Stability of an explicit high-order spectral element method for acoustics in heterogeneous media based on local element stability criteria - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal for Numerical Methods in Engineering Année : 2018

Stability of an explicit high-order spectral element method for acoustics in heterogeneous media based on local element stability criteria

Résumé

This paper considers the stability of an explicit LeapFrog time marching scheme for the simulation of acoustic wave propagation in heterogeneous media with high-order spectral elements. The global stability criterion is taken as a minimum over local element stability criteria, obtained through the solution of element-borne eigenvalue problems. First, an explicit stability criterion is obtained for the particular case of a strongly-heterogeneous and/or rapidly-fluctuating medium using asymptotic analysis. This criterion is only dependent upon the maximum velocity at the vertices of the mesh elements, and not on the velocity at the interior nodes of the high-order elements. Second, in a more general setting, bounds are derived using statistics of the coefficients of the elemental dispersion matrices. Different bounds are presented, discussed and compared. Several numerical experiments show the accuracy of the proposed criteria in one-dimensional test cases as well as in more realistic large scale 3D problems.
Fichier principal
Vignette du fichier
SEM_Stability.pdf (4.61 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01898570 , version 1 (18-10-2018)

Identifiants

Citer

Régis Cottereau, Ruben Sevilla. Stability of an explicit high-order spectral element method for acoustics in heterogeneous media based on local element stability criteria. International Journal for Numerical Methods in Engineering, 2018, 116 (4), pp.223 - 245. ⟨10.1002/nme.5922⟩. ⟨hal-01898570⟩
61 Consultations
161 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More