Natural orbitals for ab initio no-core shell model calculations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Phys.Rev.C Année : 2019

Natural orbitals for ab initio no-core shell model calculations

Julius Müller
  • Fonction : Auteur
Klaus Vobig
  • Fonction : Auteur
Robert Roth
  • Fonction : Auteur

Résumé

We explore the impact of optimizations of the single-particle basis on the convergence behavior and robustness of ab initio no-core shell model calculations of nuclei. Our focus is on novel basis sets defined by the natural orbitals of a correlated one-body density matrix that is obtained in second-order many-body perturbation theory. Using a perturbatively improved density matrix as the starting point informs the single-particle basis about the dominant correlation effects on the global structure of the many-body state, while keeping the computational cost for the basis optimization at a minimum. Already the comparison of the radial single-particle wave functions reveals the superiority of the natural-orbital basis compared to a Hartree-Fock or harmonic oscillator basis, and it highlights pathologies of the Hartree-Fock basis. We compare the model-space convergence of energies, root-mean-square radii, and selected electromagnetic observables for all three basis sets for selected p-shell nuclei using chiral interactions with explicit three-nucleon terms. In all cases the natural-orbital basis provides the fastest and most robust convergence, making it the most efficient basis for no-core shell model calculations. As an application we present no-core shell model calculations for the ground-state energies of all oxygen isotopes and assess the accuracy of the normal-ordered two-body approximation of the three-nucleon interaction in the natural-orbital basis.

Mots clés

Dates et versions

hal-01897252 , version 1 (17-10-2018)

Identifiants

Citer

Alexander Tichai, Julius Müller, Klaus Vobig, Robert Roth. Natural orbitals for ab initio no-core shell model calculations. Phys.Rev.C, 2019, 99 (3), pp.034321. ⟨10.1103/PhysRevC.99.034321⟩. ⟨hal-01897252⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More