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Computational modeling of consistent
observation of asynchronous distributed
computation on N–manifold
Susmit Bagchi1*

Abstract: The present-day distributed computing systems are asynchronous in
nature, and they cover heterogeneous nodes as well as networks having geographic
distribution scale. These distributed systems are prone to unpredictable network
partitioning, communication delay, and node failures. The realizations of consistent
observation in such systems are challenging. The traditional models of distributed
computation are not fully adequate to incorporate characteristics arising in the new
paradigm. Alternatively, the homology and topology based distributed computing
models are formulated to gain a new perspective. This paper proposes a computa-
tional model of consistent observation of asynchronous distributed computation on
N-manifold. The proposed model offers control of granularity of fineness of obser-
vation of computation to varying degree. The discrete geometric simulations of
computational structures on 3-manifold offer different analytical insights. The
extracted lattice chains of distributed computation on manifold illustrate execution
dynamics of the system under consideration.

Subjects: Advanced Mathematics; Computation; Computer Science; General
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1. Introduction
The modern applications of distributed computing systems are pervasive encompassing traditional
cluster or grid systems, cloud computing systems, and mobile distributed systems (Akinwunmi,
Olajubu, & Aderounmu, 2016; Babaoglu & Marzullo, 1993; Ranga, Dave, & Verma, 2016). The large-
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scale distributed computing systems are difficult to deploy maintaining stability and consistency
without employing any monitor. The observation of distributed computation is an important factor
in ensuring stability of computation (Fidge, 1996; Parlangeli & Notarstefano, 2012). Furthermore,
correctness of distributed computation can be determined by incorporating consistency detection
mechanism in a sequence of observations of computation (Babaoglu & Marzullo, 1993; Goldberg,
Gopal, Lowry, & Strom, 1991). In large-scale mobile distributed systems involving wireless sensor
networks, the network partitioning is unpredictable, and it results in random failures of distributed
computation on aggregated data. Thus, the applications of monitor to enhance observability and
consistency of distributed computation are required in order to generate stable output. The
traditional models of distributed computations are constructed by using elements of graph theory
and computational logic based formalisms (Garg, Agarwal, & Ogale, 2014; Schwarz & Mattern,
1994). However, a relatively new approach to model distributed computing systems is to employ
concepts of algebraic topology and homology (Bauer, Kerber, & Reininghaus, 2014; Conde &
Rajsbaum, 2012; Goubault, 2003). The topological models of distributed computing offer analytical
insight to complex systems in new perspectives. The topological and homological models help in
analyzing distributed systems having large event space, which results in formation of very large
space of combinatorial executions. The manifold is a multidimensional space, which can be
represented in geometric forms having certain characteristics. The construction of models of
consistent observability of asynchronous distributed systems on a manifold would offer analytical
insight to the sequences of executions represented as snapshots. Moreover, granularity of fineness
of observation can be controlled in such asynchronous systems appropriately.

1.1. Motivation
The consistent observation of sequence of computation in a distributed system is critical to
determine correctness of execution (Babaoglu & Marzullo, 1993). The determination of ordering
of events in a distributed system is difficult due to enlarged combinatorial execution space of
computation. As a result, the observability of distributed systems becomes difficult (Fidge, 1996).
The recovery of distributed computation is often required if a fault is detected in the execution
sequence. The mechanism of restoring consistent states in a large-scale distributed system
involves persistent logging of multiple checkpoints for recovery (Goldberg et al., 1991). However,
this mechanism enhances space complexity to a large extent if the combinatorial execution state
space is large. Furthermore, determining correct combinatorial execution checkpoint is computa-
tionally expensive in a distributed system having a large state space. The realization of monitor of
distributed computation is not trivial due to the existence of causal relations between any two pair
of events (Schwarz & Mattern, 1994).

The formal modeling of computing systems enables to gain an analytical insight to the complex
systems, which facilitates robust designs. For example, a formal specification of dependability of
computation in large-scale pervasive systems is constructed (Ayara & Najjar, 2008). The stable
predicate detection in distributed computation having infinite run is formulated by restricting the
run within finite graph model (Garg et al., 2014). However, constraining the infinite computation on
finite structure may invite oscillatory execution pattern incorporating indeterminate convergence.
A comparatively new approach to model distributed computing systems involves elements of
algebraic topology, lattice theory, and homological algebra offering new insights (Bagchi, 2018;
Bauer et al., 2014; Conde & Rajsbaum, 2012; Herlihy & Rajsbaum, 1999). This paper proposes a
formal model of consistent observation of a distributed computation on N-manifold. The proposed
model does not impose any condition of finiteness of computation. The variable filter function can
control the granularity of observation of states in a sequence of computation while maintaining
consistency conditions. The main contributions of this paper are as follows.

● Construction of a formal model of observation of asynchronous distributed computing on
N-manifold structure

● Integrating filtering method to generate consistent observation of distributed computation
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● Incorporation of variability of filter to prepare consistent observation of computation with
varying granularity

● Evaluation of resulting manifold structure of distributed computation in 3-D and lattice chain
embedding on it

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 describes
preliminary concepts. Sections 4 and 5 present construction of distributed computing on
N-manifold structure and formulation of consistent observation model, respectively. Section 6
presents analytical properties. Section 7 and 8 describe computational evaluation results and
application aspects, respectively. Finally, section 9 concludes the paper.

2. Related work
In general, the formulation of analytical model of distributed computing is performed by using modular
graph structures and relational algebraic operators (Rhode, Presicce, Simeoni, & Taentzer, 1999;
Sitohang, 2002). The observations of a distributed computation in multiple phases are required in order
to determine the controllability of the system. In theory of distributed computing, consistent observation
of sequences of computation is a critical factor (Babaoglu &Marzullo, 1993). In general, observability of a
distributed system is hard to realize due to combinatorial arrival order of events (Fidge, 1996). A
distributed computation can bemodeled as a cyclic graph, where nodes represent distributed processes
and edges represent networks between processes. The graph structures can be dynamic, and hybrid
distributed systems aremodeled by using dynamic graphs structures (Kuhn, Lynch, & Oshman, 2010). It
is proposed thatnumber theoretic approaches canbesuccessfully applied todetermineobservability and
reachability of paths as well as cycles in an arbitrary graph (Parlangeli & Notarstefano, 2012).
Furthermore, the unsolvable systems can be recognized by Eigen analysis. The main challenge of this
model is that, detection of a prime number is necessary to realize observability of cycles in the graph,
which is computationally expensive. This is because theprimenumber detection is computationally hard.

The debugging of distributed computation requires rollback recovery in the presence of faults.
Researchers have proposed a rollback and reply mechanism to realize restoration of consistent global
states in a distributed system (Goldberg et al., 1991). The design requires records of persistent logs
and stable checkpoints, which enhances space complexity to a large extent if the combinatorial
execution state space is large. Moreover, the determination of causal relationship between events in
the event space of a distributed computing is necessary in order to implement computation monitor
(Schwarz & Mattern, 1994). The topological models of distributed computing offer an analytical insight
to the complex systems. In recent times, distributed computing systems are modeled by employing
combinatorial topological structures (Armstrong, 1983; Edelsbrunner & Harer, 2010; Herlihy &
Rajsbaum, 1999). The sharedmemory based distributed computingmodel is formulated by employing
algebraic topology (Conde & Rajsbaum, 2012). The conceptual framework of persistent homology is
utilized in modeling distributed computation (Bauer et al., 2014; Zomorodian & Carlsson, 2005). The
homotopy theory and topological spaces are employed inmodeling themutual exclusion as well as its
complexity in concurrent computing systems (Carson & Reynolds, 1987; Fajstrup, Rauben, & Goubault,
2006; Goubault, 2003; Gunawardena, 1994). However, the homotopy theory needs adaptation while
formulating distributed systems due to directional property of homotopy theory.

3. Preliminary concepts
Let X be a point set and τx � ΩðXÞ where ΩðXÞ is a power set of X. If the 1-D space represented by X
is Euclidean, then the space can be metrized to generate a metric space ðX;dXÞ by equipping it with

a real-valued function, dX : X2 ! ½0;þ1Þ. The resulting space ðX;dXÞ is a 1-D finite metric space
having size n ¼ Xj j if following axioms are maintained:

n 2 ð1;þ1Þ;
"a;b; c 2 X;dXða;bÞ ¼ dXðb;aÞ;
½a ¼ b� , ½dXða; bÞ ¼ 0�;
dXða; cÞ � dXða;bÞ þ dXðb; cÞ

(1)

Bagchi, Cogent Engineering (2018), 5: 1528029
https://doi.org/10.1080/23311916.2018.1528029

Page 3 of 16



If τx represents a topology on X, then the resulting topological space induced in the metric space is
ðX;dX; τxÞ, where "Ai 2 τx; ðAi;dXÞ constructs metric subspace. The metric space having topological
structure ðX;dX; τxÞ maintains following properties:

m 2 Zþ;m 2 ð1;þ1Þ;
ϕ; Xf g � τx;

½ Ai;Akf g � τx� ) ½ Ai [Akf g � τx�;
"Ai 2 τx; \

m

i¼1
Ai 2 τx

(2)

The properties of generalized topological space state that the space is closed under arbitrary union
as well as intersection operations. However, the intersection operation should be finite. Let, N 2
Zþn 1f g; fi : Bi ! <N be the homeomorphic and invertible function operated on the topological
space Bi � X. If X is Hausdorff, then the resulting structure ðBi; fiÞ is called a chart on N-manifold
(Lee, 2013). If ðBi � X; fiÞ and ðBk � X; fkÞ are two charts on N-manifold, then a transition map can
be constructed as,

Bi \Bk ¼ V;V�ϕ;

fk�fi
�1

: fiðVÞ ! fkðVÞ
(3)

The charts ðBi � X; fiÞ and ðBk � X; fkÞ are smoothly compatible if V ¼ ϕ. An N-manifold is called C1-
class if the following property is maintained by it,

r 2 <N;
�1< lim

u!þ1Duðfk�fi�1Þjr<þ1 (4)

It can be possible that, an N-manifold is smooth to a degree v<þ1. Thus, different classes of
manifolds can be formed depending on respective natures.

4. Distributed computing on N–manifold
Let P ¼ pi : i 2 Zþ ^ i � Nf g be a set of distributed processes and Zþ0 ¼ Zþ [ 0f g. The set of events
local to a distributed process pi 2 P is denoted by Ei, where ϕ 2 Ei. Let EP be N-dimensional given by
EP ¼ E1 � E2 � :::� EN. If "pi 2 P; C : Ei ! Zþ0 is a local bijection within individual distributed pro-

cesses, then CðTEÞ � Zþ0 , where TE ¼ [N
i¼1

Ei and CðϕÞ ¼ 0. Let, CP : EP ! CðTEÞN be such that,

"β 2 EP : CPðβÞ 2 ðZþ0 ÞN (5)

If "pi 2 P;hi : Ei ! CPðEPÞ is invertible, then a N-manifold MN is given as,

HP ¼ hi : "pi 2 Pf g;
MN ¼ ðTE;HPÞ

(6)

In the proposed model of distributed computation on N-manifold, the underlying manifold struc-
ture is not differentiable due to discrete nature of computing space represented by TE.

4.1. Hausdorff property of computing space
The distributed computing space can be metrized to form metric space by equipping it with a
suitable function (Bagchi, 2018). Let a discrete metric dS : T2E ! ½0;þ1Þ be defined on distributed
computing space TE as,

"a;b 2 TE;
½a ¼ b� , ½dSða; bÞ ¼ 0�;
½a�b� , ½dSða; bÞ ¼ 1�

(7)

The resulting computing space ðTE;dSÞ is Hausdorff because the following axiom is maintained
by it,
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9ε 2 ð0;1Þ; a�b :

BεðaÞ ¼ fx : x 2 TE ^ dSða; xÞ<εg;
BεðaÞ \BεðbÞ ¼ ϕ

(8)

This validates that the distributed computing space TE is metrizable Hausdorff space, which can be
mapped on an N-manifold.

4.2. Locally Euclidean space of computation
The set of events local to individual distributed processes can be counted by employing locally
applicable monotone logical clock function defined over respective intervals as,

"pi 2 P; 9Ii � Zþ0 :

CðEiÞ � Ii
(9)

The logical clock function Cð:Þ is a local bijection. Hence, the local event spaces of distributed
processes can be converted into respective metric spaces ðEi;dEÞ if it is equipped with a

function, "A � TE;dE : A2 ! ½0;þ1Þ. This leads to the restriction to local formulation as,

"pi 2 P;A � Ei;dE : A2 ! ½0;þ1Þ. The resulting metrization function is defined as,

" a; bf g � Ei;9x9y 2 Ii :

x ¼ CðaÞ; y ¼ CðbÞ;
dEða; bÞ ¼ x� yj j

(10)

This indicates that ðEi;dEÞ is a Euclidean metric space of the asynchronous distributed computation
under consideration.

5. Computation observation on manifold
The observability of distributed computation is an important parameter in order to determine
stability of systems and to measure control dynamics. The observability of a distributed system
enables implementation of consistency detection in execution sequence as well as fault recogni-
tion. If a distributed system is designed with possibility of faults other than Fail-Stop mode, then
consistent observation of distributed computation is required to ensure error-free execution. This
section presents the model of consistent observation of distributed computation on N-manifold
having varying granularity of observations.

5.1. The εk-fine cut of computation
Given a distributed computation on MN, the computation is not consistent everywhere on MN. The
consistency of a computation can be verified by considering computational cuts on MN preserving
snapshot of execution status of distributed processes. A set of N-dimensional cuts on MN is given

by ΛC � [N
i¼1

hiðEiÞ. The εk-cut of ΛC is a restriction on taking snapshots of execution on MN preserving

consistency of observation of distributed computation. The εk-cut (Λk) is defined by following
axioms for εk; k 2 Zþ,

Λk � ΛC :

εk 2 ð0;þ1Þ; xi ¼ Cðai 2 EiÞ;
Λk ¼ ðx1; x2; :::; xNÞ : xi 2 Zþ0 ^ dEðai; ak 2 EkÞ � εk

� �
(11)

Evidently, "εk>0, the Λk may not provide meaningful information about execution states of
computation. This is due to the fact that, a widely dispersed cut on MN for a sufficiently large εk
would violate consistency of observation of computation considering varying execution states of a
group of processes in asynchronous distributed computing systems. If Sε ¼ εk : k � Zþf g represents
a set of choices to generate εk-cut on MN, then an acceptable value to perform consistent
observation in finite form is given by

εd ¼ infðSεÞ (12)
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Thus, the finest possible observation Λd of an asynchronous distributed computation can be
performed by maintaining the following axioms,

Λd � Λk :
εd ¼ 1;
Λd ¼ ðx1; x2; :::; xNÞ : xi 2 Zþ0 ^ dEðai; ak 2 EkÞ � εd

� � (13)

The coarse grained observation can be performed by considering εe ¼ supðSεÞ and
dEðai;ak 2 EkÞ � εe. Hence, the variation of fineness of observation of asynchronous distributed
computation can be performed on N-manifold.

5.2. Consistency and filter model
The manifold MN generated by distributed computing is not consistent everywhere within the
space. Thus, an arbitrary function sequence on N-manifold of asynchronous distributed computa-

tion, given by FN ¼ ðhiÞi¼N
i¼1 , may not be computationally consistent everywhere. The consistency can

be maintained by employing a filter function on the N-manifold. Let all possible cuts of execution
on N-manifold be given by ΛM ¼ [

"εk2Sε
Λk. A predicate ΓðβÞ 2 0;1f g determines consistency of cut

β 2 EP by evaluating the predicate in corresponding event space given as,

EΓ ¼ β : CPðβÞ 2 ΛMf g (14)

Any generalized and arbitrary cuts of distributed computation are not observably consistent.
Hence, a filter is required to generate consistent cuts out of a set of cuts of computation. Let us
assume that ΓðβÞ ¼ 1 signifies consistent cut on N-manifold. Let a function be given as,

A � ðZþ0 ÞN; B � A; g : A ! B[ ϕf g; gða 2 AÞ ¼ gðb 2 BÞ½ � ) a ¼ b½ � (15)

The function gð:Þ is a filter function on cuts on execution manifold if it satisfies the following
axioms,

A � ΛM;"β 2 EΓ :

½ΓðβÞ ¼ 1� ) ½ðg�CPÞðβÞ 2 B�;
½ΓðβÞ ¼ 0� ) ½ðg�CPÞðβÞ‚B�

(16)

The filter function gð:Þ checks the validity of stable predicate while filtering out inconsistent cuts on
manifold. The granularity of observable consistent cuts is determined by restricting the variations
of clocks within cuts having finite limits. This indicates the non-commutative composition,
"hi 2 HP;g�hið:Þ, can be further restricted to generate a set of consistent observation on
N-manifold at appropriate granularity having εk-fineness by maintaining following conditions,

Bk � B :

9εk 2 Sε;

½ðg�CPÞðβÞ 2 Bk� ) ½ðg�CPÞðβÞ 2 Λk�
(17)

In another view, it can be considered as an additional refinement to control the granularity of
observation of computation.

5.3. Lattice embedding on N-manifold
Let the εk-fine and consistent snapshot of observation of a distributed computation on MN be Bk.

Let a partial ordering relation < � B2
k be constructed on MN maintaining lattice properties. If L � Bk,

then a lattice chain ðL;<Þ can be formed by maintaining the following condition,

"lx; ly 2 L : ½ðlx; lyÞ 2 <� 	 ½ðly; lxÞ 2 <� (18)

It is important to note that ðL;<Þ is an execution lattice chain in N-manifold. Evidently, an
execution lattice chain represents a consistent sequence of observations of asynchronous distrib-
uted computation on the respective manifold.

Bagchi, Cogent Engineering (2018), 5: 1528029
https://doi.org/10.1080/23311916.2018.1528029

Page 6 of 16



6. Analytical properties

6.1 Theorem: The space (X, dX) is not Hausdorff, where X ¼ SN

i¼1
C Eið Þ and dX x 2 X; y 2 Xð Þ ¼

x� yj j.
Proof: Let A � TE such that 9a 2 Ei;9b 2 Ek; a; bf g � A. However, there is no globally consistent
clock in any distributed systems and CðTEÞ � Zþ0 . Thus, the following axioms can be satisfied by a
distributed computing system,

CðEiÞ \ CðEkÞ ¼ D;

D�ϕ;

½CðaÞ 2 D ^ CðbÞ 2 D� , ½dXðCðaÞ;CðbÞÞ ¼ 0�
(19)

Hence, 9ε>0 such that, if BεðCðaÞÞ ¼ fx : dXðCðaÞ; xÞ<εg and BεðCðbÞÞ ¼ fy : dXðCðbÞ; yÞ<εg, then the
following axiom is satisfied,

a�b;
BεðCðaÞÞ \ BεðCðbÞÞ�ϕ

(20)

Hence, the space ðX;dXÞ is not Hausdorff under local logical clock.

6.2 Theorem: If C Eið Þ � Ii and Ii \ Ik ¼ ϕ for i�k, then (X, dX) is Hausdorff.

Proof: As before, let be X ¼ [N
i¼1

CðEiÞ in a distributed computing system. However, for any two
intervals Ii \ Ik ¼ ϕ in the system if i�k. Moreover, any distributed computing system maintains
following axiom due to monotone property of logical clock,

"pi 2 P :

½ a;bf g � Ei ^ CðaÞ; CðbÞf g � Ii� ) ½CðaÞ�CðbÞ� (21)

Hence, the global computation in the respective distributed system will maintain the following
property,

"x;"y 2 X;dXðx; yÞ>0 (22)

Thus, ðX;dXÞ is a metric space. As every metric space is Hausdorff, hence ðX;dXÞ is Hausdorff.

7. Computational evaluation
The computational evaluation is performed through simulation considering 3-manifold (M3),
which is made up of execution event spaces of three distributed processes. The simulation is
performed through Discrete Computational Geometry (DCG) modeling technique considering
3-D shapes. The shapes are constructed based on sets containing discrete data points using
mesh topology. The data grid lines are spaced in equal distribution (50:50) to maintain
topological mesh without any skew. The metric (norm) is fixed to constant positive integer
value that equals to 02 while constructing the grid lines. The distributed computational
structures represented as manifold shapes are simulated by considering four different net-
work communication models. The simulation considers a closed group of three processes
representing a distributed system on 3-manifold. The group communication models between
processes considered in experimentation are: (1) unreliable cyclic unicast in monotone (UCU),
(2) reliable cyclic unicast (RCU), (3) unreliable cyclic broadcast (UCB), and (4) reliable cyclic
broadcast (RCB). The execution spaces of distributed processes are consisting of local event
spaces of individual processes mapped under monotone logical clock function in positive
integer range including origin (Zþ [ 0f g). The M3 manifold structure is constructed by following
the consistent execution sequences. The sets of inconsistent sequences of distributed com-
putation are discarded by applying filter function. The snapshots of distribution profiles of
points in sets in 3-D in UCU mode and RCU mode are illustrated in Figures 1 and 2,
respectively.
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The corresponding snapshots of distribution profiles of points in sets in UCB and RCB modes are
presented in Figures 3 and 4, respectively.

The detailed description about resulting manifold structures and embedded lattice chains are
presented below considering reliable and unreliable communication models. The process execu-
tion spaces on 3-D axes in manifold structures represent execution events-spaces of distributed
processes, which are dynamic in nature having combinatorial forms.

7.1. Experiment I: unreliable network communication
The 3-manifold structure of distributed computation for UCU communication model is presented in
Figure 5. In this case, the group of processes synchronizes computation involving a shared variable
by using unreliable unicasts in repeated cycles between a pair of processes in the group.

Distribution of points in event-sets of processes in 3-D (UCU)
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Figure 1. Distribution profile of
points in 3-D in UCU mode.

Distribution of points in events-sets of processes in 3-D (RCU)
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points in 3-D in RCU mode.

Distribution of points in event-sets of processes in 3-D (UCB)
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Figure 3. Distribution profile of
points in 3-D in UCB mode.
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The 3-manifold structure illustrates existence of multiple local supremum and infimum points.
However, a global supremum and infimum can be computed representing global state of compu-
tation. The majority of surface areas are relatively smoother during computation indicating finite
bound in computation. In this model of computation, the overall message complexity is minimum
in stable network condition because the communication is cyclic unicast and no acknowledgment
is transacted between processes. The corresponding embedded lattice chain on 3-manifold repre-
senting a consistent distributed computing sequence is presented in Figure 6.

The lattice chain illustrates the presence of an apparently periodic structure, which is inline to
the cyclic nature of synchronization between processes in the closed group. In the next experiment
step, the unicast communication model is converted to broadcast network communication model
(UCB) in the closed group. The resulting 3-manifold structure generated by distributed computa-
tion is presented in Figure 7.

In this case, the processes in a closed group perform broadcasts in cycles without considering
reliability of messages. It is considered in simulation that no two messages can be simultaneously sent
or received by any process at a single time instant. The 3-manifold structure illustrates that distance
between different local supremum and infimum points are reduced if the network is relatively stable.
The overall smoothness of the surface is maintained in the majority of places with localized convex
and concave deformations depending on the nature of process states. The corresponding embedded
lattice chain of consistent distributed computing sequence is presented in Figure 8.

Distribution of points in event-sets of processes in 3-D (RCB)
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Figure 4. Distribution profile of
points in 3-D in RCB mode.

Figure 5. Distributed computing
manifold using cyclic unreliable
unicast.
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Figure 6. Execution lattice
chain on 3-manifold for unreli-
able unicast based computing.

Figure 7. Distributed computing
manifold using cyclic unreliable
broadcast.

Figure 8. Execution lattice
chain on 3-manifold for unreli-
able broadcast based
computing.
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The lattice chain embedded on 3-manifold of UCB model represents that apparent periodicity of
computation exists with relative dispersion. The dispersion effect is due to the time dilation
required for completing a broadcast in a closed group.

7.2. Experiment II: reliable network communication
In this experimental set, the unreliable network communication models are changed by incorpor-
ating reliability in communication. The simulation model implements First-In-First-Out (FIFO)
model of network communication. In the first experimentation, the UCU model is converted into
RCU by incorporating reliability in the FIFO network communication. The resulting 3-manifold
structure generated by distributed computation is presented in Figure 9.

In this case, the number of local supremum and infimum points are reduced, and surface
appears to be relatively uniform locally (but not strictly uniform globally). The overall smoothness
of the surface is moderately enhanced as compared to unreliable systems. The reason is that
transitions are highly synchronized in reliable systems having bidirectional communication. The
overall message complexity is higher in this 3-manifold as compared to unreliable unicast model.
The corresponding embedded lattice chain of consistent distributed computing is presented in
Figure 10.

Figure 9. Distributed computing
manifold using cyclic reliable
unicast.

Figure 10. Execution lattice
chain on 3-manifold for reliable
unicast based computing.
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Evidently, the apparent presence of any periodicity is reduced, and the computation proceeds in
phases. There are several discrete transitions between phases of distributed computation. The
reason is that the cyclic synchronization forms several closed-loop graphs in RCU model of
distributed computation. The 3-manifold structure generated by RCB model of network commu-
nication is presented in Figure 11.

In this case, the processes in the closed group perform synchronization by using reliable broad-
cast in repeated cycles. However, no two messages can be simultaneously sent or received by any
process at a single time instant, which is inline to real-life implementation of data communication.
The global smoothness of the surface is further enhanced due to complete synchronization
between every process in the system with reliable communications. The message complexity is
highest in this case. The surface of RCB 3-manifold appears to be locally uniform covering a larger
section indicating communication reliability and complete covering of the group of processes in
each cycle. The corresponding lattice chain embedded on RCB 3-manifold is presented in Figure 12.

The lattice chain of RCB communication based distributed computation illustrates reduced
frequency of discrete transitions in the sequence of consistent computation. This signifies the
existence of highest reliability of data and distributed synchronization in a process group. The

Figure 11. Distributed comput-
ing manifold using cyclic reli-
able broadcast.

Figure 12. Execution lattice
chain on 3-manifold for reliable
broadcast based computing.
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dynamics of controlled filter values for generating consistent execution sequence of distributed
computation is presented in Figure 13.

The infimum of filter is kept fixed at lowest value (unity), and the supremum is varied while
maintaining consistency of observation of distributed computation.

Variations of inf and sup Boundaries for Filter
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Figure 13. Variations for infi-
mum/supremum of fineness
boundaries of observation
filter.

Figure 14. Deformation in dis-
tributed computing manifold
due to fail-stop fault.
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8. Application aspects—faults detection in computation
The modern approaches to analyze distributed computation employ various geometric analysis
techniques. These techniques effectively result in shape analysis in order to detect consistency of
computation in structural forms. For example, the simplicial complexes and topological models of
distributed computation form a set of dynamic graph like shapes, which helps in determining con-
sistency of computation (Conde & Rajsbaum, 2012; Herlihy & Rajsbaum, 1999). The manifold is a
geometric structure, and its application helps in determining consistency of observation of distributed
computation in N-dimensional space. The manifold structure employed in this paper facilitates com-
putational shape analysis in order to detect inconsistency in observable distributed computation. The
two main faults that occur in a distributed computation are: Fail-Stop fault and Byzantine fault. The
faults are simulated by distribution of points in events space of processes with skews. In case of Fail-
Stop fault, the points are clustered within event space of a faulty process. However, in case of
Byzantine fault, the points are distributed arbitrarily within a sub-space of topological execution
space of faulty process having nonconvergent nature. The application of manifold structure to detect
fail-stop fault in distributed computing (UCU mode) is illustrated in Figure 14.

The first (top) surface of Figure 14 represents distributed computing having fail-stop fault within
execution space of process 2. The local deformations are indicated on the surfaces representing

Figure 15. Detecting Byzantine
fault in distributed computing
manifold (RCU mode).
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fail-stop and regular computations in UCU mode. The manifold of a faulty distributed computation
appears to be smoother with respect to regular manifold structure due to partial blocking of global
execution space eliminating transitions. The deformation on manifold due to Byzantine fault in
process 2 execution space in RCU mode of computation is illustrated in Figure 15.

The Byzantine fault induces a highly localized distortion in a bounded region. The distortion is
severe due to Byzantine nature of fault in computation enhancing unpredictability. The manifold
outside this region of deformation appears to be relatively smoother than regular distributed com-
putation. This is due to the partial blocking of other processes due to existence of a Byzantine (faulty)
process in the system. These examples illustrate the application of manifold model of distributed
computation to monitor a system by detecting the existence of different types of failures of compu-
tation in a deterministic system. It would help the distributed systems designers to formulate and
analyze possible fault models a priori along with detection of locality of faults in a system.

9. Conclusions
The observation of an asynchronous distributed computation is required in order to maintain
stability in an execution sequence. The consistency of computation is evaluated for generating
correct output of computation and to detect faults. The consistent observation of large-scale
asynchronous distributed systems is challenging due to enlarged events space. The construction
of computational model on manifold structure helps in gaining analytical insights to complex
systems. The formulation proposed in this paper offers a model and analysis of consistent
observation of asynchronous distributed computation on N-manifold. The fineness of consistent
observation can be controlled by employing filter. The simulations of resulting structures offer
better understanding of the dynamics of the computation in view of analysis.
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