Inferential procedures for partially observed functional data

Abstract : In functional data analysis it is usually assumed that all functions are completely, densely or sparsely observed on the same domain. Recent applications have brought attention to situations where each functional variable may be observed only on a subset of the domain while no information about the function is available on the complement. Various advanced methods for such partially observed functional data have already been developed but, interestingly, some essential methods, such as K-sample tests of equal means or covariances and confidence intervals for eigenvalues and eigenfunctions, are lacking. We derive asymptotic distributions of estimators of the mean function, covariance operator and eigenelements and construct hypothesis tests and confidence intervals. To overcome practical difficulties with storing large objects in computer memory, which arise due to partial observation, we use the bootstrap. The proposed methods are investigated theoretically, in simulations and on a fragmentary functional data set from medical research.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01897071
Contributeur : David Kraus <>
Soumis le : mardi 16 octobre 2018 - 19:09:07
Dernière modification le : vendredi 30 novembre 2018 - 12:43:14

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01897071, version 1

Citation

David Kraus. Inferential procedures for partially observed functional data. 2018. 〈hal-01897071〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

12