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Abstract 
We report the study of high-temperature melts (1600°C-2300°C) and related glasses in the SrO-

Al2O3-SiO2 phase diagram considering three series: (i) depolymerized ([SrO]/[Al2O3] = 3); (ii) 

fully polymerized ([SrO]/[Al2O3] = 1); and (iii) per-aluminous ([SrO]/[Al2O3] < 1). By considering 

results from high-temperature 27Al NMR and high temperature neutron diffraction, we 

demonstrate that the structure of the polymerized melts is controlled by a close-to-random 

distribution of Al and Si in the tetrahedral sites, while the depolymerized melts show smaller rings 

with a possible loss of Non-Bridging Oxygens on AlO4 units during cooling for high-silica 

compositions. Few five-fold coordinated VAl sites are present in all compositions except per-

aluminous ones where high amounts of high-coordinated aluminium are found in the glasses and 

melts with complex temperature dependence. In the high-temperature melts, Strontium has a 

coordination number of 8 or lower, i.e. lower than in the corresponding glasses. 

The dynamics of the high-temperature melt were studied from 27Al NMR relaxation and 

compared to macroscopic shear viscosity data. These methods provide correlation times in close 

agreement. At very high temperatures, the NMR correlation times can be related to oxygen self-

diffusion coefficient and we show a decrease of the latter with increasing Si/(Al+Si) ratio for 

polymerized melts with no compositional dependence for depolymerized ones. The dominant 

parameter controlling the temperature dependence of the aluminum environment of all melts is the 

distribution of Al-(OSi)p(OAl)(4-p) units. 
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Introduction 
Aluminosilicates glass compositions are of widespread use in material science where they have 

found numerous industrial applications as e.g. cover glass for high-end display devices, 

holographic optical elements, high strength material with moderate expansion for radomes and 

zero expansion glass-ceramics. They are also central to Earth Sciences as melt models of magmas. 

Our understanding of the atomic-scale structure of these materials in their glassy form has 

advanced substantially over the last decades owing to improvements in experimental methods 

(Greaves and Sen, 2007), and the interaction between alkaline, alkaline-earth or rare-earth cations 

and the aluminosilicate network is now grounded on solid rules (Stebbins et al., 2013). Those 

materials possess basic TO4 building blocks with T = Si or Al held together by covalent bonds 

when sharing corner(s) or electrostatic forces between Non-Bridging Oxygens (NBO) and counter 

cation(s) such as alkali or alkaline-earth elements. To understand and relate atomic arrangements 

to physical properties, some peculiar species have been outlined such as five-coordinated 

aluminum VAl (McMillan and Kirkpatrick, 1992; Neuville et al., 2006; Neuville et al., 2008b), 

non-stoichiometric NBO (Stebbins and Xu, 1997), NBO on aluminum species (Jaworski et al., 

2015) or the putative tricluster oxygen which connects three tetrahedral species (Lacy, 1963; 

Toplis et al., 1997) all of those building blocks possibly organizing themselves at a larger scale 

into percolation channels (Le Losq et al., 2017). This picture, developed to describe glasses is used 

to provide a “snapshot” view of melt structure at high temperature (Stebbins, 2016). Nevertheless 

industrial high-temperature melt phase processes, like petrologic and geodynamic processes, 

cannot be understood without addressing their dynamics.  

Aluminosilicate melt’s diffusivity, viscosity, electrical and thermal conductivity have receive 

much experimental and computational attention (Ni et al., 2015), yet only a few in-situ 

spectroscopic characterizations have been performed due to challengingly high melting 

temperatures (Neuville et al., 2014). For pure aluminosilicate melt compositions, available X-ray 

scattering (Krishnan et al., 2000) and Nuclear Magnetic Resonance (NMR) (Poe et al., 1992) 

results reveal a short-range structure of the high-temperature liquid similar to that of the 

corresponding glasses, containing a significant proportion of VAl species and a viscosity 

microscopic mechanism driven by the atomic-scale fluctuations around aluminum at high alumina 

contents.  
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In the case of alkali aluminosilicates, sodium-based compositions are the most extensively 

studied in-situ at high temperature. Inelastic neutron scattering (Kargl and Meyer, 2004) and 23Na 

NMR spectroscopy (George and Stebbins, 1996; Le Losq et al., 2014; Liu et al., 1987; Maekawa 

et al., 1997; Stebbins et al., 1985) showed rapid sodium mobility above 300°C, mostly responsible 

for the relaxation and the conductivity. When Al/Na > 1 sodium charge-compensating A1O4
- units 

become dominant and the barrier against individual hops increases leading to a decrease in sodium 

mobility. The aluminosilicate network has been found by Raman spectroscopy (Neuville and 

Mysen, 1996) to be formed by an Al/Si distribution on the corner-shared TO4 sites forming a fully 

polymerized three-dimensional network. In this case Si observed by 29Si NMR (Liu et al., 1987) 

as been seen to be rather immobile below the glass transition temperature. High-field 27Al NMR 

data show also a clear increase of the VAl concentration (denoted hereafter as [VAl]) with 

increasing temperature in the per-aluminous melts, whereas it is much more stable in the 

peralkaline ones (Le Losq et al., 2014). 

In the case of alkaline-earth aluminosilicates the investigations concentrated mostly on calcium-

based compositions (CAS). X-ray absorption spectroscopy (Neuville et al., 2008a) demonstrated 

an increase of [VAl] with temperature in the fully polymerized composition (anorthite), later 

confirmed by neutron diffraction (Jakse et al., 2012) which showed the presence of significant 

amounts of AlO5 units, oxygen triclusters and NBO, even in fully charge-compensated 

composition. 27Al NMR (Gruener et al., 2001; Kanehashi and Stebbins, 2007) has given some 

insight on the dynamics taking place in calcium aluminosilicates, showing that NMR, viscosity 

and conductivity relaxation times coincide in the high-temperature regime whereas a decoupling 

occurs near the glass transition temperature due to the Ca motion. A similar result was obtained 

on magnesium aluminosilicate compositions (George and Stebbins, 1998) with the diffusion of 

Mg shown to be strongly coupled to the network motion at temperatures above the glass transition 

temperature Tg. Higher concentrations of NBOs and of AlO5 species with increasing temperature 

were inferred by comparing quench-rate dependent and in-situ 27Al NMR studies (Stebbins et al., 

2008). Molecular Dynamic Simulations (Benoit et al., 2001) have also observed the excess of 

NBOs in the melt, along with the violation of the aluminum avoidance principle and the presence 

of “defects” such as five-fold coordinated silicon. Moreover, MD simulation using the 

isoconfigurational ensemble method suggested the presence in the melts of dynamical 
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heterogeneities related to concentration fluctuations between Si-rich and (Ca,Al)-rich regions 

(Vargheese et al., 2010). 

All of the puzzle’s pieces (NBO, high-coordinated Al, tri-bonded oxygens, cation mobility…)  

seem to be more or less accepted but the way they interact, or not, with each other is still an open 

question. Of particular importance is the dynamics of the aluminosilicate network in the melt at 

superliquidus and supercooled temperatures,and much remains to be done experimentally in this 

field. We hence used high-temperature 27Al NMR and neutron diffraction techniques to explore 

alkaline-earth aluminosilicate compositions with various degrees of polymerization. Following our 

previous investigation (Novikov et al., 2017) we chose strontium aluminosilicate compositions for 

which we already assessed structure and macroscopic properties of the glasses. Three different 

compositional regions were explored: along the “tectosilicate” or “charge balanced” join R = 

[SrO]/[Al2O3] = 1, in the per-alkaline field with compositions on the join R = 3, and in the per-

aluminous R < 1 domain. If compositions along the join R = 1 are expected to be fully polymerized 

with only a small amount of VAl (we found [VAl] < 4% in the glasses) and NBOs, compositions 

along the join R = 3 do contain a significant proportion of NBOs for charge balance reasons. 

Besides, an important population of AlO5 and even AlO6 is expected in the R < 1 field. Such 

marked changes are bound to impact the melt’ structure and dynamics and, to the best of our 

knowledge, have not yet been explored in such a systematic way in-situ. 

Experimental 
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Figure 1: ternary diagram showing all investigated compositions. Per-alkaline compositions are 

represented as red squares, compensated ones as blue triangles and per-aluminous ones as green 

circles. 

All samples were taken from the batches studied previously (Charpentier et al., 2018; Novikov 

et al., 2017). Droplets of glasses suitable for the NMR levitation experiments were obtained using 

an “external” levitation device. Sample compositions (figure 1) are named according to their SiO2 

and Al2O3 molar composition: SASiO2%.Al2O3%, the molar fraction of SrO being (100-SiO2%-

Al2O3%). 
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Figure 2. One-scan High-Temperature 27Al NMR spectra (blue lines) of SA10.45 melt at different temperatures during 

the melt’s cooling. The red lines are fits of the NMR signal with Lorentzian function.  

The very high-temperature NMR experiments were performed on a 9.4 T Bruker Avance I 

spectrometer operating at 104.3 MHz. 27Al chemical shift are referenced to 1M solution of 

Al(NO3)3. The setup is based on an aerodynamic levitation device located inside the NMR probe. 

The sample (a sphere of 2.6 mm ± 0.5 mm diameter) is in aerodynamically levitated on a gas 

stream (air) and heated and heated at top and bottom by two CO2 lasers  as previously described 

(Florian et al., 1995). The sample is heated and stabilized (a few seconds) above its melting point 

and the 27Al NMR signal is recorded every 10 ms during the free cooling of the sample when the 

laser is turned off. The temperature of the sample during the experiments was monitored with an 

IMPAC IN 140/5-H pyrometer (λ = 5.14 μm) allowing measurements from 500 to 2500 °C. 

However, the area monitored by the pyrometer was greater than the sample’ size. A temperature 

calibration was made against the observed recalescence of compounds with known crystallization 

temperature (Al2O3, SrSiO3, CaMgSi2O6, Li2SiO3). Spheres of different diameters were used for 

each compound and several crystallization events were registered and averaged for each sphere. 

Therefore, all presented temperatures are reliable within ± 50 °C. Typical spectra obtained this 

way are shown in Figure 2. 

The relaxation time of 27Al have been measured at high temperature for two compositions: 

SA33.17: T1 ~ 400 µs ± 50 µs, T2 ~ 350 µs ± 50 µs, 1/1/2 ~ 370 µs ± 20 µs and SA33.38: T1 ~ 

(ppm)
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880 µs ± 30 µs, T2 ~ 800 µs ± 30 µs, 1/1/2 ~ 740 µs ± 20 µs, with T1 the spin-lattice relaxation 

time, T2 spin-spin relaxation time, and 1/2 the full width at half maximum. These relaxation 

times are short enough to allow repetition of acquisition down to 10 ms (>5 times T1) and thus to 

obtain a time resolved signature of the melt during its cooling. This also minimizes the 

experimental time, reducing possible vaporization that has been checked to be negligible by 

measuring weight loss after the high-temperature experiment. The drawback of this procedure is 

that it does not allow signal averaging, limiting the sensitivity of the experiment and the 

increasingly broadened signal is progressively lost with increasing linewidth upon cooling. This is 

particularly true for the compositions containing the lowest amount of Al2O3. 

The evolution of the NMR parameters with temperature and compositions have been fitted to 

adequate functions (detailed below) using the “NonLinearModelFit” build-in function of 

Mathematica 10.1 (Wolfram Research, 2015) including statistical analysis. 

High-temperature neutron diffraction (ND) measurements have been carried out on 5 samples 

(Hennet et al., 2014) using the aerodynamic levitation and laser heating system installed on the 

D4C diffractometer (Fischer et al., 2002) at the Institut Laue–Langevin in Grenoble (France), as 

described in (Hennet et al., 2006). Diffraction measurements were taken for the molten samples at 

temperatures above the melting point for all studied compositions, for the empty levitation device 

inside the diffraction chamber, and for vanadium samples for making an absolute normalization of 

the scattered intensity. The neutron wavelength used during the experiment was 0.4985 Å, giving 

a scattering vector Q-range of about 0.3-23.6 Å-1. The data processing was performed using the 

program CORRECT (Howe et al., 1996), which corrects the data for attenuation, background, 

multiple scattering and inelasticity effects. The derived structure factors for all the measured 

samples are presented in figure 3.  
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Figure 3. Total structure factors S(Q) of the liquid SAS samples for R = 1 (a) and 3 (b). 

Results   

NMR 

The evolutions of the 27Al chemical shift (line’s position) as a function of temperature are given 

in figure 4, for the full temperature range of this study. For both R = 1 and R = 3, the 27Al chemical 

shift increases with decreasing silica molar ratio . In the per-aluminous region, substituting SrO by 

Al2O3 at fixed SiO2 content decreases significantly the 27Al chemical shift (figure 4c). As seen in 

figure 4 there is a linear evolution of the chemical shift with respect to temperature in this very 

superliquidus regime (T > 2xTg), in agreement with our previous observations on alkaline-earth 

aluminate (Capron et al., 2001) and rare-earth aluminosilicate (Florian et al., 2007) compositions. 

Significant scattering is observed when the signal broadens at low temperature or at low Al2O3 

content due to diminishing signal to noise ratio as described above. For each cooling experiment 

the evolution of the 27Al chemical shift versus temperature has been fitted with a linear function, 

where the slopes and intercepts are given in table 1. 
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(a) 

 
(b) 

 
(c) 

 

Figure 4. Evolution of the 27Al NMR line’s position during free cooling of all compositions studied: (a) on the charge-

compensation line (R = 1), (b) in the per-alkaline field (R = 3) and (c) in the per-aluminous region (R < 1). 
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Reports of the evolution of 27Al chemical shifts with temperature in the high-temperature melts 

are scarce. The 27Al peak maximum has been observed to decrease with increasing temperature 

(from 65.1 ppm at 1300 °C to 63.3 ppm ± 1 ppm at 1400 °C) for a per-calcic aluminosilicate melt 

(Kanehashi and Stebbins, 2007). Our previous study of sodium aluminosilicate glasses (Le Losq 

et al., 2014) have also shown a decrease of iso with increasing temperature (d/dT = -3.0 ppm/1000 

°C) up to Tm where it drops, followed by a slower decrease thereafter with d/dT ~ -1.6 ppm/1000 

°C, consistent with our current measurement found in the range -3.6 to 1.5 ppm/1000 °C. This 

slope range fits also within the one observed for lanthanum and yttrium melts using a levitation-

type experiment (Florian et al., 2007). 

 

Sample <iso>glass 

(ppm) 

Slope 

(ppm/1000°C) 

Intercept 

(ppm) 
2000°C (T°C) 

(ppm) 

Ea 

(kJ/mol)
0 

(ps)

SA75.12 59.7      

SA63.18 62.0 1.00 (0.89) 56.6 (1.82) 58.6 (2001) 132.5 (9.8) 0.468 (0.240) 

SA57.21 63.4 -1.11 (0.82) 62.7 (1.65) 61.0 (2000) 127.8 (5.9) 0.171 (0.336) 

SA50.25 65.0 -0.68 (0.67) 63.4 (1.32) 61.9 (2005) 136.1 (3.9) 0.201 (0.043) 

SA42.29 67.0 -1.32 (0.27) 66.9 (0.54) 64.1 (1997) 137.4 (3.3) 0.206 (0.036) 

SA33.33 70.3 -2.85 (0.27) 72.4 (0.52) 66.6 (1996) 137.1 (2.5) 0.153 (0.021) 

SA26.37 73.4 -2.43 (0.17) 73.8 (0.33) 69.0 (1998) 141.1 (1.6) 0.109 (0.010) 

SA20.40 75.2 -2.76 (0.13) 76.2 (0.23) 70.7 (1999) 140.1 (1.9) 0.065 (0.007) 

SA10.45 77.3 -3.64 (0.10) 80.5 (0.19) 73.2 (2004) 137.4 (1.7) 0.077 (0.008) 

SA75.06 59.3      

SA66.09 60.7 0.10 (1.28) 57.2 (2.57) 55.7 (2002) 86.5 (13.4) 1.990 (1.407) 

SA60.10 62.1 -0.89 (0.84) 61.1 (1.65) 59.3 (1994) 94.7 (9.2) 1.782 (0.897) 

SA50.12 65.0 0.92 (0.46) 60.4 (0.91) 62.4 (2000) 98.2 (5.7) 1.238 (0.382) 

SA42.14 68.3 -3.13 (0.65) 73.1 (1.23) 66.3 (1995) 90.4 (5.1) 1.700 (0.486) 

SA38.16 70.5 -0.41 (0.49) 69.0 (0.91) 68.0 (1994) 106.0 (4.1) 0.761 (0.177) 

SA33.17 73.5 -0.87 (0.68) 72.8 (1.27) 71.2 (2005) 110.7 (4.1) 0.774 (0.179) 

SA50.30 62.3 -0.42 (0.66) 61.6 (1.22) 60.5 (2005) 131.1 (3.9) 0.188 (0.042) 

SA50.35 59.1 -1.17 (0.47) 61.8 (0.88) 59.3 (2003) 141.5 (3.1) 0.147 (0.026) 

SA50.40 55.7 0.82 (0.45) 55.8 (0.84) 57.4 (2003) 137.2 (2.1) 0.161 (0.019) 

SA33.38 67.3 -2.09 (0.35) 69.4 (0.65) 65.1 (2002) 142.8 (1.7) 0.141 (0.014) 

SA33.43 64.7 -1.49 (0.27) 66.5 (0.51) 63.3 (2004) 139.7 (1.3) 0.155 (0.012) 

Table 1. Results of the linear fit of the melt’s 27Al positions vs temperature, observed position at 2000°C, activation 

energies and pre-exponential factor (standard errors in parenthesis) and average positions <iso>glass obtained from the 

studies of the glasses (Novikov et al., 2017). High silica containing compositions SA75.12 and SA75.06 have too high 

vaporization tendency to perform high temperature experiments. 

As discussed above the linewidth 1/2 of the 27Al spectra (ranging from 0.4 to more than 

2.5 kHz) is a measure of the spin-spin or spin-lattice relaxation time and thus of the dynamics of 

the molten sample at the atomic level and depends upon composition and temperature (figure S1). 

For R = 1 and R < 1 we observe an increasing linewidth with increasing SiO2 content, in contrast 

with the R = 3 join where all 1/2 vs T curves are superimposed with the noise. Always well-
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defined at high temperatures, the precision of this measurement diminishes at low temperature 

and/or low alumina content.  

In all cases, 1/2 can be related to the aluminum correlation times of movement through the 

following set of hypotheses. We first checked on a couple of samples not prawned to vaporization 

that the 27Al NMR spin-lattice relaxation time T1 is obtained from the line width (see experimental 

section) according to:  

  𝑇1 =
1

𝜋Δ𝜈1/2
  (1) 

which means that we have reached the fully averaged motional regime. The evolution of 1/2 

as a function of temperature is hence an evolution of NMR relaxation times, known to be caused 

by the time-fluctuation of the NMR interactions. Under the assumption that the dominant 

interaction in our case is the quadrupolar interaction, T1 can in turn be expressed as a function of 

the correlation time of the fluctuation of the quadrupolar interaction c and the time–averaged 

dynamic quadrupolar product 𝐶̃𝑄𝜂 = 𝐶̃𝑄√1 + 𝜂̃𝑄
2 3⁄  of the aluminum sites (Abragam, 1961; Petit 

and Korb, 1988)  : 

  
1

𝑇1
=

3

10
𝜋2 2𝐼+3

𝐼2(2𝐼−1)
𝐶̃𝑄𝜂

2 𝜏𝑐 (2) 

where I is the nuclear spin (5/2 for 27Al) and 𝐶̃𝑄 and 𝜂̃𝑄 are the time–averaged quadrupolar 

parameters. Equation (2) is valid as long as the auto-correlation function of the quadrupolar 

interaction’s fluctuation G is exponential: 𝐺(𝜏) ∝ 𝑒−𝜏 𝜏𝑐⁄  or in other words that the motion is 

Brownian. The time-average 𝐶̃𝑄 can be statistically approximated by the spatially-averaged  𝐶𝑄̅ 

(ergodic approximation believed to be valid above Tg) measured in the glass using the GIM model 

(Le Caer and Brand, 1998), and 𝜂̃𝑄 set to most probable value of 0.6 as used by this model, 

allowing us to compute c from the measured 1/2 through equation (3): 

  𝜏𝑐 =
250

24𝜋

Δ𝜈1/2

𝐶̃𝑄𝜂
2    (3) 
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(a) 

 

(b) 

 

(c) 

 

Figure 5. Evolution of the 27Al NMR correlation times during free cooling of all compositions studied: (a) on the 

charge-compensation line (R = 1), (b) in the per-alkaline field (R = 3) and (c) in the per-aluminous region (R < 1).  
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Figure 5 presents the evolution of log10(c) for aluminum correlation times versus inverse 

temperature. There is a clear linear behavior for all compositions in our temperature range, pointing 

to an Arrhenius behavior of the latter. As directly seen from the linewidth, composition has a strong 

impact on the aluminum correlation times along the join R = 1, does separate the two [SiO2] (33.3 

and 50.0 %mol) in the per-aluminous field but has no clear impact for compositions belonging to 

the join R = 3. Correlation times c are found to vary typically in the range 10 ps to 250 ps. They 

increase with increasing [SiO2] along the join R = 1 as well as in the per-aluminous field. They 

with increasing temperature in all cases.  

 

Figure 6. Evolution of the 27Al NMR correlation time at 2000 °C for compositions R = 1 (blue, triangles), R = 3 (red, 

rectangles) and R < 1 (green, circles). Error bars show the confidence intervals derived from the linear fit (figure 5) 

and lines are linear regressions. 

This compositional dependence of the correlation time is evidenced by a plot of c at 2000 °C 

as a function of the Al/(Al+Si) ratio (figure 6). For this plot we used experimental temperature 

closest to 2000 °C and derived their predicted c value using an exponential fit of the c = f(1/T) 

evolution along with the related confidence interval for this selected point. The presence of NBOs 

(along the R = 3 join) seems to render c,2000°C independent on both Si/(Al+Si) and NBO/T ratios, 

which are in the range 0.50-0.80 and 0.99-2.44 respectively. In the absence of NBOs, the 27Al 
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NMR correlation time increases linearly with increasing Si/(Al+Si). c,2000°C is slightly lower in 

peraluminous compositions than at R = 1 but this is almost within the error bars of our 

measurement. 

Neutron Diffraction 

Due to the susceptibility of SiO2 to volatilise during the long counting times required for high-

temperature neutron diffraction measurements, we studied only compositions containing up to 42 

%mol and 33 %mol of silica along the joins R = 1 and 3 respectively. 

The total structure factors S(Q) of all studied samples are presented in figure 2. As reported in 

table 2 for the compositions along both the composition lines R = 1 and 3, increasing the SiO2 

content leads to a shift in the position Q1 of the first peak (FSDP) in S(Q) towards lower Q values 

with a corresponding increase in peak height. This indicates that the degree of intermediate-range 

order is improved by incorporating silica into the structure. As observed with calcium 

aluminosilicate compositions, this shift, which is expected with the increase of the silica 

concentration, could be also a signature of the increase of the ring size (Hennet et al., 2016). As 

seen in table 2, for the same silica content the Q1 values are higher for R = 3 than for R = 1. Hence, 

this seems to show that the ring size becomes smaller when the SrO content is increased, consistent 

with a higher fraction of NBO.  

The total pair distribution function is calculated from the structure factor by the Fourier 

transform: 

𝑔(𝑟) − 1 =
1

2𝜋2𝑟𝜌0
∫ [𝑆(𝑄) − 1]

∞

0
𝑄 𝑠𝑖𝑛(𝑄𝑟)𝑑𝑄  (3) 

where ρ0 denotes the atomic number density, estimated as ~95% of the glass densities reported 

in our previous works (Charpentier et al., 2018).  As there is no experimental data available at this 

time, this estimation is based on our work on CAS glasses and liquids (Hennet et al., 2016), which 

is a similar system. All values are listed in table 2. 

 

Sample ρ0 (Å-3) T (°C) Q1 (Å-1) rAl-O (Å) CNAl-O 

SA20.40 0.0682 1750 2.03 1.756 4.06 

SA33.33 0.0691 1750 2.00 1.761 4.05 

SA42.29 0.0696 1850 1.95 1.766 4.06 

SA20.20 0.0633 2050 2.13 1.758 4.06 

SA33.17 0.0663 1750 2.08 1.763 4.05 

Table 2, Summary of the structural parameters obtained from neutron diffraction for all measured samples. 
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Figure 7 shows the total pair distribution functions g(r) for all the compositions studied along 

the joins R = 1 and R = 3. In all cases, the first peak corresponds to an overlapped contribution 

from both the Si-O and the Al-O nearest neighbor pairs. Its position shifts gradually toward the Si-

O bond distance with increasing SiO2 concentration. As shown in figure 8(a), for compositions 

containing 33% of silica taken as an example, the Si-O and Al-O local environment in the liquid 

and the corresponding glass are very similar. However, an increase in the fraction of AlO5 units is 

found in the melts, as indicated by a more pronounced shoulder on the high r part of the first peak 

in g(r). 

 

Figure 7. Total pair distribution functions g(r) for the liquid SAS along the composition lines R = 1 (a) and R = 3 (b). 

The positions of the various correlations are shown as a guide. O-O correlations are calculated assuming SiO4, AlO4, 

SrO6 and SrO8 polyhedra. 

Coordination numbers and bond distances were determined by making Gaussian fit to the 

correlation function 𝑇(𝑟) = 4𝜋𝑟𝜌0𝑔(𝑟) as described by (Hennet et al., 2016) in the case of liquid 

calcium aluminosilicates. The Gaussian fit was performed by fixing the coordination number of 

the Si-O bond to 4 leading to a bond length of 1.65 Å similar to what has been found with CAS 

compositions (Hennet et al., 2016). The fits are shown in figure 8(b) for all compositions studied 

by neutron diffraction and the results for the Al-O correlations are summarized in table 2. For all 
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samples, the average Al coordination number is found to be close to 4.  Despite the relatively large 

error value of ± 0.5, a fraction of 5-6% AlO5 units is estimated in the liquid state for all 

compositions, in agreement with AlO5 fractions found in the related glasses (Novikov et al., 2017). 

 

Figure 8. (a) Total pair distribution functions g(r) in the liquid and glassy states for the two samples SA33.33 and 

SA33.17.  (b) Total correlation function T(r) for all studied compositions along the joins R=1 and 3. The partial and 

total are shown in comparison to the experimental data. 

The short-range order around Sr is more difficult to study as Sr-O correlations are completely 

overlapped by the contributions of the O-O pairs arising from Si-O and Al-O tetrahedra and highly 

coordinated Sr-O polyhedra (CN ≥ 7). Considering the g(r) functions in figure 8a, it seems that the 

Sr environment is more complex in the liquid than in the glass. On the one hand, a first Sr-O 

contribution is present at distances shorter than 2.53 Å (typical for SrO6), meaning that Sr-O with 

coordination less than 6 should be present. On the other hand, all pair distribution functions also 

exhibit also a peak at ~3.0 Å corresponding to O-O distances in SrO8 polyhedra. For the join R = 

1, some correlations observed between 3.0 Å and 3.6 Å could be attributed to O-O bonds for 7-fold 

coordinated Sr. Then compared to the glass compositions in which the Sr-O coordination number 

has been estimated between 8.5 and 9.0  (Charpentier et al., 2018; Novikov et al., 2017), in the 

liquid state the coordination number is expected to be around 8 for the join R = 3 and somewhat 
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less for R = 1. This lowering is currently difficult to quantify since we cannot observe all pair 

correlations. 

Discussion 
Figure 9 presents an overview of the 27Al chemical shifts observed in molten droplets at 2000 

°C 2000°C and centers of gravity <iso>glass of the 27Al MAS NMR spectra obtained on related 

glasses versus Si/(Al+Si). Both R = 1 and R = 3 joins show a linear evolution (figure S2 and S3 

report versus [SiO2] and [Al2O3] respectively). Here “center of gravity of the MAS NMR spectra” 

means the average between iso(
IVAl) and iso(

VAl) weighted by the IVAl and VAl populations 

respectively, as derived from the simulations of the MAS spectra of the glasses (Charpentier et al., 

2018; Novikov et al., 2017). 

 

Figure 9. 27Al chemical shifts at 2000°C 2000°C (red) and “barycenter” of the glass spectra <iso>glass see text for 

details) (blue) for R = 1 (rectangles), R = 3 (triangles) and R < 1 (circles) compositions. Continuous lines are linear 

fit, dashed ones are guides for the eyes for [SiO2] = 33% (top) and [SiO2] = 50% (bottom). 

For the R = 1 compositions we observe a linear evolution of the 27Al chemical shift at 2000 °C 

(2000°C) versus Si/(Si+Al), with a slope of -27.4 ± 0.8 ppm/mol%. This is comparable to the value 

of -30.6 ± 1.2 ppm/ mol% observed for the evolution of <iso>glass and -28.0 ppm/ mol%  

(Charpentier et al., 2018) for iso(
IVAl)glass. The evolution in the melt can therefore be ascribed, like 
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in the glass (Charpentier et al., 2018), to the progressive substitution of Al by Si in the second 

aluminum coordination sphere upon increasing Si/(Si+Al), favoring the Al−O−Si linkages. It leads 

to an average of -7.1 ppm/substitution for the melt and -7.8 ppm for the glass. Our Neutron 

diffraction results confirm that the amount of VAl is only a few percent, like in the glass, and will 

hence not significantly influence the melt’s aluminum chemical shifts for the R = 1 and 3 joins. 

For the join R = 3 compositions, the <iso>glass is a combination of two linear function of 

Si/(Si+Al) with:  a slope of -49.3 ± 1.2 ppm/mol% below Si/(Al+Si) ~ 0.7 and -25.2 ± 2.5 ppm/ 

mol% above. If the slope at high silica content matches the slope found for R = 1 and hence points 

to a progressive substitution of Si by Al, the more negative slope at low silica content shows the 

existence of an additional mechanism. Since depolymerization of the aluminum units has been 

shown to produce an increase of iso(AlIV) in calcium aluminosilicate glasses (Neuville et al., 2006) 

and that gehlenite Ca2Al2SiO7 shows a iso difference of +11 ppm between an AlO4-(Al2Si2) and 

an AlO4-(Al2Si) configuration (Florian et al., 2012), the two compositional behavior of <iso>glass 

can be understood as the formation of NBOs on the AlO4 units below Si/(Al+Si) ~ 0.7. This finding 

in the glassy state is in excellent agreement with 17O NMR measurements on CAS glasses 

(Allwardt et al., 2003) predicting a disappearance of Al-NBO for compositions richer in SiO2 than 

CAS33, i.e. above Si/(Al+Si) = 0.67. A striking difference with the evolution in the melt is that 

the entire compositional range explored is characterized by a single slope of -49.6 ± 2.2 ppm/ 

mol% consistent with the presence of NBOs on AlO4 over the full compositional range, a behavior 

also seen in our Molecular Dynamics simulations (Charpentier et al., 2018).  Keeping in mind that 

at high silica content a low 27Al NMR signal-to-noise ratio (low alumina content) produces an 

increased uncertainty on the in-situ measurements, this suggests that NBOs on AlO4 present in the 

high temperature per-alkaline melts can be fully lost in the glass for high-silica compositions while 

they are kept at lower silica content. Our finding suggests that, near Tg, high concentration of silica 

favors the polymerization of the melt around Al[O(Al,Si)]4 species for which iso is solely 

controlled by the Si/(Al+Si) ratio, similarly to the join R = 1. 

For both joins the chemical shifts obtained in the melts are lower than the ones derived from 

the glasses, a consequence of both thermal (decrease of Al-O distances) and structural (increase in 

average Al coordination) effects. Thermal effects are difficult to evaluate as they are a combination 

of thermal expansion and quantum quasiharmonic vibrations (Nemausat et al., 2015) difficult to 

disentangle and producing counter-intuitive, coordination-dependent, evolutions with temperature. 
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But since our Neutron diffraction measurements points to [VAl] in the melts close to the one in the 

glasses, the dominant mechanisms at the origin of this downward shift from glass to melt is thermal 

expansion. 

The R < 1 compositions explore two constant [SiO2] ranges (horizontal lines in figure 1) with 

varying Sr/Al ratio and their iso do not show linear correlations with composition. At fixed [SiO2] 

we observe a marked decrease of both <iso>glass and 2000°C upon crossing the R = 1 join that 

correlates with the presence of significant amounts of higher coordination states of aluminum (VAl 

and even VIAl) in the corresponding glasses (evidenced by 27Al MAS NMR experiments, see figure 

S4). The chemical shift difference between <iso>glass and 2000°C is now down to an average of -

0.6 ppm which suggests that the structure of those compositions are less prone to temperature 

effects than the one on the joins R = 3 and R = 1. Yet there seems to be a cross-over between glass 

and melt evolutions (see crossing dashed lines in figure 9) pointing to the presence of various 

competing mechanisms affecting 2000°C at low silica content: thermal expansion, aluminum 

average coordination, NBOs on AlO4 units as seen before, but also the possible presence of tri-

coordinated oxygen involving AlO5 units. 
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Figure 10. Evolution of the slope (bottom) and intercept (top) of the iso = f(T) of the linear regressions for 

compositions R = 1 (triangles), R = 3 (rectangles) and R < 1 (circles). Error bars show 95% confidence intervals (within 

symbol when not shown) and lines are linear regressions. 

The time-resolved acquisition of 27Al during free cooling also provides measurements of 𝛿 =

𝑓(𝑇) (figure 4) that traces the evolution with temperature of the average structure of the melt 

viewed by aluminum. Slopes ∂/∂T and intercepts (0) of the  𝛿 = 𝑓(𝑇) extracted from the linear 

regression on the data points (figure 4) are given in table 1 and displayed in figure 10 as a function 

of the Si/(Al+Si) ratio. 

This ∂/∂T slope represents the temperature dependence of the average local aluminum 

structure. When the fragility 𝑚 = (
𝜕𝑙𝑜𝑔10𝜂

𝜕(𝑇𝑔 𝑇⁄ )
)

𝑇=𝑇𝑔

 where  is the viscosity (Angell, 1988) measures 

the thermal dependence of the structure at Tg, our ∂/∂T results provide similar insights at 

temperature larger than 2 Tg. A link between ∂/∂T and glass forming ability has been formerly 

observed in calcium aluminates (Massiot et al., 2008; Neuville et al., 2010). In this case all 

compositions forming glasses showed values of ∂/∂T below -2 ppm/1000°C whereas non-glass 

forming ones where found above this threshold.  
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Here we observe an increase of ∂/∂T with increasing Si/(Al+Si) with a close-to-linear and 

common behavior for all compositions. This shows that Si/(Al+Si), i.e. the distribution of Al-

(OSi)p(OAl)(4-p) units, is the dominant parameter that controls the temperature dependence of the 

aluminum environment. This can be related to the temperature dependence of the melt viscosity 

seen in fully polymerized systems by Molecular Dynamic simulations (Scamehorn and Angell, 

1991) and for which the fragility increases with increasing Al/Si ratio. Interestingly, neither the 

presence of high-coordinated aluminum species (R < 1) nor that of Si-NBOs or Al-NBOs (R = 3) 

seems to have a dramatic effect on ∂/∂T. It shows that the ability of aluminum to adjust its local 

structure to temperature changes is controlled by the network connectivity. The behavior of the 

intercept, i.e. the extrapolation of <iso> evolution at 0 °C, mimics the evolution seen for 2000°C 

(figure 9), showing a structural continuity between the high-temperature melt and the glassy state. 

The Arrhenian behavior of the 27Al NMR correlation times as a function of temperature allows 

deriving an activation energy Ea and pre-exponential factor 0 which are shown as a function of 

composition in figure 11. As already inferred from the evolutions of c itself (figure 5) the NBO-

containing compositions (R = 3) depart from the others. When R ≤ 1 compositions show a constant 

activation energy around 140 kJ/mol and a frequency factor in the range 0.01 ps to 0.04 ps, R = 3 

ones display Ea ~ 100 kJ/mol and 0 ~ 0.03 ps to 0.23 ps. Those values of activation energies are 

fully consistent with the ~ 135 kJ/mol obtained on a glass of albite composition (NaAlSi3O8) above 

Tg by 29Si NMR (Farnan and Stebbins, 1990) but much lower than the values of  215 kJ/mol and 

258 kJ/mol obtained by high-temperature shear viscosity measurements in SA26.37 and SA50.25 

melts respectively (Urbain et al., 1982). We can also note that our measurement fall below the 257 

kJ/mol – 985 kJ/mol range of activation energies for shear viscosity found in calcium-

aluminosilicate melts (Toplis and Dingwell, 2004). 
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Figure 11. Evolution of the activation energy Ea (bottom) and pre-exponential (‘frequency’) factor 0 of the 27Al NMR 

relaxation for compositions R = 1 (triangles), R = 3 (rectangles) and R < 1 (circles). Error bars show 95% confidence 

intervals (within symbol when not shown). 

The correlation time for shear viscosity can be obtained using Maxwell equation 𝜏𝑠 = 𝜂 𝐺∞⁄ , 

where  is the shear viscosity and 𝐺∞ = 1010±0.5 Pa the infinite frequency shear modulus 

(Dingwell and Webb, 1990). We previously compared those with the NMR-derived c  and have 

found in the case of aluminosilicate compositions agreements for calcium-aluminosilicates 

(Gruener et al., 2001) but strong mismatch for yttrium-aluminosilicates (Florian et al., 2007). We 

performed low-temperature viscosity measurements on all compositions (Novikov et al., 2017) but 

the only high-temperature viscosity measurements available to us for strontium-aluminosilicates 

are those of Urbain (Urbain et al., 1982) obtained on only two compositions. They are compared 

to the NMR correlation times in figure 12. 
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Figure 12. Correlation times derived from NMR (triangles and diamonds) and shear viscosity (squares and circles) as 

a function of temperature and for the compositions SA50.25 (blue) and SA26.37 (red). Only one in two NMR data 

points are drawn for clarity purposes. Lines are fits using the VTF equation with HT NMR and LT viscosity data (see 

text for details). 

The correlation times derived by the two techniques are in very good agreement considering 

the error on 𝐺∞ which leads to an uncertainty of ± 0.5 on 𝑙𝑜𝑔10(𝜏𝑠). It is highly improbable that 

AlOn units exist in melts for a long enough period of time to consider their translational and 

rotational diffusion (Liu et al., 1988; Stebbins, 2016). As a consequence, the 27Al NMR relaxation 

from which we derived c and Ea happens through vibrations of the Al-O bonds and probes 

dynamics close to the Larmor frequency. Since the melt’ shear viscosity is expected to be 

controlled by the oxygen diffusion (Dingwell and Webb, 1990), the correspondence between c 

and s shows a coupling between the Al-O vibrations at the origin of the NMR relaxation and the 

oxygen self-diffusion coefficient D linked to the shear viscosity through the Eyring equation 𝐷 =

𝑘𝐵𝑇 𝜂𝜆⁄ . 

The origin of the coupling can be found in random walk theory of activated diffusion where the 

diffusion coefficient is related to the average square jump length 〈𝜆2〉, the average jump frequency 

 and a geometric factor  (1/6 for unrestricted motion in three dimensions) through the equation  
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𝐷 = 𝛾〈𝜆2〉Γ.    (5) 

In the case of random motion of a diffusing atom over a potential barrier,  has been expressed 

as: 

 Γ = 𝜈𝑒−Δ𝐺 𝑘𝐵𝑇⁄     (6) 

where  is the frequency of vibration of the atom around its equilibrium position and G is the 

“free energy of activation” (Perkins and Begeal, 1971; Wert, 1950; Zener, 1951). The (Debye) 

frequency  is on the order of 1012 - 1013 Hz and is at the origin of the time-modulation of the 

NMR interaction responsible for NMR relaxation. In the derivation of Zener (Zener, 1951), G is 

the work required to produce a lattice’s distortion allowing the jump and then H is the measured 

activation energy of diffusion (retrieved by plotting ln(D) as a function of 1/T) which in transition 

state theory is often equated with the sum of the energy required to launch a species for a diffusive 

jump and the energy needed to form a landing site for the species.  

At high enough temperature 𝑒−Δ𝐺 𝑘𝐵𝑇⁄  goes to unity and the oxygen vibrations  becomes the 

jump frequency  (equation (6)) leading to a coupling of oxygen diffusivity and NMR relaxation 

through equation (5). Practically this is seen at 𝑇 𝑇𝑔⁄ ≥ 2 but only for the most fragile liquids. 

Using  =  = 1/c,2000°C,  = 2.8 Å (twice the oxygen ionic radius) and  = 1/6 equation (5) 

leads to D in the range 130 to 750 10-12 m2/s. This range is difficult to compare with tracer diffusion 

measurements in aluminosilicate melts as a wide scattering in the measurements is found in the 

literature, spanning several orders of magnitude. For anorthite CaAl2Si2O8 melt (CA40.20 in our 

notation) at 2000°C and 1 atm, “reliable” values of 15 10-12 m2/s, 264 10-12 m2/s and 823 10-12 m2/s 

have been reported (Dunn, 1982). With this in mind, the compositional evolution of the aluminum 

NMR c at 2000 °C displayed in figure 6 can be viewed as a decrease of oxygen diffusivity D with 

increasing Si/(Al+Si) ratio for polymerized melts from 748 10-12 m2/s (SA20.40) down to 131 10-

12 m2/s (SA57.21), whereas depolymerized melts (R = 3) have oxygen diffusivity of approximately 

310 ± 100 10-12 m2/s and no clear compositional dependence. This can also be viewed as evolution 

of the viscosity of those melts since D is inversely proportional to  according to the Eyring 

equation. Note that for Si/(Al+Si) > 0.5 the higher values of c at 2000°C obtained on the 

polymerized compositions (SA57.21 and SA63.18) with respect to the depolymerized ones (figure 

6) translate into lower oxygen self-diffusion coefficient and higher viscosity, as expected. 
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Conclusions 
We have been investigating the SrO-Al2O3-SiO2 ternary system in the high temperature melt 

using in-situ NMR and Neutron diffraction techniques and exploring depolymerized 

([SrO]/[Al2O3] = 3), fully polymerized ([SrO]/[Al2O3] = 1) and per-aluminous ([SrO]/[Al2O3] < 1) 

compositions with temperature typically in the range 1600 °C – 2300 °C.  

In terms of structure, we found that the high-temperature melt structure follows that of related 

glasses to a reasonable extent. Low amounts of VAl species are found in the polymerized melts, in 

agreement with our finding in the glasses. The structure of the polymerized melts is controlled by 

the close-to-random distribution of Al and Si in the tetrahedral sites of the aluminosilicate network. 

In contrast to this, the depolymerized glasses exhibit NBOs on the AlO4 units only below 

Si/(Al+Si) ~ 0.7 whereas the evolution of the melts is consistent with the presence of NBOs on 

AlO4 over the full compositional range. Within our measurements uncertainties, this suggests that 

NBOs on AlO4 present in the high temperature per-alkaline melts can be fully lost during cooling 

for high-silica compositions while they are kept at lower silica content. Addition of SrO at a given 

silica content decreases medium range order (e.g. smaller ring sizes than the one found for 

polymerized melts), in line with the presence of NBOs on aluminum units breaking the 

aluminosilicate network. 

High amounts of high-coordinated aluminium are seen in per-aluminous compositions in the 

glasses and the melts. Competing mechanisms are at play during cooling, which are not observed 

along the joins R = 3 and R = 1, especially at low silica content. This could point towards the 

presence of tri-coordinated oxygen which would not be kept in significant amounts in the glasses. 

On the modifier side, the strontium environment is seen to be more complex in the melt than in 

the glass, with a broader distribution of coordination number than that in the glass. We estimated 

it to be around 8 for the join R = 3 and somewhat less for R = 1, compared to values ranging 

between 8.5 and 9.0 obtained for the glassas shown byMD simulations (Charpentier et al., 2018; 

Novikov et al., 2017). 

The evolution of the 27Al NMR line position as a function of temperature and compositions 

shows that the distribution of Al-(OSi)p(OAl)(4-p) units is the dominant parameter controlling the 

temperature dependence of the aluminum environment, a behavior related to increased fragility 

with increasing Al/Si ratio as seen by Molecular Dynamic simulations (Scamehorn and Angell, 

1991). We also probed the dynamics of those melts through the 27Al NMR relaxation. This gives 
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an “aluminum-centered” point of view that can be extended to the entire aluminosilicate network, 

in the limit that it is observed at temperature significantly higher than Tg. The correlation times 

derived by NMR and those obtained by fitting the shear viscosity at low and high temperature are 

in reasonably good agreement, showing that both mechanisms share at least some common 

features. The discrepancy lies in the activation energies, which are lower for NMR relaxation than 

for shear viscosity, showing that the temperature dependence of both processes at 𝑇 𝑇𝑔⁄ ≥ 2 is not 

strictly the same. Yet their correlation time being comparable one can convert the NMR ones in 

term of oxygen self-diffusion coefficient and show a decrease of oxygen diffusivity D with 

increasing Si/(Al+Si) ratio for polymerized melts along with an absence of compositional 

dependence for depolymerized ones. 

Overall this study shows that if the structure of the strontium alumino-silicate glasses studied 

here are a good approximation of the structure of the high-temperature melts, some compositional-

dependent discrepancies appear as well. Although technically challenging, a combined in-situ/ex-

situ study proves to be a very powerful approach to the description of the actual melt structure. 

This is even more true if one combines techniques providing information about the alumino-

silicate network and the cation environement, as 27Al NMR and diffraction techniques  do. For the 

high temperatures explored here 27Al NMR turns out also to give insights into the oxygen self-

diffusion and its variation with composition, a parameter which is otherwise very difficult to 

obtain. Future plans are to develop an experimental approach which would allow us to perform 

NMR close to the glass transition, a very challenging task considering the lack of sensitivity of 

this technique. 
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