The impact of the end-Ordovician glaciation on sediment routing systems: A case study from the Meseta (northern Morocco)

To cite this version:

The impact of the end-Ordovician glaciation on sediment routing systems: A case study from the Meseta (northern Morocco)

J.-F. Ghienne¹, A. Benvenuti², M. El Houicha³, F. Girard⁴, E. Kali¹, Y. Khoukhi⁵, C. Langbour¹, T. Magna⁶, J. Míková⁶, A. Moscariello², K. Schulmann¹,⁶

¹Institut de Physique du Globe de Strasbourg, EOST – UMR7516, CNRS/Université de Strasbourg, 1 rue Blessig, F-67084 Strasbourg, France
²University of Geneva, 13 rue des Maraîchers, CH-1211, Switzerland
³Université Chouaib Doukkali, El Jadida, Morocco
⁴UMR5243, 60 place E. Bataillon, F-34095 Montpellier, France
⁵Université Mohamed Iᵉʳ, Oujda, Morocco
⁶Czech Geological Survey, Klárov 3, CZ-11821 Prague, Czech Republic

Corresponding author:
Jean-François Ghienne, Institut de Physique du Globe de Strasbourg, EOST – UMR7516, CNRS/Université de Strasbourg, 1 rue Blessig, F-67084 Strasbourg, France
ghienne@unistra.fr
ABSTRACT

Assessment of sediment redistribution by end-Ordovician ice sheets is crucial for the reconstruction of Lower Paleozoic source-to-sink patterns. Focussing on the ice-distal, deepwater Tazekka depocenter (Moroccan Meseta), we thus performed a provenance study that combined whole-rock geochemistry, petrography and insights from high-resolution detrital zircon ages. The results show that the glacigenic sediments are compositionally — mineralogically and geochemically — more mature than preglacial strata. This observation points to a preferential cannibalization of the “great Lower Paleozoic quartz-rich sandstone sheet”, with a limited input of first-cycle, far-travelled clastic sediments. Differentiation of glacial units is not straightforward, yet the glaciation acme is typified by a highly mature sedimentary source and an age spectrum lacking Mesoproterozoic zircon grains, both features strongly indicating derivation from the Cambrian–Lower Ordovician cover of the Tuareg Shield. More regional sources are expressed during the earlier glaciation stages, during which lowstand remobilisations unrelated to subglacial erosion are also suspected. Subordinate but notable late Tonian (~0.8 Ga) and latest Stenian to early Tonian (~1 Ga) zircon populations are also evidenced in Morocco, which may have implications for future paleogeographic reconstructions.

Keywords

sediment cannibalization, glacial erosion, zircon geochronology, source-to-sink, Hirnantian, peri-Gondwana
1. Introduction

The end-Ordovician glaciation culminated in the growth of a large ice sheet over Gondwana (Le Heron and Craig, 2008; Ghienne et al., 2014; Pohl et al. 2016). From West Africa to Arabia, ice-sheet divides and flow orientations were not necessarily superimposed on preglacial fluvial drainage systems (e.g., Meinhold et al., 2013); the latter serving as guidelines for peri-Gondwana paleotectonic reconstruction based on detrital zircon geochronology (e.g., Pastor-Galán et al., 2013; Shaw et al., 2014). In particular, the assessment of Mesoproterozoic zircon grains in NW Africa is of interest (Avigad et al., 2012; Pratt et al., 2015). As such ages are generally regarded in the north African context as marking a source originating in the Sahara metacraton (NE Africa; Henderson et al., 2015; Chelle-Michou et al., 2017), multi-stage sediment recycling events (see discussion in Andersen et al., 2016) and potential mixing linked to the end-Ordovician glaciation may have severely altered the true significance of zircon provenance. Alternatively, glacially fed routing systems can introduce, or enhance, the contribution of far-travelled sediment sources that were absent or subordinate in preglacial watersheds (Doornbos et al., 2009; Hofmann et al. 2015; Gürsu et al., 2018).

For instance, the massive arrival of >2.3 Ga zircon grains that has been detected in the Upper Ordovician strata of the ice-proximal reaches of the glaciated platform in the southern Hoggar (Linnemann et al., 2011) might be a consequence of the reorganization of sediment dispersal trends owing to glaciation. Actually, the degree to which the end-Ordovician glaciation impinged on the Paleozoic dispersal systems of the Gondwana remains unknown (Avigad et al., 2012, 2017).

At the scale of NW Africa, ice flows departing from an oversimplified centrifugal scheme, which in addition does not fully conform to the preglacial fluvial transport directions (Fig. 1), should be supported by changes in sediment provenance preserved
We have performed a systematic and detailed provenance study focusing on the glacigenic sediments of the Tazekka Massif (northern Morocco), a representative area of ice-distal platform segments in end-Ordovician reconstructions (Le Heron et al., 2007). As such, the Tazekka depositional system can be viewed as the final sink of the end-Ordovician, NW African glacial routing system. This new dataset aids in deciphering the impact of the glaciation on the continental-scale sediment dispersal, a resurgence of which may have occurred well after the glacial event through recycling (Pratt et al., 2015). Also, given that the end-Ordovician glaciation corresponds to a polyphase climatic event (Ghienne et al., 2007a, 2014), any clues from high-resolution provenance studies may help to delineate individual advance–retreat cycles of the end-Ordovician ice sheets, provided they relate to distinct sediment routing systems throughout the north-Gondwana platform. We tested if geochronological studies on glacigenic sediments could constitute a valuable tool, which, beyond paleogeographical purposes, could help to better constrain stratigraphic correlations within the end-Ordovician glacial record, e.g. from relatively ice-distal area (Morocco, Europe) toward more internal domains of the north-Gondwana platform (from Mauritania to Chad); such correlations being a pre-requisite for robust paleoclimatic scenarios.

2. Geological setting

2.1. Study area

The Tazekka Massif is a part of the Moroccan Meseta (Fig. 1), the pre-Variscan configuration of which remains unclear, yet generally positioned NW of the Anti-Atlas between the Gondwana landmass and an undefined continental margin (Hoepffner et al., 2005; Michard et al., 2010; Chopin et al., 2014; Pérez-Cáceres et al., 2017). Above a
Figure 1. Geological setting (coordinates of the main section in the Tazekka inlier: c. 33.9588°N, 4.3802°W). The Paleozoic configuration was slightly different, owing to poorly constrained Variscan offsets (e.g., along the South Meseta Fault, SMF). The star positions the westernmost Meseta (samples NF01 & 15DL12; Fig. 6). Numbers in diamonds refer to zircon sources (see Figs. 2, 5 and 7). Ice flows orientations mainly from Ghienne et al. (2007), Deschamps et al., (2013), Dietrich et al., in press.
preglacial, essentially fine-grained succession (Tehar el Brehl Fm.), there is a thick glacigenic sandstone wedge forming the Tifarouine Fm., which was entirely deposited beyond the end-Ordovician ice fronts (Le Heron et al., 2007, 2008). In the framework of this study, supplementary sections were logged in and around the type area. Our revised stratigraphy allows us to outline five informal stratigraphic members (Fig. 2), the lateral extent of which is in excess of 20 km. Medium-grained sandstones and mudstone interbeds of Mbs 1 and 4 are interpreted as basin-floor turbiditic lobe complexes while amalgamated coarse-grained sandstone sheets of Mbs 3 and 5 represent oversupplied turbiditic systems reflecting two major glacial advances. Glacimarine influence characterizes Mb. 2 (channels, debris-flows, ice-rafted debris), as well as thin interbeds in Mbs 4 and 5. Silurian shales and cherts mark the post-glacial onset of outer shelf conditions. Limited paleocurrent data in turbiditic deposits highlight relatively uniform flows through time from the NW, the W or the SW, yet the original orientations — potentially altered by Variscan thrust tectonics (Hoepffner et al., 2005) — are admittedly unknown.

2.2. Paleoglacial setting

From the nearby ice-proximal Anti-Atlas record (Fig. 1), it has been shown that Late Katian and lower Hirnantian lowstand wedges characterize the early glaciation phases, during which glaciers did not reach Morocco (Loi et al. 2010; Ghienne et al., 2014). In contrast, several advance–retreat cycles of the ice sheets are recognized during the late Hirnantian glaciation maximum associated with ice flows from the SE–SSE or from the WNW–WSW (Ghienne et al., 2007a, Le Heron, 2007; Le Heron et al., 2007; Ghienne et al., 2014; Ravier et al., 2015; Dietrich et al., in press). However, temporal correlation of this sequence of events with the Tazekka record is still unresolved.
In Morocco, the glaciers of the end-Ordovician glacial maximum essentially flowed over Upper Ordovician sediments. However, further toward the SW, S or SE, they eroded Lower Ordovician to Cambrian strata (Ghienne et al., 2007 a, b). As shown by rare exotic pebbles — mainly granites, less mafic or metamorphic lithologies — in glacimarine deposits, the basement has directly sourced the glacigenic sediments, at least locally (Fig. 1; Eglab area, Rognon et al., 1972).

3. Methods

3.1. Geochemical and petrographic analysis

Whole-rock geochemical (XRF and LA-ICP-MS) and automated petrographic (QEMSCAN) analysis were performed on seven samples from the Tehar-el-Brehl Fm. and on 36 samples distributed through the five members of the Tifarouine Fm. (19 sandstones, five diamicites and 12 mudstones; Fig. 2). Major element compositions were determined by X-ray fluorescence (XRF) with a PANalytical Philips PW2400 spectrometer at the University of Lausanne. The trace-element concentrations of whole rocks were measured on glass beads by laser ablation inductively-coupled-plasma mass spectrometry (LA-ICP-MS) with an Agilent 7700 laser ablation system at the University of Lausanne. Data were reduced with LAMTRACE software (Longerich et al. 1996; Jackson 2008). Automated mineral characterization was performed using an FEI QEMSCAN® Quanta 650F facility installed at the Department of Earth Sciences, University of Geneva equipped with two Bruker QUANTAX light-element energy dispersive X-ray spectrometers at high vacuum, accelerating voltage of 25 kV, and probe current of 10 nA on the carbon-coated polished thin sections. Data processing was performed using the FEI iDiscover software package. The effect of weathering, diagenetic, hydraulic sorting, and source rock composition over the compositional
Figure 2. Synthetic section of the Tazekka succession, built from the compilation of five sedimentological logs. On the left, position of samples on which geochemical and petrographic analyses have been performed (Figs. 3 & 4). Samples used for U–Pb geochronology of detrital zircon populations are positioned on the right (TeB 1-3 and Tf 1-6; probability plots of Fig. 5). On the right: the inferred scenario for source development (see text for details). Symbols (star, triangle...) associated to stratigraphic units are linked to codes used in figures 3 and 4.
results of the investigated samples were investigated following the procedures

3.2. U–Th–Pb Geochronology

Three samples from the Tehar el Brehl Fm. (TeB 1-3) and six samples from the
Tifarouine Fm. (Tf 1-6) were processed. Detrital zircon grains were separated from
several kilograms of samples by sorting, magnetic separation and conventional heavy
liquid separation. The final zircon fraction was purified by handpicking in ethanol using
a binocular microscope. Zircon samples were mounted in epoxy resin, polished and
imaged by cathodoluminiscence to reveal the internal structures of zircon grains by
employing a Tescan MIRA 3GMU electron microprobe (Oxford Instruments), housed at
the Czech Geological Survey.

The U–Th–Pb dating was performed using an Analyte Excite 193 nm excimer laser
ablation system (Teledyne CETAC, Omaha, Nebraska, USA), equipped with a two-volume
HelEx ablation cell, in tandem with an Agilent 7900x ICPMS (Agilent Technologies Inc.,
Santa Clara, USA), housed at the Czech Geological Survey. Samples were ablated in He
atmosphere (0.8 l min⁻¹) at a pulse repetition rate of 5 Hz using a spot size of 25 μm and
laser fluence of 7.59 J cm⁻². Each measurement consisted of 20 s of blank acquisition
followed by 40 s sample signal acquisition. The masses 202, 204, 206, 207, 208, 232 and
238 were collected using the SEM detector, with one point per mass peak and the
respective dwell times of 10, 10, 15, 30, 20, 10 and 15 ms per mass (total sweep time of
0.134 s). Instrumental drift was monitored by repeat measurements of 91500 reference
zircon (Wiedenbeck et al. 1995) after every 20 unknowns. Data deconvolution using the
Iolite software followed the method described by Paton et al. (2010), including an ‘on
peak’ gas blank subtraction followed by correction for laser-induced elemental fractionation (LIEF) by comparison with the behavior of the 91500 reference zircon (Wiedenbeck et al. 1995). The weighted mean concordia age of 1062.8 ± 2.5 Ma (n = 420, 2σ) was obtained for 91500 reference zircon. In addition zircon reference samples GJ-1 (~609 Ma; Jackson et al. 2004) and Plešovice (337 Ma; Sláma et al. 2008) were analysed periodically during this study and yielded the concordia ages of 607.9 ± 2.8 Ma (n = 170, 2σ) and 338.2 ± 2.3 Ma (n = 320, 2σ), respectively. We have used decay constants incorporated in the Isoplot software (Ludwig, 2012), which are from Jaffey et al. (1971). No common Pb correction has been applied to the data due to the high level of isobaric Hg interferences derived from the carrier gases. We did not apply the \(^{207}\text{Pb}/^{206}\text{Pb}\) criteria for older zircon grains, but the information is included in the data table (Supplementary Material). Instead, the Concordia function of Isoplot software was used for detrital zircon probability plots, which calculates the concordia age based on the \(^{206}\text{Pb}/^{238}\text{U}\) and \(^{207}\text{Pb}/^{235}\text{U}\) ratios and their errors and which yields a more precise mean age than that commonly obtained using either ratio alone.

4. Results

4.1. Insights from petrography and geochemistry

Sandstones share a medium-high compositional maturity while mudstones are relatively enriched in K-rich clay minerals. Glacigenic sandstones are dominated by quartz (>70 modal %, but generally > 80%) and depleted in feldspars; high values of the Chemical Index of Alteration (Nesbitt and Young, 1982) from 65 to 75 and, especially, of the Plagioclase Index of Alteration (> 65 but more usually > 90; Fedo et al. 1995), prove intense weathering in the source area (Fig. 3A). Preglacial sandstones are characterized by higher proportions of detrital sodic feldspars (up to 17 modal %) suggesting less
Figure 3. Geochemical results. A: Bivariate diagram between Chemical (CIA, Nesbitt & Young, 1982) and Plagioclase (PIA, Fedo et al., 1995) Indexes of Alteration. B: Provenance characterization diagram (Floyd & Leveridge, 1987). C: Discrimination diagram for sedimentary provenance based on major elements (Roser & Korsch, 1988).
Figure 4. A: Principal component analysis of prevalently immobile elements. The two major components describe roughly half of the total variance of the geochemical composition of the investigated deposits. Na$_2$O and CaO (largely present in feldspars) and compatible elements correlate positively with the deposits of Tehar-el-Brehl Fm. Incompatible elements correlate with those of the Tifarouine Fm. Mudstones and sandstones are separated along a direction perpendicular to the one that delimits the stratigraphic formations, indicating that grain size does not influence any unit differentiation based on geochemistry. B: Spider diagrams of selected element concentrations of preglacial and glacial deposits normalized to Al$_2$O$_3$ and N-MORB. High concentrations of incompatible elements, and LILE (Rb, Cs, Sr, Ba) in particular, compared to the compatible elements suggest that the initial source rock composition of the investigated deposits was acidic.
weathered preglacial sources. Notable recycling processes of sedimentary deposits are suggested by the higher-than-average content in sandstones of heavy minerals enriched in Zr–Hf, especially glacigenic sandstones, compared to the greywacke and UCC standard values (Fig. 4B). The greater maturity of the glacigenic sediments, for which a higher degree of chemical alteration is unlikely (Bahlburg and Dobrzinski 2011), highlights a re-organization in sediment provenance at the glaciation onset. A discriminant diagram based on major elements (Roser and Korsch, 1988) confirms that a sedimentary source was prevalent (Fig 3C). The compositional difference between the Tehar-el-Brehl and Tifarouine Fms. must be principally related to distinct composition of the sedimentary sources. This is in line with a principal component analysis of major and trace elements concentrations (Fig. 4A) showing preferential enrichment of incompatible elements in glacigenic deposits, which suggests that the source rocks of the glacigenic sediments were originally derived from more evolved magmatic rocks.

Glacigenic sediments mutually differ very slightly, with the exception of higher concentrations of elements such as Hf in individual sandstone samples of Mbs 1 & 4 (Fig. 3B). Interestingly, abundance shifts are not reflected by a higher maturity of those samples and are recorded in both sandstones and mudstones. This indicates a preferential reworking of strata that were already enriched in heavy minerals (zircon, monazite), for instance coastal placers, which are recurrently observed in Ordovician nearshore deposits (e.g., Pistis et al., 2016). Diamictites are plotted in between sandstones and mudstones (Figs. 3C and 4A), indicating grain-size mixing rather than a specific sourcing. Sandstones in Mbs 2 and 3 are associated with the most mineralogically and geochemically mature source composition. This is particularly apparent in Figs. 3A, 3C and 4B where these sandstones have, for instance, and on average, (i) higher indices of alteration, (ii) parameters indicative of a sedimentary
source largely dominated by a quartzose provenance, and (iii) higher concentrations of
P_2O_5, Hf, Zr, Yb. This does not solely reflect the coarse-grained nature of the deposits as
samples of the similarly coarse-grained Mb. 5 behave distinctively. The more mafic
composition of the latter marks the resumption of a preglacian signal, which was never
totally cut off during the glaciation as shown by some specific samples in Mbs 1 & 4, the
composition of which echoes the one of the preglacian deposits.

4.2. Insights from U-Th-Pb datings

The U-Th-Pb LA-ICPMS measurements were performed on 881 detrital zircon grains
from the nine samples of the Tazekka section. Probability plots in Fig. 5 only include
ages with a concordance between 95 and 105%. One additional probability plot from the
glacigenic sediments of the westernmost Meseta (NF01) is also given (Fig. 6B), to
compare with the ages from a middle-upper Cambrian sandstone of the same area
(15DL12; Letsch et al., 2018; Fig. 6B). The compilation of the 881 ages of the Tazekka
section (Fig. 6C) shows a very similar age distributions for the 50–100µm and 100–250
µm grain-size ranges, which indicates that hydraulic processes did not significantly
impact our zircon record.

It is apparent from Figs. 5 and 6C that Cryogenian–Ediacaran (Pan-African, 580–
720 Ma; Ennih and Liégeois, 2001; Gasquet et al., 2008) and Paleoproterozoic
(Eburnean, 1790–2300 Ma, Abati et al., 2012) ages dominate the record. The two
populations, and the lull in between, which corresponds to the West African magmatic
gap of Linnemann et al. (2011), are regarded as a signature of the western segment of
the north Gondwana platform. Except sample Tf 3 showing the greatest ratio of Pan-
African to Eburnean zircon grains (59 vs. 24%), which is comparable to most of previous
published works (Linnemann et al., 2011; Avigad et al., 2012; Gärtner et al., 2017), the
Figure 5. Binned frequency (bin size: 20 Ma) and probability density distribution plots of concordant zircon ages from the end-Ordovician Tazekka record. Late Tonian and late Stenian–early Tonian populations (orange bands) are particularly well defined in TeB 2 and Tf 1, in spite of a limited number of measured ages. Minimum zircon ages are specified on the left of each plot as well as proportion (%) of distinctive populations. Note that the scenario for source development also integrates petrographic and geochemical insights (section 4.1. and Fig. 2).
Figure 6. A & B: Binned frequency (bin size: 20 Ma) and probability density distribution plots of concordant zircon ages from samples of the westernmost Meseta (‘Coastal Block’, located by the black star in Fig. 1), either (A) glacigenic deposits of the Ben Slimane section (this study) or (B) middle-upper Cambrian strata, El Hank Fm., Imfout section (modified from Letsch et al., 2018). C: age compilation of the 881 zircon ages of the Tazekka section plotted in Fig. 5. Orange bands refer to the late Tonian and late Stenian–early Tonian population discussed in the text. Grey bands in Pan-African ages, see Fig. 5.
other glacigenic samples have a notable proportion of Eburnean zircon grains and sample Tf 1 yields significantly more Eburnean (48%) than Pan-African (24%) zircon grains. Several Archean and Cambrian zircon grains were also detected, the latter being absent from the westernmost Meseta (Fig. 6). Post-orogenic Late Ediacaran zircon grains form a restricted population (<8%), which peaks at 554 Ma (Fig. 6C), yet it is most often identifiable in the form of a shoulder rather than an actual peak in individual plots (Fig. 5). Most interesting are two subordinate but distinctive populations: a late Tonian population, ranging from 840 to 760 Ma, and a late Stenian–early Tonian population showing a broader age cluster, ca. 960–1120 Ma (~1 Ga; Fig. 5). The latter, best observed in sample Tf 1, is also well defined in NF01. These two age populations, though their presence/absence characterizes and differentiates some samples in this study (Fig. 5), appear poorly detectable in the age compilation (Fig. 6C).

5. Discussion

5.1. Deciphering sediment sources.

The fact that the westernmost Meseta zircon record is similar to that of the deeper-water Tazekka succession is in line with the northeastward (±45°) orientation of shelf progradation across the Meseta during the Ordovician (Razin et al., 2002). However, latest Ediacaran–early Cambrian zircon grains throughout the Tifarouine Fm., absent from NF01 and 15DL12, suggest that the Tazekka watershed was not restricted to the Meseta. This is corroborated by the great thickness of the glacigenic succession (>350 m), largely exceeding that of other coeval peri-Gondwanan records that are generally no more than a few tens of metres in thickness (Chatalov, 2017 and references therein). The Tazekka was connected to the West African dispersal system and its relatively
isolated current location at the NE tip of Western Meseta (Michard et al., 2010) cannot
be fully representative of the Lower Paleozoic configuration.

The overall Tazekka record combining sedimentology, geochemistry and insights
from zircon populations is best understood in terms of the interplay of four sources that
can be inferred for the Ordovician in and around Morocco (Figs. 2 and 5). Preglacial
Source 1 has a less mature composition and includes the late Tonian zircon population
(TeB 1 and TeB 2). Sample TeB 3 shows the cut-off of Source 1 or, more probably, its
dilation by Source 2, which is marked by the ~1 Ga zircon population. Associated with
the onset of sandstone deposition in the uppermost preglacial sediments, Source 2 also
characterizes the glacigenic deposits of the westernmost Meseta (Fig. 6). Source 3 is
inferred from the Tf 1 and Tf 2 record, typified by a great proportion of Eburnean zircon
grains. In Mb 1, at the base of the Tifarouine Fm., the late Tonian (i.e. 840–760 Ma) and
~1 Ga populations are well defined, suggesting that sources 1 and 2 were still active,
either directly, or indirectly through the reworking of older strata. Source 4 (Tf 3) shows
the most mature composition (Mb. 3 in Figs 3 and 4), the greatest Pan-African zircon
grains, the younger Cambrian zircon population, a striking West African magmatic gap
— no more Mesoproterozoic zircon grains in discordant ages — and no Tonian zircon
grains. The overlying glacimarine interbed (Tf 4) mainly shares similar features. Due to
its association with the coarsest unit (Mb. 3), Source 4 is regarded as linked to the
maximum advance of the end-Ordovician glaciers in NW Africa. It may have been
activated slightly earlier in the succession, considering that the compositional signature
of the sandstone filling in the channels of the glaciomarine depositional system (Mb. 2)
is similar to that of Mb. 3 (see above; Figs. 3C & 4B). In the upper part of the Tifarouine
Fm., samples Tf 5 and Tf 6 show the re-appearance of Mesoproterozoic zircon grains and
the progressive re-increase of the Eburnean zircon population. Further, a recurrence of
Figure 7. Conceptual model for glacio-impact sediments dispersal trends as understood from the Tazekka record. Patterns and colours as in Fig. 1. Numbers in diamonds relate to provenances discussed in the text (see also Fig. 2), the proposed location of which is given in Fig. 1. Probability plots selected from Figs. 5 and 6 illustrate the zircon age records tied to individual sources that together mixed and fed the Tazekka depocenter. Source 4 originates from glacial erosion of the Cambrian-Ordovician sedimentary cover (Algerian basins, Tuareg Shield cover), while other sources, of more local origin, may have involved a significant contribution of lowstand cannibalizations (fluvial incisions, shelf-margin canyons) and restricted truly glaciogenic inputs.
the late Tonian population is recognized in Tf 6 (Fig. 5). It reflects the progressive
upwards dilution of Source 4 understood as a recovery stage after the glaciation
maximum. This is in line with slightly more mafic compositions noted in Mb. 5 samples,
a reminiscence of a signal observed in preglacial samples of the Tehar el Brehl Fm. (Fig.
3C). The last glacial advance, marked by renewed coarse-grained sedimentation in Mb.
5, remobilized a material dominated by Source 1. As sediment sources are suspected to
continuously mix through time, none of the probability plots (Figs 5 and 6) is so far fully
representative of one particular provenance. Four of them, which can be regarded as
typifying each of the four proposed provenances, are however used in Figure 7 to
approximate, or at least illustrate, the zircon age records tied to individual sources that
together fed the Tazekka depocenter.

5.2. Sediment sources and glaciation development

The scenario of sediment source development through the Tazekka stratigraphic
record, representing only a ca. 5 Myr time span, is understood in the framework of the
end-Ordovician glaciation. In addition, the regional-scale source diversity arisen from
the complex Lower Paleozoic evolution around the Meseta domain during peri-
Gondwana rifting events should be considered. Source 1 in preglacial sediments shows a
contribution of first-cycle clastic sediments, potentially in relation with a single Upper
Ordovician zircon recovered in TeB 2. We suspect a genetic link with a coeval thermal
event (Clauer et al., 1995) and the local denudation of Ediacaran basement rocks (Tahiri
et al., 2010) (Fig. 7), both possibly related to the magmatic (e.g., Caroff et al., 2009)
and/or extensional events (e.g., Martinez-Catalan et al., 1992) affecting the north-
Gondwana domain at the end of the Ordovician. The late Tonian population, which is
absent from sample 15DL12 from Cambrian strata of Coastal Meseta (Letsch et al., 2018;
Fig. 6), reflects the erosion of rocks exposed only after the Cambrian, which are possibly in relation with uplifts tied to the opening of Rheic ocean (Ouanaimi et al., 2016; Gärtner et al., 2017). The paucity of Cambrian zircon grains indicates that (i) Cambrian rift basins (Pouclet et al., 2008; Michard et al., 2010; Letsch et al., 2018) were buried at that time, and (ii) the Eburnean basement of the Meseta cannot be considered as a source for Paleoproterozoic zircon ages (e.g., El Houicha et al., 2018).

Source 2, activated prior to the onset of massive sandstone deposition in the Tazekka, and relatively well-defined in the westernmost Meseta (Fig. 6A), suggests that the ~1 Ga zircon population reflects the activation of a nearby source. Indeed, ~1 Ga zircon grains do not represent contribution of a more southern remote source, which would have had a wider age spectrum regarding Mesoproterozoic ages (De Waele et al., 2015; Gärtner et al., 2017). Combined with other ~1 Ga ages documented in the Moroccan context (a charnockite outcrop off Morocco, Michard et al., 2010; recycled zircon in Ediacarian granites, Tahiri et al., 2010; recycled zircon in Trias volcanics, Marzoli et al., 2017), Source 2 highlights the existence a currently undefined relict of Grenvillian-aged crust. The latter has sourced, most likely from the west, directly (erosion of Mesoproterozoic rocks) or indirectly (erosion of late Neoproterozoic magmatic rocks having recycled Mesoproterozoic zircon), the end-Ordovician Moroccan glacial dispersal system (Fig. 7), independently from other well-known sources related to the largely more eastern Saharan metacraton (e.g., Meinhold et al., 2013; Henderson et al., 2015). This ca. 1 Ga zircon population may derived from an exotic terrane issuing from an Avalonian crust and later accreted, during the Pan-African and/or Cadomian developments, to the West African Craton (Abbo et al., 2015; Marzoli et al., 2017; Gärtner et al., 2017). The ca. 1 Ga zircon population, predating the massive arrival of
glacigenic sediments, is not introduced in the Moroccan context by the end-Ordovician glaciation (see discussion in Pratt et al., 2015).

Source 3 is tied to the onset of mature glaciation-related deposits (Mb. 1), yet it was continuously providing sediments as shown by the great proportion of Eburnean zircon grains in the overall Tazekka record (Fig. 6C). In Mb. 1 of the glacigenic Tifarouine Fm., both the high Hf content that reflects the reworking of coastal placers, and the lack of evidence for any glacial depositional processes, suggest the local remobilisation of an older shelf succession; the later yielding a prevalent Eburnean population. The Source 3 signal is absent, or at least subordinate, in the westernmost Meseta (Fig. 6). It points to a southern derivation of material tied to the recycling of Cambrian–Ordovician strata of the Tindouf Basin, which themselves have been initially sourced predominantly from an Eburnean basement (Reguibat Shield; Fabre and Kazi-Tani, 2005; Fig. 1). Whether or not the Sources 2 and 3 have involved glacial erosions remains unclear. Additional work is needed to decipher if this sequence is related to watershed reorganisations, including meltwater captures and then glacigenic sediments, or to strictly localized lowstand cannibalizations (e.g., incised valley or shelf-margin canyon; Fig. 7).

Showing none of the local signals, glacial maximum strata (Mb. 3 of the Tifarouine Fm.) were principally fed from outside the Meseta and are tied to a fourth provenance. Source 4 provides evidence for a major remobilization of the Cambrian–Ordovician strata from the northern Saharan Basins or of the ancient cover of the Tuareg Shield (Fabre and Kazi-Tani, 2005), the age spectrum of which (Linnemann et al., 2011) is very similar to sample Tf 3. Source 4 is thus viewed as the signature of the NW-oriented ice flows recognized in the Anti-Atlas (Fig. 1), and originating from the surroundings of the current Tuareg Shield, where glacial downcuttings essentially eroded the Cambrian-Ordovician cover, and more rarely the Pan-African rocks of the Trans-Saharan Belt (Fig.
The flux of >2.3 Ga zircon grains detected upstreamward (Linnemann et al., 2011), which is unrecognized in the Tazekka sequence, is suspected to correspond to a local and transient input, rapidly redistributed by postglacial transgressive systems (cf. HOG6 and HOG7 probability plots of Linnemann et al., 2011). Coarse-grained sediments of Mb. 5, compositionally slightly less mature and showing a renewed contribution of Source 1, suggest that the last glacial advance reworked a great proportion of local material, most likely including earlier end-Ordovician glacigenics, with a fading contribution of Source 4. Mb. 5 is tentatively linked with glaciers that, in the Anti-Atlas, flowed from the W (Dietrich et al., in press).

6. Conclusions

The Tazekka glacigenic deposits essentially derived from the cannibalization of the “great Lower Paleozoic quartz-rich sandstone sheet”, itself initially having recycled the Pan-African molasse and flysch basins (Avigad et al., 2017), rather than recording a pulse of fresh, far-travelled, first-cycle clastic sediments issuing from basement rocks. This finding is in line with conclusions of Chatalov (2017) and Gärtner et al. (2017), also dealing with the north Gondwana area but is in contrast with common views about the limited maturity of syn-glaciation deposits (Nesbitt and Young, 1982; Yan et al., 2010; Bahlburg and Dobrzinski, 2011; Huang et al. 2014). More interestingly, end-Ordovician glacigenic deposits in South Africa show a significantly lower CIA than that of the underlying preglacial succession (Young et al., 2004), which is in contrast to the north-Gondwanan examples from this study, even regarding the diamictite samples (Fig. 3A). It might suggest two distinct modes of glacial erosion, involving eroding highlands in the
first case, essentially recycling the preglacial shelf sediments in the second case, with potential contributions from remote highlands absent or greatly diluted.

Glacial erosion of the Cambrian–Ordovician strata, especially during the glacial maximum, boosted the transfer of compositionally —i.e., mineralogically and geochemically— mature material toward the continental margin, temporarily masking regional signals expressed only before the glaciation or in its earlier stages (late Tonian and late Stenian–early Tonian zircon ages, respectively). The glacial maximum was responsible for a notable provenance change of a broader significance which may be traceable outside Morocco, rather than just be a result of local adjustments. The first-order, continental-scale Lower Paleozoic dispersal trends nevertheless pertained through the glaciation. They were buffered by the voluminous, north-African Lower Paleozoic sandstones that furnished the main contribution to the glacigenic material, which consequently show more mature compositions than those prevailing in Morocco prior to the end-Ordovician glaciation.

ACKNOWLEDGEMENTS

The authors are thankful to Dov Avigad, N. Eyles and an anonymous reviewer, whose comments greatly contributed to the improvement of the original manuscript. This work is a contribution to the SeqStrat-Ice ANR project 12-BS06-14. It was partly funded by the joined industry project GRASP (University of Geneva), the Fondation Lombard (Geneva), and the Czech Ministry of Education, Youth and Sports (project LK11202). We are grateful to Patricie Halodová for help with cathodoluminiscence imaging.
REFERENCES

Le Heron, D., 2007. Late Ordovician glacial record of the Anti-Atlas, Morocco. Sedimentary Geology 201, 93–110.

Gorini, A., Vidal, M., Videt, B. and Destombes, J., 2010. The Late Ordovician glacio-
eustatic record from a high-latitude storm-dominated shelf succession: The Bou
Ingard section (Anti-Atlas, Southern Morocco). Paleogeography Paleoecology
Paleoecology 296, 332–358.

ablation inductively coupled plasma mass spectrometric transient signal data
acquisition and analyte concentration calculation. Journal of Analytical Atomic
Spectrometry 11, 899–904.

Microsoft Excel. Berkley Geochronology Center Special Publication No.5.

Gonzalez Lodeiro, F., 1992. Lower Paleozoic extensional tectonics in the limit
between the West Asturian-Leonese and Central Iberian Zones of the Variscan Fold-
Belt in NW Spain. Geologische Rundschau 81/2, 545–560.

approaches to sedimentation, provenance, and tectonics. In: Johnsson, M. I. & Basu, A.
(Eds.), Processes Controlling the Composition of Clastic Sediments, pp. 21-40
Geological Society of America, Special Paper.

2003. The role of provenance and sedimentary processes in the geochemistry of
sedimentary rocks. In Lentz, D. R. (ed.): Geochemistry of Sediments and Sedimentary
Rocks: Evolutionary Considerations to Mineral Deposit-Fanning Environments, pp. 7–
38 Geological Association of Canada, GeoTexl 4.

Ravier, E., Buoncristiani, J. F., Menzies, J., Guiraud, M., Clerc, S., and Portier, E., 2015. Does porewater or meltwater control tunnel valley genesis? Case studies from the

