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We present the stability analysis of a plane Couette flow which is stably stratified in the
vertical direction orthogonally to the horizontal shear. Interest in such a flow comes from
geophysical and astrophysical applications where background shear and vertical stable
stratification commonly coexist. We perform the linear stability analysis of the flow in a
domain which is periodic in the stream-wise and vertical directions and confined in the
cross-stream direction. The stability diagram is constructed as a function of the Reynolds
number Re and the Froude number Fr, which compares the importance of shear and
stratification. We find that the flow becomes unstable when shear and stratification are
of the same order (i.e. Fr ∼ 1) and above a moderate value of the Reynolds number Re &
700. The instability results from a resonance mechanism already known in the context
of channel flows, for instance the unstratified plane Couette flow in the shallow water
approximation. The result is confirmed by fully non linear direct numerical simulations
and to the best of our knowledge, constitutes the first evidence of linear instability in
a vertically stratified plane Couette flow. We also report the study of a laboratory flow
generated by a transparent belt entrained by two vertical cylinders and immersed in a
tank filled with salty water linearly stratified in density. We observe the emergence of a
robust spatio-temporal pattern close to the threshold values of Fr and Re indicated by
linear analysis, and explore the accessible part of the stability diagram. With the support
of numerical simulations we conclude that the observed pattern is a signature of the same
instability predicted by the linear theory, although slightly modified due to streamwise
confinement.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Shear and density stratification are ubiquitous features of flows on Earth and can
strongly affect the dynamic of different fluids like air in the atmosphere or water in
the ocean. More generally the interest for the stability of parallel flows dates back to
the second half of the nineteenth century (Helmholtz 1868; Kelvin 1871) and the first
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crucial statement came with Rayleigh (1879) who gave his name to the famous inflexion
point theorem proving a necessary criterion for an inviscid homogeneous parallel flow
to be unstable. Contemporarily the first laboratory experiments performed by Reynolds
(1883) showed that also inflexion-free flows can run unstable at sufficiently high Re,
thus highlighting the need for a viscous analysis. Still more than a century ago Orr
(1907) provided a viscous equivalent of the Rayleigh principle. Nonetheless, as reviewed
by Bayly et al. (1988), providing a solution of the Orr-Sommerfeld equation at large Re
number turns out to be exceedingly difficult and has drawn since then, the attention
of many studies (Heisenberg 1924; Schlichting 1933; Lin 1966). Interestingly even for
the simplest profile of parallel flow, a conclusive answer as been lacking for almost
a century as reported by Davey (1973): ’It has been conjectured for many years that
plane Couette flow is stable to infinitesimal disturbances although this has never been
proved [...] We obtain new evidence that the conjecture is, in all probability, correct’.
Since then the stability analysis of the plane Couette (PC hereafter) flow continues to
be of deep interest in studying the transition to turbulence via non-linear mechanisms
(Barkley & Tuckerman 2005) but its linear stability is nowadays no more questioned
(Romanov 1973). In the present work we show that by adding a vertical linear (stable)
density stratification, the PC flow becomes unstable, at strikingly moderate Re numbers,
typically Re & 700. The observed instability relies on the same resonance mechanism
showed by Satomura (1981) for shallow water waves, here extended to the case of
internal gravity waves. An interesting feature of this finding is that density stratification is
generally thought to be stabilising as it inhibits vertical motion. Nonetheless our counter-
intuitive result does not come as a prime novelty. In the close context of rotating-stratified
(and sheared) flows Molemaker et al. (2001) and Yavneh et al. (2001) questioned the other
Rayleigh celebrated criterion (Rayleigh 1917) and showed that Rayleigh-stable Taylor
Couette flows may become unstable when adding linear density stratification. The Strato-
Rotational-Instability as successively named by Dubrulle et al. (2005) was observed in
the laboratory a few years later (Le Bars & Le Gal 2007) and is still the subject of
experiments (Ibanez et al. 2016). The stability analysis of parallel flows where shear
coexists with stratification has also a long tradition. The most famous shear instability,
i.e. the Kelvin-Helmoltz instability was found indeed in the context of a two layers
fluid endowed with different velocity and density (Helmholtz 1868; Kelvin 1871). This
work was extended to the three density layers configuration, with constant shear in the
middle one, by Taylor (1931) and Holmboe (1962), who identified two different instability
mechanisms, and later by Caulfield (1994) who isolated a third possibility. Miles (1961)
and Howard (1961) gave the stability criterion of the Kelvin-Helmoltz instability, for the
case of continuous linear stratification. Since then, most of the studies have focused on
the configuration where density gradient and shear are parallel. On the contrary only a
few (e.g. Deloncle et al. 2007; Candelier et al. 2011; Arratia 2011) recently considered the
case of non alignment as reviewed by Chen (2016), who also showed (Chen et al. 2016)
that a free-inflexion boundary layer profile is linearly unstable when linear stratification is
added. Restricting ourselves to the case of a vertically stratified and horizontally sheared
plane Couette flow, Bakas & Farrell (2009) already considered the problem of the linear
stability while investigating the interaction between gravity waves and potential vorticity
perturbations, but curiously did not explore the linearly unstable region. We repeat their
linear stability analysis using a pseudo-spectral method (i.e. with the same approach as
Chen et al. (2016)) and find that exponentially growing modes appear at moderate Re
number Re ∼ 700 and Fr ' 1, for non vanishing vertical and horizontal wave number
kx/kz ∼ 0.2. Results are confirmed by fully non-linear direct numerical simulations
(DNS). We also analyse the laboratory flow produced by a shearing device immersed
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in a rectangular tank filled with salty water linearly stratified in density. We verify that
a fairly parallel PC flow can be generated and observe that beyond a moderate Re number
Re & 1000 and for Fr number close to 1, a robust velocity pattern appears in the vertical
mid-plane parallel to the shear, that is where no motion is expected for a stable PC flow.
In particular perturbations grow in an exponential manner and looking at how their
saturation amplitude varies in the (Re, Fr) space, we find that an abrupt transition is
present close to the marginal stability limit predicted by linear stability analysis. The
quantitative agreement of the observed spatio-temporal pattern with the linear theory
is only partial, which we claim to be a consequence of the finite streamwise size of our
device. This hypothesis is largely discussed and supported by the results of additional
DNS confirming that the finite size of the domain weakly affects the base flow, but does
modify the shape of the perturbation pattern. We conclude that the observed instability
indeed corresponds to the linear instability of the vertically stratified PC flow modified
by finite size effects and that a redesigned experiment may reproduce more faithfully the
spatio-temporal pattern predicted by the linear theory.

The paper is organized as follows. In section 2 we define the observed flow with its
governing equations and describe the linear stability approach. In section 3 we report
the results of linear analysis and in section 4 those of direct numerical simulations. The
experiments are described in section 5 and the experimental results compared with the
linear theory and direct numerical simulations in section 6. In section 7 we summarise
our study and briefly discuss possible applications and future development of the present
work.

2. Theoretical frame

We consider the plane Couette flow generated by two parallel walls moving at opposite
velocity for a fluid which is stably stratified in density as sketched in figure 1. We denote
x̂ the stream-wise direction, ŷ the cross-stream direction (i.e. the direction of the shear)
and ẑ the vertical direction (i.e. the direction of the stratification). The vector g denotes
gravity while red arrows sketch the shape of the constant shear profile U(y) and red
shading mimic vertical stratification ρ̄(z). In the Boussinesq approximation we obtain
the following system of equations:

∂u

∂t
+ (u · ∇)u = −∇p

′

ρ0
− ρ′

ρ0
gẑ + ν∇2u, (2.1)

∇ · u = 0, (2.2)

∂ρ′

∂t
+ (u · ∇)ρ′ − N2

g
ρ0wẑ = k∇2ρ′, (2.3)

where we decompose the pressure and density fields p and ρ in a perturbation p′ and ρ′

and a stationary part p̄ = p0 + ρ0gz − N2z2ρ0/2 and ρ̄ = ρ0(1 − N2z/g), with p0 and
ρ0 two constant reference values. We indicate with N =

√
−∂z ρ̄(g/ρ0) the background

Brunt-Väisälä frequency, while ν and k denote viscosity and salt diffusivity.

2.1. Linear stability analysis

We perform the linear stability analysis of the equations (2.1)-(2.3) in a Cartesian box
of dimensions (Lx, Ly, Lz) centered in x = y = z = 0. To this aim we introduce the
buoyancy b = ρ′/ρ0g and decompose the velocity perturbation u in a perturbation u′

and a base solution U = −U0yx̂. Boundary conditions are periodic in the stream-wise
and vertical directions and no-slip, i.e. u′ = 0 at the rigid walls y = ±Ly/2. Buoyancy
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ŷ
x̂

ẑ

g

U(y)

ρ̄(z)

Figure 1. Sketch of the analysed flow in a Cartesian reference x̂, ŷ, ẑ. The base flow is aligned
with the stream-wise direction x̂, the constant shear is aligned with the cross-stream direction
ŷ while density stratification and gravity are aligned with the vertical direction ẑ. We highlight
in grey no slip lateral boundaries. Open periodic boundaries are not coloured.

perturbations b are also set to 0 at the walls. The system is made non dimensional
using the length L0 = Ly/2, the density ρ0 and the velocity U0 = σL0 where σ is
the shear rate. This choice is coherent with Chen et al. (2016) and gives the same set
of dimensionless numbers which are the Reynolds number Re = L0U0/ν, the Froude
number Fr = U0L0/N = σ/N and the Schmidt number Sc = ν/k. We then look for
solutions of the non dimensional perturbations ũ, p̃, b̃ in the form of normal modes

ũ, p̃, b̃ = (u(y), p(y), b(y))eikxx+ikzz−iωt, (2.4)

where we use again symbols u, p and b to simplify notations. Substituting in equations
(2.1)-(2.3) and retaining only the first order terms we obtain:

−iωu = ikxuy + v − ikxp+
1

Re
∆yu, (2.5)

−iωv = ikxvy −
dp

dy
+

1

Re
∆yv, (2.6)

−iωw = ikxwy −
b

Fr2
− ikzp+

1

Re
∆yw, (2.7)

0 = ikxu+ ikzw +
dv

dy
, (2.8)

−iωb = ikxby + w +
1

ReSc
∆yb, (2.9)

where we denote with ∆y the Laplacian operator ∆y = d2/dy2 − k2x − k2z . The system
of equations above is solved using a pseudo-spectral approach similarly to Chen et al.
(2016), the only difference is that discretisation is made on the Gauss-Lobatto collocation
points of the Chebychev polynomials (i.e. instead of Laguerre) because this choice is well
adapted to a two-side bounded domain. The generalized eigenvalue problem Af = ωBf
for f = [u, v, w, b, p] is solved with the QZ algorithm. In parallel we also consider the
inviscid approach which consists in neglecting both viscous dissipation and salt diffusion,
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thus reducing the system (2.5)-(2.9) to one equation for the pressure:

∂2p

∂y2
− 2kx

ω∗

∂p

∂y
+

(
k2z

ω2
∗

1− Fr2ω2
∗
− k2x

)
p = 0, (2.10)

where ω∗ = ω + kxy. The equation above is analogous to that provided by Kushner
et al. (1998) who previously studied the stability of a vertically stratified PC flow in the
presence of rotation f . In the limit of no rotation (f → 0) we verify that the two equations
are the same but contrarily to Kushner et al. (1998) we could not find a meaningful limit
in which our equation (2.10) becomes autonomous in y. As a consequence we cannot
provide a compact form for the dispersion relation. Nonetheless, looking at equation
(2.10) is still extremely instructive. First, one observes that the second term in equation
(2.10) possibly diverges at y = 0 when considering stationary modes which are marginally
stable (e.g. ω = 0). This corresponds to the existence of a barotropic critical layer, which
happens to be regularised because, from the symmetry of the base flow, we expect ∂p/∂y
to be null in y = 0 for a stationary mode. Similarly the third term of (2.10) becomes
critical in y∗ = ±1/kxFr when ω = 0. These are baroclinic critical layers, i.e. the
locations where the Doppler shifted frequency ω∗ of internal waves matches the Brunt
Väisälä frequency N. In different contexts critical layers can be excited and have been
observed in experiments (Boulanger et al. 2008) and numerical simulations (Marcus et al.
2013). However in our configuration the most unstable mode is always observed to be
stationary and at wave numbers kmax < 1/Fr, which implies that the corresponding
critical layers y∗max are always situated outside the numerical domain, |y∗max| > 1.

3. Linear Stability results

We have already mentioned that for unstratified fluids (i.e. Fr = ∞) the PC (unper-
turbed) profile is linearly stable for any value of the Reynolds number Re, thus we expect
the flow to be potentially unstable only at finite values of the Froude number. The values
of the Schmidt number for common salty water (i.e. in our experiments) is Sc ∼ 700 thus
we preliminarily consider the limit Sc =∞ and discuss the quality of this approximation
at the end of this section.

As a first result we report that one stationary growing mode (i.e. Im(ω) > 0, Re(ω) =
0) appears at Fr . 1, wave numbers kx ∼ 0.8, kz ∼ 5 and remarkably moderate Reynolds
number Re ' 700. In figure 2 we report the value of the imaginary part and the real
part of the most unstable eigenmode for Re = 1000 and Fr = 1 as a function of kx and
kz. Looking at the imaginary part (left) one sees that the flow is unstable over a narrow
elongated region centered in kx ∼ 0.8, kz ∼ 5 and stable elsewhere. Correspondingly the
real part (center) is zero whenever the flow is unstable and non zero elsewhere. In figure
2 (right) we also report the values of the temporal frequency ω for all the eigenvalues and
a various number of collocation points of Ny = 129, 257 and 513 for the most unstable
wave numbers (kx = 0.815, kz = 4.937). Physical eigenvalues correspond to the points
where three different symbols are superposed, all other points corresponding to spurious
numerical modes. The inset close to the origin of the diagram shows that a unique
eigenvalue is present for which Im(ωc) > 0. The value of ωc is stable to the variation
of Ny the number of collocation points, which indicates that the mode we observe is a
physical one. We remark that this feature makes the systematic analysis of the space (Re,
Fr) particularly simple, for example differently from Chen et al. (2016) the problem of
non physical eigenvalues with positive Im(ω) is not present.

When increasing Re the unstable region in the (kx, kz) space increases and unstable
modes exist over a larger range of Froude number. On the top of figure 3 we report the
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Figure 2. Left: growth rate Im(ω) of the most unstable mode in the space (kx, kz) at Fr = 1
and Re = 1000. Center: oscillation frequency Re(ω) of the most unstable mode in the space
(kx, kz) at Fr = 1 and Re = 1000. Notes that unstable modes (Im(ω) > 0) are stationary
(Re(ω) = 0). Right: full spectrum at the most unstable mode kx = 0.815 and kz = 4.937,
Fr = 1, and Re = 1000. Crosses refer to Ny = 129 collocation points, circles to Ny = 257 and
triangles to Ny = 513. The inset at the bottom right coincides with the area delimited by the
red rectangle.

a
b
cd

a bcd

e

f

Figure 3. Top: growth rate Im(ω) (left) and real part Re(C) of the velocity C = ω/kx (right)
of the most unstable modes in the space (kx, kz) at Re = 10000 and Fr = 1. Red dots and
letters label modes of different shapes. Bottom: Growth rate Im(ω) of the most unstable modes
at Re = 10000 and Fr = 0.2 (left) and Fr = 5 (right). The red dashed contours distinguish
stationary branches from oscillating ones. The black lines refer to the theoretical predictions we
discuss in section 3.2. Note that horizontal and vertical axes have different scales depending on
the Fr number.

value of Im(ω) and Re(C) for the most unstable mode at Re = 10000 and Fr = 1,
where we define C as C = ω/kx. In the same figure we report similar graphs for Im(ω)
at Re = 10000, Fr = 5 (left) and Fr = 0.2 (right). Note that at these values of Fr
number there is no unstable mode at Re = 1000.

One sees that at Fr = 1 (left panel) the diagram is now richer: besides the original
unstable branch constituted by stationary modes (a), new unstable branches appear
at larger kx which correspond to oscillatory (b, c, e) and stationary (d) modes, as
visible from the value of Re(ω)/kx) (right). Note that within a same branch the value of
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Re(ω)/kx varies very little, while the value of Im(ω) shows a maximum and smoothly
decreases to zero at the branch boundaries. The quantity Re(ω)/kx then characterises
each different branch. A new oscillating branch (f ) also appears at smaller kx but it is
still very weak and poorly visible at this Re number. On the bottom of figure 3 we report
the value of Im(ω) in the space (kx, kz) at Fr number smaller and larger than one.
When the Froude number is diminished to Fr = 0.2 (left) we recover almost the same
scenario, even if different branches look now more spaced one from another and appear
at larger kx and kz similarly to other kinds of shear flows (Deloncle et al. 2007; Park &
Billant 2013). On the contrary when the Froude number is increased to Fr = 5 (right)
the unstable region is drastically reduced, as well as the growth rate, which is dropped
by an order of magnitude. Also the most unstable mode moves toward lower value of
kx while kz only slightly changes. As a general remark we observe that the unstable
branches, i.e. the continuous regions defined by Im(ω) > 0, show an elongated shape.
Precisely, unstable regions appear extended when moving along the curve kxkz = const
while they are quite narrow in the orthogonal direction. We stress that this result is
independent of the Froude number which suggests a self-similar behaviour as already
observed by Deloncle et al. (2007). Also unstable modes always appear at kz, kx 6= 0, i.e.
the flow is linearly unstable only to three-dimensional perturbations, which is different
from the studies of Deloncle et al. (2007) and Lucas et al. (2017), performed on different
vertically stratified and horizontally sheared flow (the hyperbolic tangent shear profile
and Kolmogorov flow respectively).

3.1. Stability Diagram

We explore the (Re, Fr) parameter space over two decades around Fr = 1 and for Re
from 500 to 50000. For each combination (Re, Fr), we solve the system (2.5)-(2.9) in the
discretised wavenumber space kx ∈ [0, 2], kz ∈ [0, 30], and look for all the possible linear
growing (Im(ω) > 0) modes. The (kx, kz) domain is suitably moved toward lower (higher)
wave numbers when the Fr number is significantly higher (lower) than 1. In figure 4 we
report the stability diagram. Each point in the diagram corresponds to the most unstable
mode, whose relative kx and kz generally vary. One observes that at Re = 1000 the
unstable region is relatively constrained around Fr = 1 (i.e. 0.5 . Fr . 2) but already
covers two decades in Fr at Re = 10000. This indicates that instability first (i.e. at low
Re number) appears where density stratification and horizontal shear are comparable,
i.e. N ∼ σ, but is likely to be observed in a sensibly wider range of the ratio σ/N provided
that the Re number is large enough.

The critical Reynolds number (Rec ∼ 700) appears quite moderate compared to other
unstratified parallel flows like the plane Poiseuille flow (Rec = 5772 according to Orszag
(1971)). The value we find is comparable with that found by Chen (2016) for a plane
Poiseuille flow in the presence of vertical stratification, but still sensibly lower than that
indicated by the same authors (Chen et al. 2016) for the boundary layer (vertically
stratified) profile Rec ∼ 1995. The growth rate is moderate even at high Re number,
indicating that the observed instability is not only constrained in the (kx, kz) but also
relatively slow to establish.

Finally we want to discuss how the most unstable mode changes as a function of Re
and Fr numbers separately. In figure 5 we analyse how the growth rate Im(ω) of the
most unstable mode (left) changes with the Re number at fixed Fr = 0.4. One sees that
Im(ω) rapidly saturates to a constant value. This result was confirmed by solving the
eigenvalues problem (right) at very high Re number (up to 108) with (kx, kz) fixed. In
figure 6 (left) we report the value of kx and kz for the most unstable mode as a function of
Re at fixed Fr = 0.4. One sees that both kx and kz tend to a constant value. Let us recall
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Figure 4. Growth rate Im(ω) of the most unstable mode in the space (Re, Fr). Each
point is obtained taking the maximum value of Im(ω) over a collection of runs at
fixed (Re, Fr) and variable wave numbers (kx, kz). White dashed contours correspond to
Im(ω) = 0.01,0.02,0.03,0.04,0.05,0.06. Black dashed lines correspond to Re = 10000 and
Fr = 0.4. White circles correspond to the points of the diagram analysed in figure 2 and
3.

that our approach demands to discretize the space (kx, kz) which explains why the rate
of this convergence may appear disturbingly abrupt. Thus we conclude that the observed
instability must rely on an inviscid mechanism and that the inviscid approximation is
sufficient to capture the spatial (kx, kz) and temporal ω feature of the most unstable
mode.

In figure 6 (right) we report the value of kx and kxkz for the most unstable mode as a
function of the Fr number at Re = 10000. The first panel shows that kx is always slightly
lower than 1/Fr (dashed line) which means that, for the most unstable mode, baroclinic
critical layers (i.e. y = ±1/kFr) fall close to the boundaries but slightly outside the
domain boundaries y = ±1, and are likely not involved in the instability mechanism. In
the second panel we see that all solutions seem to collapse on the curve A/Fr where
A = kxkz|Fr=1 which provides a rule for the spatial pattern of the most unstable mode
and an interesting limit for further analysis of the pressure equation (2.10). Finally one
should remark that, according to this relationship, in exploring the stability diagram
(Re, Fr), the discretization of the wave number (i.e. the step size of the grid kx, kz)
becomes critical at low Fr, while the size of the domain (kx, kz) becomes critical at high
Fr.

3.2. The instability mechanism

So far we have only focused on the features of the most unstable mode for a given
combination of the dimensionless numbers Re, Fr and a typical domain in the wave
number space (kx,kz). This characterizes the instability from an operational point of
view but does not say anything about the underlying mechanism. To this end we now
analyse the shape of unstable modes. We have seen that the asymptotic behaviour of
the instability at large Re number indicates that it relies on an inviscid mechanism. In
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Figure 5. Left: Im(ω) (growth rate) of the most unstable mode as a function of the Reynolds
number at Fr = 0.4. The dashed line correspond to the inviscid solution as obtained solving the
eigenvalue problem. Right: solutions of the eigenvalue problem at Fr = 0.4 with fixed kx = 1.29
and kz = 8.53. Different symbols correspond to different Re numbers. The inset corresponds to
the thin rectangular region indicated by the red dashed line in the main graph. We highlight
in red the two lowest Re numbers. One sees that starting from the third one (Re = 50000) the
value of Im(ω) saturates to an asymptotic value.
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the inviscid limit the pseudo-spectral approach is far less intelligible because the solution
of the eigenvalue problem contains a large number of spurious modes with Im(ω) > 0,
which makes the detection of genuine unstable modes extremely difficult. The idea is
then to consider a finite Re number to keep the eigenvalue problem manageable but also
large enough to capture all the possible features of the instability diagram. It turns out
that the choice Re = 10000 fairly responds to these criteria, thus we focus on the case
Fr = 1 and Re = 10000 as a reference one. In figure 7 we report the eigenfunctions of the
most unstable mode at Fr = 1 and Re = 10000, which corresponds to the wave numbers
kx = 0.767 and kz = 4.937. One observes that the perturbations of the vertical velocity
w and buoyancy b are more important close to the boundaries y = ±1 while at the center
of the domain y = 0, the velocity perturbation is mainly horizontal. We consider now a
sample mode for each different unstable branch, for example corresponding to the red
spots we labelled with a,b,c,d, e and f in figure 3. In figure 8 we compare the pressure
eigenmode for all different branches.

One observes that the shape of the eigenmodes is significantly different in each panel.
Not surprisingly modes from the two stationary branches (a) and (d) are symmetric
in the cross-stream direction y. Conversely, travelling modes (b,c,e,f) are asymmetric
but always appear in pairs, at ω± = ±Re(ω) + iIm(ω), each mode in a pair being the
y-mirrored of the other one with respect to y = 0. Also in panel a we superpose the
pressure eigenfunction of the most unstable mode at kx = 0.767 and kz = 4.937, i.e.
the same as figure 7 (last panel). One remarks that two pressure eigenmodes belonging



10 G. Facchini, B. Favier, P. Le Gal, M. Wang, M. Le Bars

-1

-0.5

0

0.5

1

-1 0 1

u

y

-1

-0.5

0

0.5

1

-1 0 1

v

-1

-0.5

0

0.5

1

-1 0 1

w

-1

-0.5

0

0.5

1

-1 0 1

b

-1

-0.5

0

0.5

1

-0.1 0 0.1

p
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Figure 8. From the left: module of the pressure eigenmodes for Re = 10000, Fr = 1 at
kz = 10.77 and kx = 0.432 (a), kx = 0.624 (b), kx = 0.719 (c), kz = 0.815 (d). The mode
(e) correponds to kx = 1.055 and kz = 8.078 while the mode (f) is taken at kx = 0.432 and
kz = 2.693. On (a) the red dashed line corresponds to the most unstable mode, i.e. the same as
in the first panel of figure 7. One observes that two modes belonging to the same branch slightly
differ.

to the same branch (i.e. the branch (a)) have basically the same shape. The scenario
we described above is strikingly similar to that presented by Satomura (1981) (see e.g.
his figure 6) who analysed the stability of a non-stratified PC flow in the shallow water
approximation. In this case the pressure p is replaced by the elevation of the free surface h
in the analogous of equation (2.10). The author suggested that the instability is produced
by the resonance of two Doppler-shifted shallow water waves. In this picture the wave
(stream-wise) phase speed C = ω/kx of a shallow water wave which travels close to one
boundary can be approximated to that of a shallow water wave in a fluid at rest plus a
Doppler shift, say Ud, which has the sign of the velocity of the considered boundary. Two
distinct counter propagating waves situated at opposite boundaries can then have the
same phase speed and become resonant. Moreover the resonant wave numbers constitute
a discrete spectrum because rigid walls make the dispersion relation of (non sheared)
waves discrete. More recently, the same mechanism was also detailed to be responsible
for linear instabilities in stratified, rotating plane Couette (Vanneste & Yavneh 2007) and
stratified Taylor-Couette (Park & Billant 2013) flows. We suggest and show below that
this interpretation remains valid in our case if we replace shallow water gravity waves
with internal gravity waves. The dispersion relation of the latter is also discrete and one
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Figure 9. Top: velocity C
(n)
± as a function of kx as given by equation (3.1) at kz = 10.77 and

Fr = 1 and for the first n = 1 to 20 prograde (solid lines) and retrograde (dashed lines) confined
internal gravity waves in the absence of mean flow (left), and the Doppler shifted velocities

C
(n)
± ∓ Ud, where we set arbitrarily Ud = 0.6 (right). The red lines indicate the limit of the

dispersion relation for n→∞, the crossing is situated at kx = 1/FrUd. We indicate with letters
the resonances (crossing points) corresponding to different modes. Note that resonances (b) and
(c) come in symmetric pairs. The red circle indicates the proximity of a degenerate crossing

point. The single dashed-dotted line corresponds to C
(1)
+ , i.e. a non transported prograde n = 1

mode. Bottom: Same as top right but at Fr = 0.2, kz = 18 (left) and Fr = 5, kz = 3 (right).

has:

C
(n)
± = ± 1

kxFr

√
1− k2z

k2x + k2z + n2π2
, (3.1)

where we use the same notation as Satomura (1981), i.e. C = ω/kx. Subscript + (−) refers
to waves propagating in the positive (negative) direction of the x axis, while superscript
n labels different channel modes. Note that here the velocity C does not correspond to
the phase velocity of the wave nor to its horizontal component, but it is still the relevant
quantity to describe the resonance mechanism.

In the first panel of figure 9 we report the value of C
(n)
± as a function of kx at kz = 10.77

and Fr = 1. In the second panel we show both Doppler shifted velocities Cd = C
(n)
± ∓Ud

where we consider prograde and retrograde waves moving upstream close to opposite
boundaries and transported by the local mean flow. At this stage the value of Ud is an
adjustable parameter −1 6 Ud 6 1 and was fixed to Ud = 0.6. One remarks that in the
fixed frame (i.e Ud = 0), prograde waves (solid lines) are well separated from retrograde
waves (dashed lines). On the contrary for Doppler shifted waves, there exists a discrete
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set of resonant kx where two curves of different type cross each other. At Fr = 1 the
first crossing (resonance) happens at Cd = 0 and close to kx = 0.4, which is consistent
with the appearance of the first stationary mode (a) in the stability map of figure 3.
The next two resonances happen at a non zero value of Cd which coherently recovers
the appearance of the first two oscillating modes (b) and (c) at larger kx in figure 3.
The following crossing happens again at Cd = 0, which confirms the appearance of a
fourth (stationary) unstable branch in figure 3 when moving along kx and at constant
kz = 10.77. Looking back at figure 8 the mode (f) appears as a half of the mode (a) thus
we speculate that the corresponding resonance originates from the crossing of a Doppler
shifted wave and a non transported wave (i.e. one for which Ud = 0) situated at the
center of the domain (i.e. the dashed dotted lines in figure 9). Modes (e) do not originate
from a resonance, consequently they are not indicated in figure 9. A closer inspection of
the velocity field suggests that in this case the baroclinic critical layers are excited, and
the instability relies on a different mechanism. This hypothesis is consistent with the fact
that the mode (e) (see figure 3) belongs to a region which mainly extends at kx > 1/Fr
where critical layers can fit within the domain. Now that we have possibly explained the
origin of all the distinct modes as resulting from a degeneracy of the Doppler shifted
frequency, we want to show that this picture allows to fully capture the shape of the
unstable branches in figure 3. First one should recall that for a given channel mode
(i.e. n = const), the dispersion relation of internal gravity waves (3.1) is a function of
two variables kx and kz, hence a surface. It follows that degeneracy occurs indeed on
the intersection of two surfaces (i.e. not two curves) which is a curve (i.e. not a single
point). The latter explains why the shape of the unstable branches in figure 3 appears
elongated in one direction and constrained in the orthogonal one. In the particular case of
a stationary mode, one can easily deduce the equation of such a curve from the dispersion
relation (eq. 3.1) modified by the Doppler shift Ud. We find:

kz = F(kx, n, Fr, Ud) =

√
n2π2

U2
dFr

2k2x
− k2x − n2π2 +

1

Fr2U2
d

. (3.2)

In figure 3 we have superimposed the value of F to the map of the growth rate Im(ω)
at different Fr numbers and for n = 1 and 2. One observes the agreement is not only
qualitative, for example F reproduces the trend kxkz ≈ const observed before, but also
quantitative, because fixing a unique value of Ud = 0.6, we are able to predict the position
of almost all the unstable stationary branches.

Finally we show that the mechanism we describe above allows to predict the boundaries
of the unstable region. If we look back at figure 9 one observes that instability appears
at a finite value of kx, say kinf , where

C
(1)
+ (kx = kinfx , n = 1, kz, F r) = Ud (3.3)

and must disappear when the envelopes of prograde and retrograde modes (red lines)
cross each other, at ksupx = 1/FrUd. Note that the latter upper boundary is independent
of kz. Conversely the lower boundary can be arbitrarily reduced, for example kinfx →∞
provided that kz →∞. Nonetheless any finite Re number will likely inhibit an instability
happening at large wave number kz. We conclude that according to the proposed
resonance mechanism, the instability is triggered by perturbations which are not stream-
wise invariant (i.e. kx 6= 0), and at stream-wise wave number kx < 1/FrUd. Looking at
the growth rate diagrams of figure 3 one actually sees that ksupx tends to overestimate
the upper bound of the unstable region. A closer estimation of the latter may then be
given by the crossing of the prograde (retrograde) n = 1 Doppler shifted mode with the
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envelope of the retrograde (prograde) waves, which happens at kx < ksupx , in the region
we highlighted with a red circle in figure 9. The idea is that multiple degeneracy may
inhibit the resonance mechanism. Lower panels in figure 9 illustrate the same resonance
mechanism for Fr = 0.2 and Fr = 5. The bottom left panel (Fr = 0.2) confirms that
the instability range is extended and pushed at larger kx for small Fr number (i.e high
stratification). Conversely the bottom right panel (Fr = 5), shows that the region where
resonances take place, both shrinks and is constrained to smaller kx. Ultimately kinfx and
ksupx collide in the limit Fr →∞ and the instability likely disappears or at least reduces
to an infinitely narrow range in kx. Note that the results above suggest that the upper
boundary of the unstable region in figure 4 is intrinsic to the instability mechanism,
while lower boundary is controlled by the Re number: at small Fr instability appears at
larger kx, thus larger kz and is then more sensitive to viscous dissipation. To conclude
this section we recall that if the growth rate varies with the Re number and different
branches appear at different Re numbers, the value of C = ω/kx on a same branch is
approximately constant and almost does not vary with the Re number. This supports
the hypothesis of a resonance and confirms that the appearance of the most unstable
stationary and oscillating modes relies on an inviscid mechanism.

3.3. Effect of the Schmidt number

All the results we presented above correspond to solutions of the eigenvalue problem
where mass diffusivity was completely neglected, that is Sc = ∞. We have modified
the eigenvalue problem and tested the relevance of a finite Sc number for the reference
case Re = 966 and Fr = 0.82 which will serve as a comparison between linear analysis,
experiments and direct numerical simulations. All the simulations are performed at the
wave numbers kx = 0.96, kz = 5.16, where the most unstable mode appears in the Sc =∞
case. The results are reported in figure 10. First we report that at Sc =∞ (circles) and
Sc = 700 (crosses) the eigenvalues are well superimposed. This suggests that our non
diffusive approximation is qualitatively and quantitatively adequate to compare linear
theory with experiments performed with salty water, for which Sc = 700. Second we
remark that at Sc = 7 (squares) there is still an unstable mode and close to the origin
the distribution of eigenvalues has the same form. For example looking at the close up
on the right of figure 10, one sees that all the eigenvalues at Sc = 7 (in red) are located
close to a non diffusive eigenvalue. This result makes possible the comparison between
linear analysis, experiments, and direct numerical simulations which will be performed
at Sc = 7. Finally we observe that at Sc = 1 (diamonds and stars) the eigenvalues are
distributed on three distinct Y-shaped branches which is consistent with the previous
study of Bakas & Farrell (2009) and Chen (2016) who found analogous branches at
Sc = 1 in the case of the PC flow and the plane Poiseuille flow, respectively. We also
remark that at Sc = 1, Re = 966 (diamonds) there is no unstable mode, nonetheless
instability is promptly recovered at Re = 2000 (stars). We conclude that increasing mass
diffusion, the threshold of the instability is not severely affected as long as Sc & 7 while
it may change when Sc is of the order of unity.

4. Direct Numerical Simulations

In addition to the linear stability analysis, we have performed Direct Numerical
Simulations (DNS) of the full set of equations (2.1)- (2.3). The aim of a complementary
DNS approach is to validate the linear theory and characterize the flow when retaining all
the non-linearities. Equations are solved in a rectangular box of dimensions (Lx, Ly, Lz).
The boundary conditions are periodic in both the stream-wise and vertical directions and
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Figure 10. Left: eigenvalues in the complex space for the reference case Re = 966, Fr = 0.82,
kx = 0.96, kz = 5.16 and Sc = ∞ (circles), Sc = 700 (crosses), Sc = 7 (squares), Sc = 1
(diamonds and stars). Right: zoom on the region contoured by the dashed red line in the left
diagram, Sc = 7 symbols are reported in red.

rigid no-slip insulating boundaries in the cross-stream direction, i.e. u = 0 and db/dy = 0
at y = ±1. In order to keep the computational time reasonable, while still focusing on the
high Sc number regime of the experiment described in section 5, we fix Sc = 7. We have
seen in section 3.3 that this particular choice does not affect qualitatively the results,
and in any case, ad-hoc solutions of the linear problem at Sc = 7 can be considered for
a quantitative comparison. In order to ensure that the linear instability is well captured
by the numerical simulation, we choose a box of size (Lx = 2π/kx, Ly = 2, Lz = 2π/kz),
where kx and kz are the most unstable wave numbers as predicted by the linear stability
analysis presented above.

We performed DNS using the spectral element solver Nek5000 (Fischer 1997; Fischer
et al. 2007; Paul F. Fischer & Kerkemeier 2008). The use of spectral elements instead
of more classical pseudo-spectral methods will be justified later (see section 5) where
we add the effect of the stream-wise confinement to mimic the experimental setup. The
global geometry is partitioned into hexahedral elements, with refinement close to the
moving boundaries. Velocity, buoyancy and pressure variables are represented as tensor
product Lagrange polynomials of order N and N − 2 based on Gauss or Gauss-Lobatto
quadrature points. The total number of grid points is given by EN3 where E is the number
of elements. For all the results discussed in this paper, the number of elements is E = 6336
and we use a polynomial order from N = 7 up to N = 11 for the highest Reynolds number
case. Time integration is performed with a third-order explicit scheme for the advection
and buoyancy terms while viscous and dissipative terms are integrated using an implicit
third-order scheme. The simulations are initialized with a small amplitude buoyancy
perturbation and with an established linear PC flow.

In order to validate the eigenvalue problem we choose the reference case Re = 966,
Fr = 0.82 which will serve later as a comparison to experiments. In figure 11 (top left)
we report the time evolution of the vertical kinetic energy density (thick line) which is
defined as:

(w2)1/2 =

(
1

V

∫
V

w2dV

)1/2

(4.1)

where V refers to the volume of the simulation box. The quantity (w2)1/2 is appropriate

since (w2)
1/2
t=0 = 0 for the base flow. One observes that (w2)1/2 increases exponentially

and superposing the exponential growth predicted by the linear analysis one obtains
an excellent agreement, with a relative discrepancy on the growth rate σc of less than
1%. In the same figure (bottom left) we also report the spatio-temporal diagram of the
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Figure 11. Left: at the top, vertical kinetic energy (w2)1/2 as a function of time at Re = 966,
Fr = 0.82 and Sc = 7. The thick line refers to the DNS simulation while the thin line refers to
the growth of the most unstable mode as indicated by linear stability analysis. At the bottom,
horizontal velocity perturbation u at x = y = 0 as a function of t and z for the same DNS.
One observes that a stationary pattern appears close to t = 500. Right: instantaneous 3D map
of the buoyancy perturbation once the flow has become unstable (DNS). As predicted by the
linear analysis the selected mode is mainly modulated in the vertical direction but still not
stream-wise invariant (i.e. kx 6= 0). Note also that perturbations are concentrated near the
boundaries y = ±1.

horizontal perturbation u at x = y = 0. One observes that a stationary pattern has
established around t = 500 which has a well defined vertical wavelength. In figure 11
(right) we report a visualisation of the buoyancy perturbation b once the instability has
saturated. One observes an weakly inclined layering of the density field which is a common
feature in stratified turbulent shear flows (see Thorpe 2016, for a review). Again we have
a very good agreement with the linear theory: a distinct spatial pattern appears and both
vertical and horizontal wavelengths correspond to the predicted values. One can notice
that the spatial pattern perfectly fits in the simulation domain. This condition is indeed
necessary to observe the instability, and no relevant growth of the vertical kinetic energy
is observed when none of the unstable wave numbers fits inside the simulation domain.

5. Experiments

5.1. Experimental apparatus

Now, we want to study whether or not this linear instability of the stratified plane
Couette flow does appear in a ”real” configuration, and to do so, we look for some
of its signatures in an experimental set-up, intrinsically limited in size. The flow is
produced with a shearing device which is placed inside a transparent tank (50 cm x
50 cm x 70 cm) made of acrylic. The tank is filled with salty water linearly stratified
in density. The shearing device is sketched in figure 12 (left). The device consists of
a PVC transparent belt (0.8 mm thick) which is closed on a loop around two vertical
entraining cylinders made of dense sponge (we use standard spares entraining cylinders
for commercial swimming-pool robots). Two additional pairs of cylinders (inox, 2 cm
diameter) constrain the two sides of the loop to be parallel and at a controlled distance
d. All cylinders are mounted on a system of acrylic plates which allows to vary the
distance between the entraining cylinders (i.e. to tighten the belt) through two pairs of
coupled screws (i.e. one pair for the bottom and one for the top). The top acrylic plates
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also prevent the existence of a free surface which would affect any imaging from the top.
The motion of the belt is provided by a motor which is mounted on the top of the device
and joined to the axis of one of the entraining cylinders. Finally two PVC rigid plates
are mounted vertically in front of the two entraining cylinders in order to reduce at most
any perturbations coming from the entrainment system. The distance between the edges
of the plates and the belt is a few mm. Thus we look at the flow in the area shaded in
light grey (figure 12, left). In the present work we consider two values of the gap width
d = 5.8 and 9.8 cm, while the distance between the PVC plates D was respectively 34 cm
and 24 cm, leading to a value of the aspect ratio D/d of 5.7 and 2.4 respectively.

The tank is filled with salty water of variable density. As a general rule a water column
of height H = 10 to 20 cm linearly stratified in density always occupies the volume
delimited by the belt and the confining barriers, while above and below the density
stratification was generally weaker or negligible. The density profile is obtained by the
double-bucket method (Oster 1965). To measure the density profile we collect small
samples of fluid (∼ 10 ml) at different heights and analyze them with a density-meter
Anton Paar DMA 35. The Brunt-Väisälä frequency N is constant for each experiment
with a value between 0.5 rad/s and 3.0 rad/s. We measure the stratification before and
after each experiment. The shearing motion clearly affects the stratification especially
through the small scale features of the rotating part of the device which necessarily
produces some mixing. Also, in our highest Re experiments we observe optical distortion
which may indicate the presence of high density gradient zones and thus density layering,
for example similarly to that observed in turbulent stratified experiments performed in
Taylor-Couette devices (Oglethorpe et al. 2013). Nevertheless we observe that the density
profile at the end of an experiment is weakly perturbed and the relative discrepancy in
the area of interest is around 5%. Finally we assume the viscosity to be ν = 10−6 m2/s,
and neglect any change associated to variable salt concentration.

The fluid is seeded with (10µm - diameter) hollow glass spheres and two laser sheets
illuminate the particles in the vertical plane y = 0 and the horizontal plane z = 0
as shown in figure 12. The flow is then recorded from the side by a 4 Mpx camera at
a frame rate of 8 fps and from the top by a 2 Mpx camera at a frame rate of 30 fps.
The velocity field is obtained with a Particle Image Velocimetry (hereafter PIV) cross-
correlation algorithm (Meunier & Leweke 2003). Note that the mid vertical plane y = 0
is the appropriate place to detect the possible onset of an instability because in the ideal
PC regime, the velocity should be zero there. The current setup permits only one by one
enlighting-recording of the flow, thus movies from the top and from the side are always
taken at different times.

5.2. Base flow

First we report that a PC flow can be observed in the region confined between the
belt and the PVC barriers. On the top left of figure 13 we superpose 40 images of the
z = 0 plane exactly as captured by the camera. Only the contrast was altered to exalt
streamlines. Both the intersections of the belt with the laser sheet and the left barrier edge
can be easily recognized as brighter lines. One also sees that streamlines close up near the
PVC barriers and recirculations are present. This is confirmed by the velocity field given
by the PIV algorithm and shown just below. The velocity plot is obtained by averaging
over 40 PIV fields (∼ 1.3 s), also we plot only one arrow over four in the horizontal
direction, to make the diagram readable. One remarks that up to 10 cm far from the
center the flow is nicely parallel and the velocity gradient is linear. Both streamlines
and PIV fields refer to an experiment where the base flow was already stationary. Now,
any experiment necessarily implies a transient phase where the flow evolves from a first
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Figure 12. Left: sketch of the experimental shearing device seen from the side (top) and from
above (bottom). The two green shaded area correspond to two laser sheets which enlight the
mid vertical plane (i.e. y = 0) and the horizontal mid plane (i.e. z = 0). Two cameras allow to
image the flow in the enlighted areas. Right: schematic of confined DNS experiments. Two rigid
lateral walls entrain the fluid at constant velocity, and two rigid walls confine the flow in the
stream-wise direction. Vertical boundary conditions are periodic.

stationary phase, e.g. the whole fluid is at rest, to a second stationary phase which is the
forced parallel flow. We expect the base flow to establish via viscous entrainment starting
from the fluid layers which are close to the walls, thus the viscous time Tν = d2/ν seems
to be an appropriate time scale for the transient. In order to verify this we need some
more quantitative prediction and consider the transient flow generated by two infinite
walls treated by Acheson (1990). As a first step, recirculations are neglected. If the flow
is initiated at t = 0 the horizontal velocity has the form U(y, t) = U0(y)−UT (y, t), where
U0(y) is the asymptotic base flow and the transient part UT (y, t) reads:

UT (y, t) = (U0 − Ui)
∞∑
j=1

2

π

(−1)j

j
e−π

2j2t/Re sin jπy (5.1)

where Ui is the velocity of the belt at t = 0, for example Ui = 0 if the experiment is
started with the fluid at rest. In figure 13 we compare the value of U(y, t) as expected
from equation (5.1) with the average value of the horizontal velocity as observed in a
typical experiment. The value of U is plotted as a function of y at four different times.
First, the velocity profile collapses on the expected PC flow (dashed line) around t = Tν ,
which confirms that the base flow establishes via viscous entrainment. Also at t = Tν/3
(circles), the value of the average horizontal velocity is already very close to the PC
flow. Secondly one remarks an excellent agreement of the experimental observations with
the infinite walls approximation, which suggests that the recirculation does not affect
significantly the shape of the transient flow. With regard to this, one should notice that
knowing the time the base flow needs to establish becomes crucial when determining the
growth rate of the instability, which will be discussed later.

Once the PC profile is established we want to detect possible deviations from the base
flow. For this aim we mainly focus on the mid plane y = 0 where no motion is expected
for the base flow. As a standard protocol we initiate the flow at low shear rate σ and
then increase σ by a small fraction (typically 15%). Top views of the plane z = 0 are
also taken to verify the shape of the parallel base flow. In each experiment the flow was
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Figure 13. Left: top view of the z = 0 plane. On the top we show a superposition of 40 images
(i.e. ∼ 1.3 s) as captured by the camera. Only light contrast was exalted to show PIV particle
trajectories. On the bottom the velocity field (u, v) as reconstructed via the PIV algorithm.
The velocity plot is obtained averaging over 40 PIV fields (i.e. ∼ 1.3 s). Right: horizontal
velocity as a function of the cross-stream direction y at four different times Tν/10 (crosses), Tν/5
(squares), Tν/3 (circles) and Tν (triangles). Symbols refer to experimental observations. Each
profile corresponds to the time average of the horizontal velocity fields over 0.03Tν . Solid lines
refer to the value of the expression (5.1) expected for the two infinite walls problem (increasing
time from clear gray to black). The dashed line refers to the asymptotic t =∞ solution.

observed for at least one viscous time Tν = d2/ν which may be taken as an upper-bound
for establishing the base flow. First we report that starting from very moderate Reynolds
number Re & 300 the observed fluid oscillates coherently at a well defined frequency. In
figure 14 we report the spatio-temporal evolution of the horizontal velocity perturbation
u along the vertical line y = 0, x = 0 and the two horizontal lines y = 0, z = 0 and
z = 0, x = −d. As visible in each diagram, parallel periodic structures appear which
are fairly homogeneous over the spatial domain. This suggests that the entire fluid bulk
oscillates in a coherent way. In addition all the diagrams show a well defined temporal
frequency. We then perform the temporal fourier transform of the vertical average of
u(x = y = 0, z, t) and denotes with fbox the peak in the frequency spectrum. In the last
panel of figure 14 we report the value of fbox as a function of the imposed shear σ for a
collection of three experiments at different Fr numbers, where only the imposed shear
σ is changed. One sees that the observed global frequency fbox increases linearly with σ,
and rescaling the observed period with the belt revolution time Trev, we find (see inset)
that the observed oscillation period Tbox is very close to Trev/4. A possible explanation
for this unexpected observation is that the two pairs of confining cylinders (see figure
12) divide the path of the belt in four (almost) equivalent sections. We stress that these
cylinders constitute one of the biggest source of noise because they are rigid and each of
them tends to perturb the belt once per revolution time, when they touch the roughness
of the belt junction. Correspondingly we expect that a Trev/4 resonant periodic forcing
may establish, and give the velocity field the observed temporal pattern. As a summary
we report that deviation from a zero velocity field are observed in the horizontal velocity
perturbation u, from a very moderate value of the Re number. Nonetheless the observed
motion shows a trivial spatial pattern (i.e. kx = ky = kz = 0), looks like a bulk oscillation,
and seems to be connected to the shearing device. Thus, in the presence of only spurious
bulk oscillations (even if robust), we assess that the corresponding Re, Fr pair is a stable
point in the stability diagram. In the following we discuss how perturbations become more
finely structured at higher Re number, and we give a criterion to distinguish these initial
deviations from a truly unstable pattern.

5.3. Instability

When the Re number is sufficiently high Re & 1000 and for Froude number Fr ∼ 1, an
exponentially growing motion is observed to form in the mid plane y = 0. The horizontal
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Figure 14. Top: horizontal velocity perturbation u for a moderate Re experiment (Re = 530,
Fr = 0.45) in the mid vertical plan y = 0. On the left, u as a function of the time t and the
vertical coordinate z (x = 0). On the right, u as a function of the horizontal coordinate x and
the time t (z = 0). Bottom left: horizontal velocity perturbation u for the same experiment in
the mid horizontal plan z = 0, as a function of time t and y (x = −1). All the quantities are
non dimensional. Bottom right: global frequency fbox as a function of the imposed shear σ for a
collection of experiments with different stratifications N (different symbols). fbox was computed
as the maximum in the temporal Fourier transform of ū(t), which is the vertical average of u at
x = y = 0. In the inset we report the corresponding global period in unit of revolution time of
the belt as a function of σ.

velocity perturbation u shows a well defined spatial pattern where horizontal and vertical
wavelengths λx, λz can be fairly detected, with λx/λz ∼ 8. Results for this reference case
are summarised in figure 15.

On the top of figure 15 we plot the horizontal velocity perturbation u at x = y = 0
as a function of the time t and vertical direction z for a reference (unstable) experiment.
At t ∼ 60 s the imposed shear has changed from a lower value of σ = 0.34 s−1 to 1.15 s−1

and at t ∼ 600 s one observes the appearance of a vertical wavelength. One also observes
that the t − periodic and z − invariant bulk motion described in the previous section
is present since the very beginning and is still visible at large time, superposed to the
instability pattern. In figure 15 (bottom left), we consider the time evolution of the order
parameter (u2)1/2 for the same unstable case as above (black line) and for another case
where (red line) the imposed shear, σ is smaller by a fraction 1/8. The average square
of the horizontal perturbation u2 is computed at the center vertical line x = 0, y = 0 in
three steps starting from the spatio-temporal diagram of u. At each time we take the
average of u over a short interval ∼ 4σ−1, subtract the linear regression in z, compute the
square and finally average over the vertical direction. We stress that subtracting the linear
regression allows us to get rid of the bulk oscillations and of any possible top-bottom
anisotropy due to a non perfect verticality of the laser sheet. First of all one remarks
that the unstable case (black line) shows a clear growth event of the order parameter
which does not happen for the stable case (red line), thus indicating the appearance of an
instability. Focusing on the unstable case one clearly sees that a first increase of (u2)1/2

occurs during the interval of ∼ 0.3Tν after the change in the imposed shear, where the
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Figure 15. Top: Horizontal velocity perturbation u at x = y = 0 as a function of time. Colorbar
is set to ±15% of the wall speed. Here σ = 1.15 s−1, Fr = 0.82, Re = 969. All quantities are
dimensionless. At t = 103.5 the imposed shear switched from 0.34 s−1 to 1.15 s−1. Bottom
left: Evolution of the mean horizontal perturbation (u2)1/2 as a function of time for the same
experiment (black line) and for a stable experiment where both Fr and Re are diminished by

a fraction 1/8 (red line). The inset shows log (u2)1/2 for the unstable case. At each time u2 is
obtained averaging over a short interval ∼ 4 , taking the square and finally averaging over the
vertical direction. Bottom right: Snapshot of the horizontal velocity perturbation u in the plane
y = 0, here t ∼ 900 .

value of the viscous time is Tν = d2/ν ∼ 1000σ−1. At larger time, u2 increases again,
now in an exponential way (see the inset in semi-log scale), and finally saturates to a
constant value. The exponential growth rate is approximately ω ∼ 0.06σ−1 (although the
noise makes difficult a precise measurement of the growth rate). We claim that the first
growing phase coincides with the progressive onset of the base PC flow at the imposed
shear while the second growing phase corresponds to the onset of a linear instability.
Note that for the stable case (red line) the first growing phase is less visible, because the
shear σ is imposed starting from a slightly lower value. Finally on the bottom right of
figure 15 we present a snapshot of the u field in the plane y = 0. One observes a regular
periodic pattern characterized by a vertical wavelength λz ∼ 0.7 L0 and an horizontal
wavelength λz ∼ 5.5 L0, where we recall that L0 is half the width of the channel.

Below we consider the stability of our experimental flow in the (Re, Fr) space which is
the same for the linear stability analysis performed in section 3.1. To this aim we need to
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Figure 16. Mean horizontal perturbation (u2)1/2 as a function of the imposed shear σ. The

value of u2 is obtained averaging u over the vertical direction z and time. Close and open symbols
are assessed to be stable and unstable cases respectively. Squares refer to large gap experiments
(L) and circles to narrow gap experiments (N). Different experiments refer to different ratio
Fr/N as visible in figure 17.

define a common protocol to assess the presence or not of the instability. One criterion
may be the appearance of a vertical length. Unfortunately the latter is a smooth process,
for example a vertical wavelength was often visible at a shear σ lower than what we
assess to be the unstable case. Nonetheless the associated signal was generally weak and
no growth process was observed. The existence of the latter seems to be the most reliable
criterion, but demands longer experiments and generally imposes to start from very small
σ, which imposes to slow down the flow after each experiment. As a general rule we rather
look at the saturated amplitude of the order parameter (u2)1/2 as a function of σ and
detect if an abrupt change occurs, as it is clearly visible in figure 15 at large time. In
particular (u2)1/2 is computed once the instability has saturated or alternatively after a
time of the order of the viscous time Tν after the actual value of the shear is imposed, for
example to get rid of the base flow transient. We choose the control parameter σ (i.e. the
imposed shear) as the most suitable one, because it can be varied continuously, simply
controlling the speed of the entraining motor. As a drawback both Re and Fr are linear
in σ, thus the stability diagram must be explored moving on tilted straight lines for which
the ratio Fr/Re = ν/Nd2 is constant. Any change in the vertical stratification N and gap
width d is considerably more laborious, which constrains the exploration of the (Re, Fr)
space to a few different Fr/Re = const lines. In figure 16 we report the value of (u2)1/2

as a function of the control parameter σ for a collection of 6 series of experiments at
different Fr/Re corresponding to different values of N and d. Experiments labelled with
L refer to large gap experiments (D/d = 2.4 ) while those labelled with N refer to narrow
gap experiments (D/d = 5.7 ). Different experiments are performed at a different ratio
Fr/Re as it is visible in figure 17. One remarks that in almost all the different series, the
quantity (u2)1/2 abruptly increases when the imposed shear σc crosses a threshold value,
which corresponds to a threshold point in the space (Rec, F rc). This allows to assess
that the experimental flow is stable (closed symbols) for σ < σc and unstable (open
symbols) for σ > σc. An exception was constituted by the experiment N2 where the
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Figure 17. Growth rate of the most unstable mode in the space (Re, Fr) exactly as in figure
4. Now we superpose the results of experiments (symbols) with the same code as in figure 16.
One sees that transition from stable (closed symbols) to unstable (open symbols) cases happen
close to the marginal contour Im(ω) = 0. The vertical dashed line corresponds to Re = 230 at
which the non stratified flow (i.e. pure water) becomes unstable.

vertical pattern establishes but appears less structured and less robust than in the other
cases. Also in the case N3 the transition stable-unstable is anticipated by one position
because a growth event was clearly visible at the corresponding value of σ.

6. Discussion

In figure 17 we superimpose the experimental results of figure 16 on the stability
diagram obtained with the linear stability analysis (figure 4). Experimental points which
belong to the same line correspond to a series of observation at fixed Fr/Re ratio.
Closed symbols and open symbols correspond to stable and unstable cases respectively,
as in figure 16. One observes that the transition of the quantity (u2)1/2 (i.e. from close
to open symbols) happens close to the marginal contour where linear growing modes
appear according to linear stability analysis. This strongly supports the claim that we
experimentally observe the signature of the instability predicted by the linear analysis.

Below we compare the temporal behaviour of the observed instability with the linear
analysis. Besides the growth rate, that precisely characterizes the instability onset, we
want to discuss first what happens during the transient phase that necessarily comes with
each experiment. This constitutes a difference with the linear analysis where the base flow
is always constant, and may affect the estimation of the observed growth rate. In other
words, one may wonder at which time since the beginning of an experiment the instability
is expected to grow. The question becomes particularly relevant when considering that
the expected growth rate is comparable with and even smaller than the viscous time.
Also we want to rule out the possibility that the appearance of the unstable pattern is
due rather to the transient profile of our flow, for example a non constant shear profile
like that considered by Chen et al. (2016). The temporal diagram of figure 15 shows
that the exponential growth starts at t ∼ Tν/3, which seems to be consistent with the
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Figure 18. Solutions of the modified eigenvalue problem for a base flow given by expression
(5.1). Here we choose the same Re, Fr, and Ui (i.e. the belt velocity at t = 0) as the reference
experiment. The eigenvalues problem is solved for the combination (kx, kz) which is the most
unstable according to linear analysis and at seven different transient times. Different symbols
correspond to different times. The dashed line marks the limit for instability.

description of the base flow given in section 5.2. In order to give a more quantitative
explanation we solved a modified eigenvalue problem where the base flow is now given by
the expression (5.1) for a collection of different times and with the same set of parameters
as the reference experiment presented in figure 15. The results are presented in figure
18, where we report the eigenvalues of the most unstable mode focusing close to the
transition region Im(ω) = 0. One remarks that no unstable eigenvalue is present for
t < 0.2Tν while one unstable mode appears for t > 0.3Tν , thus confirming that the
base flow must be sufficiently established for the instability to develop. This result was
confirmed by specific DNS where the initial condition is not the PC flow, but the flow is
at rest and the shear profile is progressively established through the no slip boundaries.
Also in this case the growth of perturbations is delayed to the moment when the shear
profile has become almost constant. We then conclude that what we observe is associated
with a constant shear plane Couette profile.

Besides instability threshold in the Re, Fr space we also want to compare the shape
of the mode selected in our experimental device with the unstable mode predicted by
linear theory. If we focus again on the reference case described in figure 15, we remark
that both kx and kz are larger than what is predicted by the linear theory for the most
unstable mode, and the perturbation is oscillating in time while linear theory predicts
that instability appears as a stationary mode. One remarks that oscillations are quite
regular and relatively slow, with a typical period T = 43± 3σ−1, where the uncertainty
is taken as the width at mid height of the peak in the average temporal spectrum. We
recall that according to linear analysis oscillatory branches also exist (see figure 3) which
appear at higher Re number, typically Re & 2000. Interestingly the period associated
to the first oscillating branch is always long, for example with the Fr of the reference
experiment N1 and Re = 2500 one has T ∼ 42σ−1. Moreover this branch happens at
larger wave numbers more compatible with the observed ones. In this scenario what we
look at may be either a single propagative mode, for example of the type (b), as it is
visible in the lower part of the spatio-temporal diagram, or a standing wave generated
by two counterpropagating modes of type (b) as it is visible in the upper part of the
same diagram. These elements suggest that experimentally, the instability is activated
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close to the absolute threshold (i.e. that where first stationary modes appear) predicted
by linear analysis, but a different non stationary mode is selected in the end.

In any case one should recall that our linear and experimental problems are different,
thus unstable modes are not expected to share the same features. The major difference
between the theoretical system and our experimental setup is the finite size of the domain.
In principle, to mimic periodic boundary conditions imposed in linear calculations, one
wants to take the horizontal and vertical aspect ratio D/d � 1 and H/d � 1 while
our best realization (i.e. narrow gap) of this hypothesis was D/d = 5.7 and H/d = 2.4.
We observe that the impact of physical confinement is twofold. First from the point
of view of modal analysis only the wavelengths which fit in the domain may have a
chance to develop. This was confirmed by periodic DNS that do not show any instability
whenever the box size does not fit the spatial shape of unstable modes. We notice that
the eigenvalue problem is solved assigning an arbitrary value of kx and kz, thus when
comparing to DNS and experiments one should retain that the (kx, kz) grid of figure 2 is
coarsed-grain, especially at low kx and kz. Thus the ideal constraint for the aspect ratio
are D/d � λx and H/d � λz, where λx and λz are the non dimensional wavelengths
of the unstable mode we want to observe. A second problem appears in the stream-wise
direction because the streamlines must turn and close up when getting close to the walls
that close the domain in the stream-wise direction, as it is clearly visible in the snapshot
reported in figure 13. We mentioned before that this feature does not modify significantly
the shape of the base flow in the bulk, but it may locally destabilize the flow (i.e. close
to the corners) and successively affect the stability of the whole domain.

6.1. Simulations in a finite domain

In order to closer investigate finite size effects, we performed new DNS where the
computational domain is now closed in the stream-wise direction by two solid walls with
no-slip insulating boundary conditions as sketched in figure 12 (right), while boundary
conditions remain periodic in the vertical direction. Note that compared with the periodic
case discussed in section 4 the mesh is further refined close to the two additional stream-
wise boundaries, in order to properly solve for the boundary layers. In addition, the
corners of the domain are now singular due to the incompatibility between the velocity
imposed at the side boundaries and the fixed stream-wise walls. This is naturally
smoothed by viscosity but is nevertheless an inevitable source of vorticity. In figure
19 (top) we report the results of a DNS confined simulation which reproduces both the
control parameters (Fr,Re) and the aspect ratio of the reference experiment illustrated in
figure 15. For a direct comparison we report again the results of the reference experiment
(bottom) already shown in figure 15 with the only difference that bulk oscillations are
now filtered from the spatio temporal diagram of u at x = y = 0 and the origin of
time axis is shifted forward to t = Tν/3 which is when we estimate that the PC flow
is well established. One observes a striking good agreement between our DNS results
and experimental result on both the spatial and temporal shapes of the selected mode.
Computing the temporal spectrum we find that the temporal frequency as predicted
by DNS is T = 50 ± 5σ−1 which is compatible with the experimental one, while the
consistency of spatial wavelengths is evident because in both cases an integer number
of velocity maxima fit in the vertical mid plane y = 0. Finally we observe that as a
whole the transition from the initial noise to the final non linear pattern takes almost
the same time in DNS and the experiment. As a summary, figure 19 indicates that we
correctly isolated the crucial factor which possibly alters the selection of the unstable
mode, that is the stream-wise confinement. Incidentally we also report that additional
DNS show that the form of the late non-linear stage is quite sensitive to initial and
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boundary conditions. For example slightly varying the box dimensions or the amount
of initial noise the spatial shape of the selected mode is different and travelling waves
or standing waves patterns can be alternatively present. To better investigate the role
of stream-wise boundaries we perform additional DNS with a non stratified (Fr = ∞)
PC flow in exactly the same confined geometry and same Re number as the one we just
described (figure 19). Results are reported in figure 20. We recall that u perturbations do
not grow when considering periodic boundary conditions at Fr =∞, as expected by the
fact that the unstratified PC flow is linearly stable. One observes that a strong vertical
shear appears in a shorter time compared to both the stratified DNS and experiment in
figure 19 while the vertical length scale is larger. A similar pattern is also observed in
unstratified experiment as soon as Re & 300. The vertical kinetic energy (black dashed
line in figure 21) grows in an exponential way suggesting that a linear instability may
act at a first stage. Conversely non linear mechanisms must act at larger time because
the vertical kinetic energy rapidly saturates and the spatio-temporal diagram of figure
20 shows the presence of small scale features. A detailed investigation of the nature of
this instability of a confined and unstratified PC flow is beyond the scope of the present
work. Formally we recognise the scenario of a locally perturbed PC flow already described
in literature (see Barkley & Tuckerman 1999, and citations inside), where some of the
(stable) modes of the ideal PC flow become unstable. In particular the shape of the flow
at the corners suggests that it may locally destabilise via centrifugal instability which
will be studied in further investigations.

We conclude that the presence of boundaries may destabilize the PC flow with or
without the presence of stratification. Now, the careful reader will agree that even if
DNS fully justify differences between the linear analysis and the observed experimental
pattern we are left with a cumbersome question regarding the origin of the perturbation
pattern observed in the confined and stratified configuration: does this pattern coincide
with a boundary-induced modification of the linear instability, or rather with the pure
hydrodynamic boundary-induced instability modified by the stratification? For example
one may claim that the patterns observed in figure 19 are a convoluted combination
of the two showed in figure 11 and 20. The key to this answer resides in the same
approach we followed with experiments, that is to detect if and when, our flow abruptly
changes when varying the control parameter σ. We then consider further DNS which
copy the parameters of another experiment of our reference series N1 where Fr and
Re were 30% smaller than the unstable case described in figure 15. At the same time
we repeat unstratified simulations at such a lower value of the Re number. We observe
that the new unstratified case is almost unchanged while the subcritical stratified case
shows a dramatic change. In this case perturbations are significant only close to the
boundaries, and no instability develops in the bulk. In figure 21 we report the time
evolution of the vertical kinetic energy for all the stream-wise confined DNS we have
discussed above, together with the one performed in a periodic domain. One observes that
in the unstratified case (dashed line), perturbations rapidly grow and saturate at the same
value independently of the Re number. If we add stratification (solid lines), perturbation
grows (black line) and saturates to the same value as periodic simulation if Re number
is beyond the threshold predicted by the linear analysis. Conversely perturbations are
damped (dashed line) when the Re number is below the threshold.

We have now enough elements to conclude that what we observe both in experiments
and DNS (figure 19) is a signature of the linear instability of a PC flow, vertically stratified
in density. Besides we observe that stream-wise boundaries are source of instability for
a flow and likely affect the features, or possibly just the selection, of the unstable mode
which shapes in the end the observed pattern.
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Figure 19. Left: Spatio-temporal diagram of the perturbation u at the center line x = 0,
y = 0 for the reference case Re = 969, Fr = 0.82 for confined DNS (top) and the reference
experiment (bottom). Spurious bulk oscillations are filtered from the experimental data. Right:
perturbation u in the plane y = 0 once the flow has become unstable for confined DNS (top) and
the experiment (bottom). The red dashed rectangle indicates the area accessible to experimental
measurements.

Figure 20. Spatio temporal diagram of the perturbation u at the center line x = 0, y = 0 from
DNS. Here Re = 966, Fr = ∞ (i.e. unstratified) and the box geometry is the same as in the
experiment.

Incidentally we report that additional DNS were performed in a domain which is larger
but still confined in the stream-wise direction, in order to explore when finite size effects
become negligible and suitably design a larger experiment. Surprisingly we find that for
a doubled size domain, the growth rate decreases and almost matches that of periodic
simulations but the instability disappears (we observe a pattern similar to the subcritical
stratified case) when further increasing the stream-wise domain (i.e. 4 times larger).
With respect to this trend the long computation time demanded to consider even larger
domains prevents us to be conclusive and further studies will be necessary.

The transition from the confined to the periodic case happens in a discontinuous way
which needs to be further investigated.

At this stage we speculate that stream-wise boundaries may both introduce some
forcing and inhibit the instability, perturbing the normal form and thus the resonance
of the waves supported by the flow. Horizontal aspect ratio possibly controls the mutual
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Figure 21. Vertical kinetic energy density (w2)1/2 as a function of time, for five different
DNS experiments. Black lines correspond to supercritical simulations (Re = 966) performed at
Fr = 0.82 (solid line), Fr =∞ (dashed line), and Fr = 0.82 with periodic boundary conditions
in the stream-wide direction (dash-dotted line). Red lines refer to subcritical simulations
(Re = 629) performed at Fr = 0.53 (solid line) and Fr =∞ (dashed line). The thin black line
corresponds to the growth of the most unstable mode at Re = 966, Fr = 0.82 as predicted by the
linear theory. Horizontal dashed lines highlight the saturation level of supercritical unstratified
and stratified DNS respectively.

importance of these two effects in a non trivial, non monotonous way, thus explaining
the observed scenario.

7. Conclusions

We performed the linear stability analysis of the plane Couette Flow for a stably
stratified fluid with a constant density gradient orthogonal to the shear. The domain
has rigid closed boundaries in the direction of the shear, and open periodic boundaries
in both vertical and stream-wise directions. Unstable stationary modes are found at
strikingly moderate Reynolds number Re > 700 and for a Froude number close to
1 for non vanishing horizontal and vertical wavenumbers with kx/kz ∼ 0.2. We then
explore the stability of the flow in the (Re, Fr) space. In the region we consider, the
most unstable mode is always stationary and the growth rate remains relatively small,
while the range of unstable Fr numbers increases when increasing the Re number.
Moreover the flow is unstable only to three dimensional perturbations, i.e. only for
kx,kz 6= 0. This result constitutes a fundamental difference with homogeneous shear
flows for which the Squire theorem prescribes that the most unstable mode should be two-
dimensional. In the presence of stratification, hyperbolic tangent profile (Deloncle et al.
2007) and Kolmogorov flow (Lucas et al. 2017) are also dominated by two-dimensional
perturbations, while both boundary layer profile (Chen et al. 2016) and strato-rotational
instability (Yavneh et al. 2001) similarly appear for three-dimensional perturbations.
Curiously the study of Bakas & Farrell (2009) included the same modal approach but
no unstable case was reported. Even more recently Chen et al. (2016) showed that a
linear instability does occur in parallel flows free from inflection points, when a vertical
stratification is added, but only the plane Poiseuille flow and the viscous boundary layer
were considered. Remarkably our instability also appears close to Fr = 1, confirming the
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necessary coexistence of shear and stratification. The critical Reynolds number for the
stratified plane Couette flow turns to be at least two times smaller than for the boundary
layer and slightly larger than for the Poiseuille flow.

Looking at the most unstable mode of the linear problem, vertical velocity and density
perturbations develop close to the boundaries which suggests that a crucial role may be
played by lateral boundaries. Nonetheless, a comparable horizontal motion dominates in
the mid vertical plane, and shows a vertically modulated pattern which is reminiscent of
the deep equatorial currents, and staircase density layering in the Earth ocean (Dunkerton
1981; Dengler & Quadfasel 2002; d’Orgeville et al. 2004).

A mechanism was proposed to explain the onset of the instability as the one suggested
by Satomura (1981) adapted to the case of internal gravity waves, instead of shallow
water waves. In this picture internal gravity waves are trapped close to the boundaries
and Doppler shifted, thus allowing two counter propagating waves to become stationary
and mutually resonant. The shape of the unstable region in the wave number space and
the appearance of discrete additional resonances are also fully captured by the model,
thus supporting its relevance. An analogous mechanism was also invoked at the origin of
Strato-Rotational instability both in the plane Couette (Kushner et al. 1998; Vanneste
& Yavneh 2007) and the Taylor-Couette (Yavneh et al. 2001; Park & Billant 2013)
geometries.

The linear stability analysis was confirmed by DNS which fairly reproduce the spatial
pattern and the growth rate. We report that no instability is observed when none of the
unstable modes can properly fit in the domain. This confirms that the instability sharply
selects the spatial pattern of the perturbation.

We analysed the experimental flow produced by a shearing device immersed in a tank
filled with salty water linearly stratified in density. We report that when the Fr number
is close to 1 and for Re > 1000 velocity perturbations are observed to grow in an
exponential way. Remarkably we observe that perturbations start to grow only when
the plane Couette profile is almost completely established. This was confirmed by ad-hoc
versions of the linear problem for a collection of transient profiles and by DNS which
mimic the transient flow of experiments. We conclude that the observed instability is
crucially associated to the shape of the shear, namely the plane Couette profile.

Then we explored the stability of the flow in the (Re, Fr) space varying the control
parameter σ, that is equivalent to move along Fr/Re = const lines, for a few different
values of Fr/Re. For each series of experiments we observe that an abrupt increase in
the perturbation amplitude occurs, when σ is bigger than a threshold value σc. When
adding experimental data to the stability diagram predicted by linear theory we find that
the threshold contour indicated by experiments qualitatively matches the margin of the
linearly unstable region. Also, close to the threshold, the velocity perturbation shows a
well organized pattern and is almost horizontal, which is in agreement with the solution of
the linear problem. Nonetheless the unstable mode slowly oscillates in time and appears
at higher wave numbers than the most unstable (stationary) mode indicated by the linear
analysis. These two elements suggest that the mode selected in our experiment is not the
most unstable of those predicted by linear analysis, or that these latter are possibly not
the same when considering the finite size experimental apparatus.

In any case we claim that the origin of the discrepancy relies on the critically low
value of the horizontal aspect ratio of our experimental domain, which is necessarily
bounded in the stream-wise direction. The relevance of this hypothesis has been tested
with complementary DNS where no slip rigid boundaries are now implemented also in
the stream-wise direction. Remarkably, when copying the aspect ratio of our experiments
we minutely reproduce the perturbation pattern observed in experiments. More generally
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DNS show that stream-wise confinement affects the stability of the flow irrespectively
of the Fr number (i.e. also without stratification), which questions the link between the
instability observed in experiment and that predicted by linear analysis. We performed
then DNS of a subcritical stratified experiment (i.e. Re and Fr below the critical value)
and show that the instability disappears. We then acknowledge the unstable pattern
observed in both experiments and DNS as a true signature of the linear instability of a
plane Couette flow vertically stratified in density.

Future studies are planned to closer investigate which is the critical aspect ratio to
recover quantitatively the results of linear theory and periodic DNS. To this aim new DNS
will be performed in a larger domain, which will possibly indicate how to correspondingly
design a new set-up.

Quantitative measurements of the density field will be also performed in future ex-
periments to quantify the density layering whose evidences were already available in our
highest Reynolds experiments in the form of regularly spaced optical distortion. Such
measurements will possibly add cues to the comprehension of the diapycnal mixing in
the presence of horizontal layering as recently studied with experiments (Woods et al.
2010; Oglethorpe et al. 2013) and numerical simulations (Lucas & Caulfield 2017) in the
case of the Taylor-Couette and Kolmogorov flows respectively.

Acknowledgments

This work has been carried out thanks to the support of the A*MIDEX grant (ANR-11-
IDEX-0001-02) funded by the French Government “Investissements d’Avenir” program.

REFERENCES

Acheson, D.J. 1990 Elementary Fluid Dynamics. Oxford University Press.
Arratia, Cristobal 2011 Non-modal instability mechanisms in stratified and homogeneous

shear flow. Theses, Ecole Polytechnique X.
Bakas, Nikolaos A. & Farrell, Brian F. 2009 Gravity waves in a horizontal shear flow.

part ii: Interaction between gravity waves and potential vorticity perturbations. Journal of
Physical Oceanography 39 (3), 497–511, arXiv: https://doi.org/10.1175/2008JPO3837.1.

Barkley, Dwight & Tuckerman, Laurette S. 1999 Stability analysis of perturbed plane
Couette flow. Physics of Fluids 11 (5), 1187–1195.

Barkley, Dwight & Tuckerman, Laurette S. 2005 Computational study of turbulent
laminar patterns in Couette flow. Phys. Rev. Lett. 94, 014502.

Bayly, B. J., Orszag, A. & Herbert, T. 1988 Instability mechanisms in shear-flow transition.
Annual Review of Fluid Mechanics 20 (1), 359–391.

Boulanger, Nicolas, Meunier, Patrice & Le Dizès, Stéphane 2008 Tilt-induced
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