Needle localization for needle steering under 3D ultrasound feedback
Guillaume Lapouge, Jocelyne Troccaz, Philippe Poignet

To cite this version:
Guillaume Lapouge, Jocelyne Troccaz, Philippe Poignet. Needle localization for needle steering under 3D ultrasound feedback. CSR: Continuum and Soft Robots, Oct 2018, Madrid, Spain. Continuum and Soft Robots (CSR) for Medical Interventions: Modelling, Fabrication, and Control - IROS Workshop, 2018. hal-01896975

HAL Id: hal-01896975
https://hal.archives-ouvertes.fr/hal-01896975
Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Motivation and objectives

- In needle steering, estimating the needle pose is a critical problem.
- In 3D ultrasound volumes, fine needle localization is difficult and requires a combination of estimation and image processing to be successful. Indeed, 3D ultrasound imaging suffers from noise, artifacts and works at a low frequency.
- We propose a needle tip pose estimation method in the context of 3D robotic needle steering under 3D ultrasound feedback, based on multi-rate, multi-sensor fusion [1].
- This estimation feeds a segmentation algorithm for robust needle detection.

Tools

Robotic device
- PROSPER robot for brachytherapy procedure [2]
- 6 degrees of freedom, needle insertion and rotation module

Ultrasound (US) imaging
- 3D US imaging in B-mode
 - 3D B-mode US volume @ 1Hz
 - 3D end-fire probe 4DEC-9/10 with Ultrasonix Sonix RP US system

Pre-operative shear wave imaging (SWE)
- SWE estimates tissues Young’s modulus from their response to a shear wave US stimulation
- The needle curvature is proportional to the tissue stiffness

Results
- 51 insertions of 8 cm at 1.5 mm.s⁻¹
- Validation on phantoms and ex vivo tissue sample

Conclusion
- The tip pose estimation is accurate, robust to needle disappearance and 3D ultrasound imaging artefacts
- An adapted segmentation method, inherited from [4], uses the resulting ROI for needle tip segmentation in the 3D US volumes
- The good estimation of the tip behavior and its uncertainties could benefit to adapted control laws and path planning methods

References

