. Anthony, B. Bittner, B. Butler, M. Cox et al., Reference software for finding Chebyshev best-fit geometric elements, Precision Engineering, vol.19, issue.1, pp.28-36, 1996.

S. Aranda, J. Linares, and J. Sprauel, Best-fit criterion within the context of likelihood maximization estimation, Measurement, vol.43, issue.4, pp.538-548, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01427093

M. Arioli, J. Demmel, and J. Du, Solving Sparse Linear Systems with Sparse Backward Error, Journal on Matrix Analysis and Applications, vol.10, issue.2, pp.165-190, 1989.

M. Arioli and S. Gratton, Linear regression models, least-squares problems, normal equations, and stopping criteria for the conjugate gradient method, Computer Physics Communications, vol.183, pp.2322-2336, 2012.

A. Y14, 26M Digital Representation for Communication of Product Definition Data

J. Bachmann, J. M. Linares, J. M. Sprauel, and P. Bourdet, Aide in decision-making: contribution to uncertainties in three-dimensional measurement, Precision Engineering, vol.28, issue.1, pp.78-86, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01410084

A. Ballu, L. Mathieu, and J. Dantan, Formal Language for GeoSpelling, Journal of Computing and Information Science in Engineering, vol.15, issue.2, pp.21002-021002, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116055

J. Beaman, M. E. , and (. , Experimental evaluation of software estimates of task specific measurement uncertainty for CMMs, Precision Engineering, vol.34, issue.1, pp.28-33, 2010.

D. Bertsekas, Nonlinear programming. Belmont: Athena scientific, 1999.

Å. Björck, Numerical methods for least squares problems, Society for Industrial and Applied Mathematics, 1996.

S. Boldo and J. Muller, Les ordinateurs capables de calculer plus juste, La Recherche, vol.492, pp.46-52, 2014.

B. Bringmann and W. Knapp, Model-based 'Chase-the-ball' calibration of a 5axes machining center, CIRP Annals-Manufacturing Technology, vol.55, issue.1, pp.531-534, 2006.

N. Brisebarre, N. Louvet, E. Martin-dorel, J. Muller, A. Panhaleux et al., Implementing decimal floating-point arithmetic through binary: some suggestions, ASAP 2010-21st IEEE International Conference on Applicationspecific Systems, Architectures and Processors, pp.317-320, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00463353

B. Buchberger, An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal, Journal of Symbolic Computation, vol.41, pp.471-511, 1965.

B. Buchberger, Gröbner bases. An Algorithmic Method in the Theory of Polynomial Ideals. Computer algebra. Symbolic and algebraic computations, 1986.

B. Buchberger and F. Winkler, Gröbner bases and applications, vol.251, 1998.

B. Buchberger and M. Kauers, , vol.5, p.7763, 2010.

B. Butler, M. Cox, F. , A. B. Hannaby, S. Harris et al., A methodology for testing the numerical correctness of approximation and optimisation software, The Quality of Numerical Software: Assessment and Enhancement, 1997.

J. Caja, E. Gómez, and P. Maresca, Optical measuring equipments. Part I: Calibration model anduncertainty estimation, Precision Engineering, vol.40, pp.0-298, 2015.

F. Chaitin-chatelin and V. Fraysse, Lectures on finite precision computations, 1996.

Z. Chen, J. Dongarra, P. Luszczek, and K. Roche, Self-adapting software for numerical linear algebra and LAPACK for clusters, Parallel Computing, vol.29, pp.1723-1743, 2003.

D. Chen, L. Han, Y. Choi, and S. Ko, Improved Decimal Floating-Point Logarithmic Converter Based on Selection by Rounding, IEEE Transactions on Computers, vol.61, issue.5, pp.607-621, 2012.

N. Chernov and C. Lesort, Least Squares Fitting of Circles, Journal of Mathematical Imaging and Vision, vol.23, issue.3, pp.239-252, 2005.

A. Cline, C. Moler, G. Stewart, and J. Wilkinson, An Estimate for the Condition Number of a, Matrix SIAM Journal on Numerical Analysis, vol.16, issue.2, pp.368-375, 1979.

J. Colonna, Kepler, von Neumann and God (More rounding-off error visualizations), The Visual Computer, vol.12, issue.7, pp.346-349, 1996.

M. Cornea, IEEE 754-2008 Decimal Floating-Point for Intel, ARITH, Computer Arithmetic, IEEE Symposium on, pp.225-228, 2009.

M. Cornea, C. Anderson, J. Harrison, T. Peter-tang, P. Schneider et al., A software implementation of the IEEE 754R decimal floating-point arithmetic using the binary encoding format, IEEE Transactions on Computers, vol.58, issue.2, pp.148-162, 2009.

M. Cowlishaw, Decimal floating-point: algorism for computers, Computer Arithmetic, Proceedings 16th IEEE Symposium on IEEE 104-111, 2003.

M. F. Cowlishaw, Decimal floating-point: algorism for computers. Computer Arithmetic, 16th IEEE Symposium on IEEE 104-111, 2003.

C. Daramy-loirat, D. Defour, X. De-dinechin, F. Gallet, M. Gast et al., CR-LIBM A library of correctly rounded elementary functions in double-precision on Application-specic Systems Architectures and Processors, 2005.

J. Davenport, Y. Siret, and É. Tournier, Computer algebra, vol.5, 1988.

F. De-dinechin, C. Lauter, and J. M. Muller, Fast and correctly rounded logarithms in double-precision, Rairo-Theoretical Informatics and Applications, vol.41, issue.1, pp.85-102, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00070331

Y. Deng, P. Zhang, C. Marques, R. Powell, and L. Zhang, Analysis of Linpack and power efficiencies of the world's TOP500 supercomputers, Parallel Computing, vol.39, issue.67, pp.271-279, 2013.

L. Dicarlo, J. Chow, J. Gambetta, L. Bishop, B. Johnson et al., Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, vol.460, pp.240-244, 2009.

L. Dong and T. Jindong, An accurate calibration method for a camera with telecentric lenses, Optics and Lasers in Engineering, vol.51, pp.0-538, 2013.

J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK Benchmark: past, present and future, Concurrency and Computation: Practice and Experience, vol.15, issue.9, pp.803-820, 2003.

J. Dongarra, H. Meuer, and E. Strohmaier, TOP500 supercomputer sites, Supercomputer, vol.13, issue.1, pp.89-120, 1997.

J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting, Concurrency and Computation: Practice and Experience, vol.26, pp.1408-1431, 2014.

R. Drieschner, B. Bittner, and R. Elligsen, Testing Coordinate Measuring Machine Algorithms, 1991.

W. Edmonson and M. Van-emden, Interval Semantics for Standard Floating-Point Arithmetic, 2008.

N. El-hayek, H. Nouira, N. Anwer, O. Gibaru, and M. Damak, A new method for aspherical surface fitting with large-volume datasets, Precision Engineering, vol.38, pp.935-947, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069743

T. Erkan and J. Mayer, A cluster analysis applied to volumetric errors of five-axis machine tools obtained by probing an uncalibrated artefact, CIRP AnnalsManufacturing Technology, vol.59, issue.1, pp.539-542, 2010.

M. Erle, M. Schulte, and B. Hickmann, Decimal floating-point multiplication via carry-save addition, Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pp.46-55, 2007.

W. Estler, Measurement as Inference: Fundamental Ideas, vol.48, pp.611-631, 1999.

A. Farmahini-farahani, C. Tsen, and K. Compton, FPGA implementation of a 64Bit BID-based decimal floating-point adder/subtractor, International Conference on Field-Programmable Technology, pp.518-521, 2009.

J. Faugere, A new efficient algorithm for computing Gröbner bases (F 4), vol.139, pp.61-88, 1999.

W. Feng and K. Cameron, The Green500 List: Encouraging sustainable supercomputing, Computer, vol.40, issue.12, p.50, 2007.

R. Feynman, Simulating Physics with Computers, International Journal of Theoretical Physics, vol.21, issue.6/7, pp.467-488, 1982.

R. Fletcher and M. Powell, A rapidly convergent descent method for minimization, Computer Journal, vol.6, pp.163-168, 1963.

R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Computer Journal, vol.7, pp.149-154, 1964.

G. Forbes and C. Brophy, Asphere, O Asphere, how shall we describe thee?, International Society for Optics and Photonics, pp.710002-710002, 2008.

A. Forbes, Least-squares best-fit geometric elements. NPL, DITC 140/89, 1989.

A. Forbes and H. Minh, Generation of numerical artefacts for geometric form and tolerance assessment, Int. J. Metrol. Qual. Eng, pp.145-150, 2012.

A. Forbes, Least Squares Best Fit Geometric Elements, Algorithms for Approximation II, pp.311-319, 1990.

E. Galois, Sur les conditions de résolubilité des équations par radicaux, Journal de mathématiques pures et appliquées, vol.11, pp.417-444, 1846.

, GAO/IMTEC-92-26 Patriot Missile Software Problem, 1992.

M. Gebhardt, J. Mayr, N. Furrer, T. Widmer, S. Weikert et al., High precision grey-box model for compensation of thermal errors on five-axis machines, CIRP Annals-Manufacturing Technology, vol.63, issue.1, pp.509-512, 2014.

M. Gilli, Méthodes numériques. Département d'économétrie, 2006.

G. Goch, Theorie der Prüfung gekrümmter Werkstück-Oberflächen in der Koordinatenmeßtechnik, 1982.

G. Goch and M. Haupt, Modifizierte Tschebyscheff-Approximation von Kreisen, vol.90, pp.50-53, 1990.

G. Goch and H. Renker, Efficient Multi-Purpose Algorithm for Approximation and Alignment Problems in Coordinate Measurement Techniques, CIRP AnnalsManufacturing Technology, vol.39, issue.1, pp.553-556, 1991.

G. Goch, U. Tschudi, and J. (. Pettavel, A Universal Algorithm for the Alignment of Sculptured Surfaces, CIRP Annals-Manufacturing Technology, vol.41, issue.1, pp.597-600, 1992.

G. Goch and K. Lübke, Tschebyscheff approximation for the calculation of maximum inscribed/minimum circumscribed geometry elements and form deviations, CIRP Annals-Manufacturing Technology, vol.57, issue.1, pp.517-520, 2008.

D. Goldberg, What every computer scientist should know about floatingpoint arithmetic, Computing Surveys, vol.23, issue.1, pp.5-48, 1991.

G. Golub and C. Van-loan, Matrix Computations, 1996.

S. Gonzalez-navarro, C. Tsen, and M. Schulte, Binary Integer Decimal-Based Floating-Point Multiplication, IEEE Transactions on Computers, vol.62, issue.7, pp.1460-1466, 2013.

S. Graillat, V. Lefevre, and J. M. Muller, On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic, Numerical Algorithms, vol.70, issue.3, pp.653-667, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-00945033

G. Bipm, . Iec, . Iso, I. Iupac, and O. ;. , Guide to the expression of the uncertainty in measurement, pp.92-6710188, 1993.

G. , I. , and &. Iupap, Evaluation of measurement dataSupplement 1 to the GUM: propagation of distributions using a Monte Carlo method, International Organization for Standardization, 2008.

J. Gustafson, Reevaluating Amdahl's Law, Communications of the ACM, vol.1, issue.5, pp.532-533, 1988.

, Härtig F Certificate for Involute Gear Evaluation Software American Gear Manufacturers Association, Fall Technical Meeting, 2006.

F. Härtig, B. Müller, K. Wendt, M. Franke, A. Forbes et al., Online validation of metrological software using the TraCIM system, XX IMEKO World Congress "Measurement in Research and Industry, 2015.

F. Härtig, B. Müller, M. Gahrens, F. Franke, H. Delpy et al., Online validation of numerical algorithms in the field of metrology, 11thLaser Metrology for Precision Measurement and Inspection in Industry, 2014.

F. Härtig, J. Tang, D. Hutzschenreuter, K. Wendt, K. Kniel et al., Validation of Comparison Algorithms using the TraCIM-System, Journal of Mechanical Engineering and Automation, vol.2, issue.7, pp.312-327, 2015.

J. Henning, SPEC CPU2000: measuring CPU performance in the New Millennium, Computer, vol.33, issue.7, pp.28-35, 2000.

M. Hermann, T. Pentek, and B. Otto, , 2016.

H. Scenarios, 49th Hawaii International Conference on System Sciences (HICSS), pp.3928-3937

M. Hestenes and E. Stiefe, Methods of Conjugate Gradients for Solving Linear Systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-436, 1952.

T. Hickey, Q. Ju, and M. Van-emden, Interval arithmetic: From principles to implementation, Journal of the ACM (JACM), vol.48, issue.5, pp.1038-1068, 2001.

N. Higham, Accuracy and numerical stability of algorithms, 2002.

M. Hill, M. , and M. R. , Amdahl's Law in the Multicore Era, Computer, vol.41, issue.7, pp.33-38, 2008.

T. Huang, Y. Zhu, M. Qiu, . Yin, and X. Wang, Extending Amdahl's law and Gustafson's law by evaluating interconnections on multi-core processors, Journal of Supercomputing, vol.66, issue.1, pp.305-319, 2013.

P. Huanga and J. Leeb, Minimum zone evaluation of conicity error using minimum potential energy algorithms, Precision Engineering, vol.34, pp.709-717, 2010.

D. Hutzschenreuter, F. Härtig, K. Wendt, U. Lunze, and H. Löwe, Online Validation of Chebyshev Geometric Elements Algorithms using the, TraCIM-System Journal of Mechanical Engineering and Automation, vol.5, issue.3, pp.94-111, 2015.

S. Ibaraki, T. Kudo, T. Yano, T. Takatsuji, S. Osawa et al., Estimation of three-dimensional volumetric errors of machining centers by a tracking interferometer, Precision Engineering, vol.39, pp.179-186, 2015.

, IEEE Standard for Floating-Point Arithmetic IEEE Std, vol.754, 2008.

, ISO 5436-2 Geometrical Product Specifications (GPS)-Surface texture: Profile method; Measurement standards-Part 02:00 Software measurement standards. International Organization for Standardization, 2001.

, ISO 10303-1:1994 Industrial automation systems and integration-Product data representation and exchange-Part 01:00 Overview and fundamental principles

. Iso, Geometrical Product Specifications (GPS)-Acceptance and reverification tests for coordinate measuring machines (CMM)-Part 06:00 Estimation of errors in computing Gaussian associated features, 2001.

, Geometric Product Specification (GPS)-General concepts-Part 01:00 Model for geometrical specification and verification, 2011.

, Information technology-Service management-Part 01:00 Service management system requirements, 2011.

. Iso, Geometrical product specifications (GPS)-Surface texture: Profile method, Software measurement standards, 2012.

. Iso, Information technology-Security techniques-Information security management systems-Requirements (27001), 2013.

. Iso, Quality management systems-Requirements (9001), 2015.

. Iso/iec, Information technology-Vocabulary (2382), 2015.

C. P. Jeannerod, N. Louvet, and J. M. Muller, On the componentwise accuracy of complex floating-point division with an FMA, 21ST IEEE Symposium On Computer Arithmetic (ARITH), Proceedings Symposium on Computer Arithmetic, pp.83-90, 2013.
URL : https://hal.archives-ouvertes.fr/ensl-00734339

C. Jeannerod, H. Knochel, C. Monat, and G. Revy, Computing floating-point square roots via bivariate polynomial evaluation, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00335792

H. Johnston, D-Wave sells second quantum computer-this time to NASA, Physics World, vol.26, issue.7, p.9, 2013.

A. H. Karp and H. P. Flatt, Measuring Parallel Processor Performance, Communication of the ACM, vol.33, issue.5, pp.539-543, 1990.

R. Kearfott, Interval computations: Introduction, uses, and resources, Euromath Bulletin, vol.2, issue.1, pp.95-112, 1996.

F. Keller, K. Wendt, and F. Härtig, Estimation of Test Uncertainty for TraCIM Reference Pairs,Series on advances in mathematics for applied sciences, pp.86-187, 2015.

D. Knuth, Artistic programming-a citation-classic commentary on the art of computer-programming, vol 2 seminumerical algorithms. Current contents/engineering technology & applied sciences, vol.34, pp.8-8, 1993.

G. Kok, P. M. Harris, . Smith, and A. Forbes, Reference data sets for testing metrology software, Metrologia, issue.4, p.53, 2016.

P. Kornerup, V. Lefevre, N. Louvet, and J. M. Muller, On the Computation of Correctly Rounded Sums, IEEE Transactions On Computers, vol.61, issue.3, pp.289-298, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00367584

P. Kornerup, C. Lauter, V. Lefevre, N. Louvet, and J. M. Muller, Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, ACM Transactions On Mathematical Software, vol.37, issue.1, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00278430

U. Kulisch, Complete interval arithmetic and its implementation on the computer, Numerical Validation in Current Hardware Architectures, pp.7-26, 2009.

M. Kuzyk and J. Pérez-moreno, Shafei J, Rules and scaling in nonlinear optics, Physics Reports, vol.529, pp.297-398, 2013.

J. Lee, B. Bagheri, and K. Kao, Recent Advances and Trends of CyberPhysical Systems and Big Data Analytics in Industrial, Informatics International Conference on Industrial Informatics, 2014.

G. Leibniz, 1697) Brief an den Herzog Rudolf von BraunschweigWolfenbüttel vom 2, Januar, 1697.

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quartely Journal of Applied Mathematics, vol.II, issue.2, pp.164-168, 1944.

J. Lions, Report of the Inquiry Board, Flight, vol.5, 1996.

D. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical programming, vol.45, issue.1, pp.503-528, 1989.

J. Linares, J. Sprauel, and P. Bourdet, Uncertainty of reference frames characterized by real time optical measurements: Application to Computer Assisted Orthopaedic Surgery, CIRP Annals-Manufacturing Technology, vol.58, issue.1, pp.447-450, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01426919

N. Louvet, J. Muller, and A. Panhaleux, Newton-Raphson Algorithms for Floating-Point Division using an FMA, Proceeding of the21st IEEE International Conference, pp.200-207, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00549027

J. Mailhe, J. Linares, and J. Sprauel, The statistical gauge in geometrical verification Part I. Field of probability of the presence of matter, Precision Engineering, vol.33, issue.4, pp.333-341, 2009.

J. Mailhe, J. Linares, and J. Sprauel, The statistical gauge in geometrical verification. Part II. The virtual gauge and verification process, Precision Engineering, vol.33, issue.4, pp.342-352, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01411377

J. Mailhe, J. M. Linares, J. M. Sprauel, and P. Bourdet, Geometrical checking by virtual gauge, including measurement uncertainties, CIRP Annals-Manufacturing Technology, vol.57, issue.1, pp.513-516, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01411259

F. Mallet, F. Ong, A. Palacios-laloy, F. Nguyen, P. Bertet et al., Single-shot qubit readout in circuit Quantum Electrodynamics, Nature Physics, vol.5, pp.791-795, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00440277

P. Markstein, The new IEEE-754 standard for floating point arithmetic, Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

D. Marquardt, An algorithm for least squares estimation of non-linear parameters, Journal of the Society of Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.

E. Martin-dorel, G. Melquiond, and J. M. Muller, Some issues related to double rounding, Bit Numerical Mathematics, vol.53, issue.4, pp.897-924, 2013.

W. Mascarenhas, The divergence of the BFGS and Gauss Newton methods, Mathematical Programming, vol.147, issue.1, pp.253-276, 2014.

R. Moore and F. Bierbaum, , vol.2, 1979.

J. Moré, The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis, 1978.

G. Moroni and S. Petr, Geometric tolerance evaluation: A discussion on minimum zone fitting algorithms, Precision Engineering, vol.32, pp.232-237, 2008.

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefevre et al., Handbook of floating-point arithmetic, 2009.
URL : https://hal.archives-ouvertes.fr/ensl-00379167

J. Muller, Elementary Functions, Algorithms and Implementation, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

J. Muller, Elementary Functions, Algorithms and Implementation, 2005.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

, Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Berlin, 15 Mai, 2013.

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of computation, vol.35, issue.151, pp.773-782, 1980.

J. Paul and B. Meyer, Amdahl's law revisited for single chip systems, International Journal of Parallel Programming, vol.35, issue.2, pp.101-123, 2007.

B. Piccione, C. Cho, L. Van-vugt, and R. Agarwal, All-optical active switching in individual semiconductor nanowires, Nature Nanotechnology, vol.07, pp.0-640, 2012.

A. Piggott, J. Lu, K. Lagoudakis, J. Petykiewicz, T. Babinec et al., Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Nature photonics, vol.9, issue.6, pp.374-377, 2015.

, Press release-Particle control in a quantum world, Royal Swedish Academy of Sciences, 2012.

P. Rehwald, VDAFS-An interface to transfer surface description data between CAD systems, Computers & Graphics, vol.9, issue.1, pp.69-70, 1985.

. Rodriguez-fernández, Ockham's razor, Endeavour, vol.23, issue.3, pp.121-125, 1999.

D. Rohr, M. Bach, G. Neskovic, V. Lindenstruth, C. Pinke et al., Lattice-CSC: Optimizing and Building an Efficient Supercomputer for Lattice-QCD and to Achieve First Place in Green500. High Performance Computing, Isc High Performance, Book Series: Lecture Notes in Computer Science, vol.9137, pp.179-196, 2015.

S. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica, vol.19, pp.287-449, 2010.

S. Rump, INTLAB-INTerval LABoratory, Developments in Reliable Computing, 1999.

E. Savio, L. De-chiffre, and R. Schmitt, Metrology of freeform shaped parts, CIRP Annals-Manufacturing Technology, vol.56, issue.2, pp.810-830, 2007.

H. Schwenke, M. Frank, and J. Hannaford, Error mapping of CMMs and machine tools by a single tracking interferometer, CIRP Annals-Manufacturing Technology, vol.54, issue.1, pp.475-478, 2005.

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt et al., Geometric error measurement and compensation of machines-An update, CIRP Annals-Manufacturing Technology, vol.57, issue.2, pp.660-675, 2008.

C. Shakarji, Least-squares fitting algorithms of the NIST algorithm testing system, Journal of research of the National Institute of Standards and Technology, vol.103, pp.633-641, 1998.

C. Shakarji and A. Clement, Reference Algorithms for Chebyshev and OneSided Data Fitting for Coordinate Metrology, CIRP Annals-Manufacturing Technology, vol.53, issue.1, pp.439-442, 2004.

A. Soklakov, Occam's razor as a formal basis for a physical theory, Foundations of Physics Letters, vol.15, issue.2, pp.107-135, 2002.

M. Sturm, Analyse d'un mémoire sur la résolution des équations numériques, Collected Works of Charles François Sturm, pp.323-326, 2009.

W. Sun, J. Mcbride, and M. Hill, A new approach to characterising aspheric surfaces, Precision Engineering, vol.34, pp.171-179, 2010.

A. Tarantola, Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics, 2005.

S. E. Thompson and S. Parthasarathy, Moore's law: the future of Si microelectronics, Materials today, vol.9, issue.6, pp.20-25, 2006.

W. M. Thorburn, Occam's Razor, Mind XXIV, issue.2, pp.287-288, 1915.

.. V. Tracim-e, , 2014.

P. Tracim, Homepage of the TraCIM Service at PTB, 2016.

A. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, Proc. London Math. Soc, 1937.

J. Van-der-hoeven, G. Lecerf, and G. Quintin, Modular SIMD arithmetic in Mathemagix, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022383

. Van-der-hoeven, Ball arithmetic, J, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432152

M. Veldhorst, C. Yang, J. Hwang, W. Huang, J. Dehollain et al., A twoqubit logic gate in silicon, Nature, vol.526, pp.410-414, 2015.

A. Velenosi, G. Campatelli, and A. Scippa, Axis geometrical errors analysis through a performance test toevaluate kinematic error in a five axis tilting-rotary table machine tool, Precision Engineering, vol.39, pp.0-224, 2015.

B. Vogel-heuser, J. Lee, and P. Leitão, Agents enabling cyber-physical production systems, At-Automatisierungstechnik, vol.63, issue.10, pp.777-789, 2015.

X. Wen, J. Huang, D. Sheng, and F. Wang, Conicity and cylindricity error evaluation using particle swarm optimization, Precision Engineering, vol.34, pp.338-344, 2010.

N. Whitehead and A. Fit-florea, Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs, 2011.

J. H. Wilkinson, Error analysis of direct methods of matrix inversion, Journal of the ACM, vol.8, issue.3, pp.281-330, 1961.

J. Wilkinson, Rounding Errors in Algebraic Processes, 1963.

J. Wu, Z. Luo, Y. Zhang, N. Zhang, and L. Chen, Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions, International Journal for Numerical Methods in Engineering, vol.95, issue.7, pp.608-630, 2013.

X. Zhang, H. Zhang, X. He, M. Xu, and X. Jiang, Chebyshev fitting of complex surfaces for precision metrology, Measurement, vol.46, pp.3720-3724, 2013.

X. Zhang, X. Jiang, and P. Scott, Minimum zone evaluation of the form errors of quadric surfaces, Precision Engineering, vol.35, pp.383-389, 2011.

X. Zhang, X. Jiang, and J. Scott, A reliable method of minimum zone evaluation of cylindricity and conicity from coordinate measurement data, Precision Engineering, vol.35, pp.484-489, 2011.

F. Zhoulai, B. Zhaojun, and S. Zhendong, Automated backward error analysis for numerical code, Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA, 2015.