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Finite-sample analysis of 𝑀 -estimators using self-concordance*

Dmitrii M. Ostrovskii† Francis Bach‡

Abstract
The classical asymptotic theory for parametric𝑀 -estimators guarantees that, in the limit of infinite

sample size, the excess risk has a chi-square type distribution, even in the misspecified case. We
demonstrate how self-concordance of the loss allows to characterize the critical sample size sufficient
to guarantee a chi-square type in-probability bound for the excess risk. Specifically, we consider two
classes of losses: (i) self-concordant losses in the classical sense of Nesterov and Nemirovski, i.e.,
whose third derivative is uniformly bounded with the 3/2 power of the second derivative; (ii) pseudo
self-concordant losses, for which the power is removed. These classes contain losses corresponding
to several generalized linear models, including the logistic loss and pseudo-Huber losses.

Our basic result under minimal assumptions bounds the critical sample size by 𝑂(𝑑 · 𝑑eff), where
𝑑 the parameter dimension and 𝑑eff the effective dimension that accounts for model misspecification.
In contrast to the existing results, we only impose local assumptions that concern the population risk
minimizer 𝜃*. Namely, we assume that the calibrated predictors, i.e., predictors scaled by the square
root of the second derivative of the loss, is subgaussian at 𝜃*. Besides, for type-ii losses we require
boundedness of certain measure of curvature of the population risk at 𝜃*.

Our improved result bounds the critical sample size from above as 𝑂(max{𝑑eff, 𝑑 log 𝑑}) under
slightly stronger assumptions. Namely, the local assumptions must hold in the neighborhood of 𝜃*
given by the Dikin ellipsoid of the population risk. Interestingly, we find that, for logistic regression
with Gaussian design, there is no actual restriction of conditions: the subgaussian parameter and
curvature measure remain near-constant over the Dikin ellipsoid. Finally, we extend some of these
results to ℓ1-penalized estimators in high dimensions.

1 Introduction and problem formulation

Recall the standard statistical learning setup: given a set Θ ⊆ R𝑑 that parametrizes the space of possible
hypotheses, and observing a random 𝑍 ∈ 𝒵 with unknown distribution 𝒫 , one would like to minimize
the population risk 𝐿(𝜃) := E[ℓ𝑍(𝜃)]. For each possible observation 𝑧 of 𝑍, the loss ℓ𝑧 : Θ → R

specifies the cost of choosing 𝜃 under the outcome {𝑍 = 𝑧}, and E[·] is the expectation with respect to
the distribution 𝒫 . This distribution is assumed unknown, so the population risk cannot be computed and
minimized directly. Instead, one is granted access to the sample (𝑍1, ..., 𝑍𝑛) of independent copies of 𝑍,
and uses it to construct an estimate ̂︀𝜃 of the population risk minimizer,

𝜃* ∈ Argmin
𝜃∈Θ

𝐿(𝜃),

assuming that such a minimizer exists. As such, we can consider the empirical distribution 𝒫𝑛 – uniform
probability measure supported on the sample – and the empirical risk 𝐿𝑛(𝜃), defined as the observable
counterpart of 𝐿(𝜃), namely,

𝐿𝑛(𝜃) :=
1

𝑛

𝑛∑︁

𝑖=1

ℓ𝑍𝑖(𝜃).
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Ideally, we would like to have an estimator with small excess risk 𝐿(̂︀𝜃) − 𝐿(𝜃*), in probability or in
expectation over the sample. Since for each fixed value 𝜃 of the parameter, 𝐿𝑛(𝜃) is an unbiased estimate
of 𝐿(𝜃) which converges to 𝐿(𝜃) almost surely by the law of large numbers, a natural candidate estimator
of 𝜃* is the empirical risk minimizer (ERM), defined as

̂︀𝜃𝑛 ∈ Argmin
𝜃∈Θ

𝐿𝑛(𝜃).

In this paper, we are concerned with establishing high-probability finite-sample bounds on the excess
risk 𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) of this estimator. The classical Fisher theorem ([LC06]) implies the rescaled excess
risk has a chi-square type limiting behavior, under weak conditions, when 𝑛 → ∞. When stated
informally, our goal in this paper is to characterize the critical sample size sufficient to enter the this
“asymptotic regime”, i.e., to guarantee a chi-square type high-probability bound for the excess risk in
finite sample. Elaborating on this goal in more detail and stating our results would be impossible without
first giving a brief overview of the classical asymptotic theory. We give such overview in the next section.

1.1 Classical asymptotic theory

Our main focus in this paper is the setting where 𝐿𝑛(𝜃) is a negative log-likelihood, that is ℓ𝑧(𝜃) =
− log 𝑝𝜃(𝑧) where 𝑝𝜃(·) is some probability density supported on 𝒵 . In this case, ̂︀𝜃𝑛 maximizes the
likelihood of observing the i.i.d. sample (𝑍1, ..., 𝑍𝑛) from 𝒫𝜃 ranging over a parametric family P =
{𝒫𝜃, 𝜃 ∈ Θ}. In reality, P may or may not contain the actual data-generating distribution 𝒫 . When 𝒫 ∈
P , we say that the parametric model corresponding to P is well-specified; in this case, ERM becomes
the maximum-likelihood estimator (MLE). Otherwise, the model is called misspecified, and ERM can be
regarded as MLE under model misspecification, or quasi maximum likelihood estimator [Whi82]. In this
case, 𝒫𝜃* corresponds to the “projection” of 𝒫 onto the family P in the sense of the Kullback-Leibler
divergence, and the quasi MLE approximates 𝒫𝜃* by replacing 𝒫 with the empirical distribution 𝒫𝑛.

Our goal in this section is to give a brief overview of the main results of the asymptotic theory of 𝑀 -
estimation. Most of them, see monographs [LC06, IH13, vdV98, Bor98], rely on the local regularity
assumptions about the loss, allowing for second-order Taylor expansion of 𝐿(𝜃) around 𝜃*. In particular,
it is assumed that 𝐿(𝜃) is sufficiently smooth at 𝜃*, which is an interior point of Θ, so that the first-order
optimality condition for 𝜃* reduces to ∇𝐿(𝜃*) = 0. Moreover, the Hessian

H := ∇2𝐿(𝜃*)

is assumed to be non-degenerate, i.e., H ≻ 0. Finally, the empirical risk is assumed to be three times
continuously differentiable at 𝜃*, see, e.g., [LC06]. When combined together, these assumptions allow to
derive, as a starting point, the local asymptotic normality of quasi MLE: when 𝑛→ ∞ with fixed 𝑑,

√
𝑛H1/2(̂︀𝜃𝑛 − 𝜃*) 𝒩 (0,H−1/2GH−1/2), (1)

where denotes convergence in law, and G is the covariance matrix of the loss gradient at 𝜃* (also
called Fisher’s information matrix):

G := E[∇ℓ𝑍(𝜃*)∇ℓ𝑍(𝜃*)⊤].

Matrices G and H remain fixed as 𝑛 grows. Hence, under mild regularity assumptions,1 one also has that
the variance of ̂︀𝜃𝑛 decreases as 𝑂(1/𝑛). Moreover, in the well-specified case G = H, see, e.g., [Bar53],
which leads to Fisher’s theorem:

√
𝑛H1/2(̂︀𝜃𝑛 − 𝜃*) 𝒩 (0, I𝑑),

1It suffices for 𝜌𝑛 :=
√
𝑛‖̂︀𝜃𝑛‖2 to be uniformly integrable, i.e., lim𝜀→0 sup𝑛E[𝜌𝑛1𝜌𝑛≥𝜀] = 0. This is a very weak

condition; see [Kle13, Sec. 6.2] for stronger (but easier to verify) conditions.
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where I𝑑 is the identity matrix of size 𝑑. Thus, denoting ‖ · ‖J the norm linked to positive semidefinite
matrix J by ‖𝑥‖J = ‖J1/2𝑥‖2, we have 𝑛‖̂︀𝜃𝑛 − 𝜃*‖2H 𝜒2

𝑑, where 𝜒2
𝑑 is the chi-square law with 𝑑

degrees of freedom. The second-order Taylor expansion of the average risk around 𝜃* then allows to
derive the same asymptotic law for the scaled excess risk 2𝑛[𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*)] – this result is known as
Wilks’ theorem. In turn, this implies (under mild regularity conditions) that

E𝑛[𝐿(̂︀𝜃𝑛)]− 𝐿(𝜃*) =
𝑑

2𝑛
+ 𝑜(𝑛−1), as 𝑛→ ∞, (2)

where E𝑛 is the expectation over the product distribution 𝒫⊗𝑛 of (𝑍1, ..., 𝑍𝑛). More precisely, by the
standard chi-square deviation bounds (see e.g., [LM00, Lemma 1]) one has that, with probability ≥ 1− 𝛿,

𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) =
(
√
𝑑+

√︀
2 log(1/𝛿))2

2𝑛
+ 𝑜(𝑛−1). (3)

Finally, these 𝑂(𝑑/𝑛) asymptotic bounds can be extended to the general situation of misspecified models
by introducing the effective dimension:

𝑑eff := E[‖∇ℓ𝑍(𝜃*)‖2H−1 ] = Tr(H−1/2GH−1/2).

Note that in a well-specified model, 𝑑eff = 𝑑 since G = H; moreover, in the ill-specified case one
can still have 𝑑eff = 𝑂(𝑑) “in favorable circumstances” – we will consider one such situation, that of
misspecified linear regression, later on.2 The expected excess risk bound (2) then changes to

E𝑛[𝐿(̂︀𝜃𝑛)]− 𝐿(𝜃*) =
𝑑eff

2𝑛
+ 𝑜(𝑛−1), (4)

and the corresponding in-probability bound (see again [LM00, Lemma 1]) is

𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) =
𝑑eff(1 +

√︀
2 log(1/𝛿))2

2𝑛
+ 𝑜(𝑛−1). (⋆)

In fact, the main term in the right-hand side of (4) is the minimum possible asymptotic variance of any
unbiased estimator; this result is known as the Cramér-Rao bound.

For what goes next, it is important to note that the asymptotic approach can be summarized as follows:

• First, the estimate is localized: ‖̂︀𝜃𝑛 − 𝜃*‖2H is upper-bounded with the squared “natural” norm of
the score, ‖∇𝐿𝑛(𝜃*)‖2H−1 , which can be controlled by the central limit theorem.

• Then, using the second-order Taylor expansion of 𝐿(𝜃) around 𝜃*, similar behavior is obtained for
the excess risk 𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*).

Paying tribute to the clarity and historical significance of the classical asymptotic theory, one should
keep in mind that its operating regime 𝑛→ ∞ with fixed parameter dimension usually cannot be applied
in the modern context. The recent works [DM16, BKM+18] extend the classical results to the asymptotic
high-dimensional regime 𝑑 → ∞ with 𝑑 = 𝑂(𝑛), analyzing 𝑀 -estimator as the fixed point of the
approximate message passing algorithm. However, existing analysis of approximate message passing
in finite samples is scarce: the only work we are aware of is [RV18], which only considers fixed-design
linear regression. Postponing a more detailed review of related work to Section 7, let us briefly overview
the main approaches in finite-sample analysis.

2We can also have 𝑑eff < 𝑑 if we get “extremely lucky”. For example, consider the Gaussian shift model 𝑦 ∼ 𝒩 (𝜃, 1), and
let in reality 𝑦 ∼ 𝒩 (0, 𝜎). Then 𝑑eff = 𝜎2 while 𝑑 = 1.
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1.2 Finite-sample regime and empirical processes

This work has been motivated by the following question:

For what finite 𝑛 the excess risk admits a chi-square type bound akin to (⋆)?

One rather general approach towards answering this question, i.e., addressing the fully finite-sample
regime, has been outlined in [Spo12], and can be described as follows. First, the parameter space Θ is
divided into the local subset, given as the intersection of Θ and the (unit-radius) Dikin ellipsoid of 𝜃*,

Θ1(𝜃*) := {𝜃 ∈ R𝑑 : ‖𝜃 − 𝜃*‖H ≤ 1}, (5)

and the complement subset Θ ∖Θ1(𝜃*). Then, the second step of the asymptotic approach is replaced
with so-called quadratic bracketing: the excess risk is “sandwiched” on Θ1(𝜃*) between two quadratic
forms which correspond to the inflation and deflation of ‖𝜃 − 𝜃*‖2H. On the other hand, the first step
(localization of the estimate) is done via the control of the event {̂︀𝜃𝑛 /∈ Θ1(𝜃*)}, by bounding the uniform
deviations of the empirical risk 𝐿𝑛(𝜃)− 𝐿𝑛(𝜃*) via advanced tools from empirical process theory such
as generic chaining [Tal06]. This approach is quite powerful, allowing to derive the counterparts of
asymptotic results in the non-asymptotic regime 𝑛 ≥ 𝑐𝛿 · 𝑑eff, where the constant 𝑐𝛿 only depends on the
desired confidence level 1− 𝛿. However, it requires rather strong global assumptions on the pointwise
deviations of the empirical risk process, which are necessary to control its uniform deviations, see [Spo12,
Sections 2.2 and 4]. Close in spirit to [Spo12] are the techniques developed in [CCK17] to study Gaussian
approximation of the maxima of the sums of i.i.d. random variables. The main highlight of [CCK17] is
the ability to handle the regime of exponentially large dimensionality, with respect to the sample size,
due to the special structure of the statistics under study. However, much like in [Spo12], the techniques
of [CCK17] rely on the advanced machinery of empirical processes.

Meanwhile, in the special case of random-design least-squares, finite-sample analysis is way simpler,
and heavy-weight machinery of empirical processes is not needed. In this case, the problem is reduced
to the control of a single random matrix, the sample covariance matrix of the design vector, which
encapsulates the second-order information about the risk. Our primal goal in this work is to extend these
ideas to a wider class of models with non-quadratic losses of certain types, including the losses arising in
conditional generalized linear models and robust regression. For these classes of losses, one may carefully
exploit their regularity properties, which allows to avoid using the empirical processes machinery – and the
associated global conditions – when localizing the empirical risk minimizer. Deferring further discussion
of our contributions to Sec. 1.4 and related work to Sec. 7, let us overview the case of least-squares.

1.3 Simple case: least-squares

An original approach introduced in [HKZ12a] allows to obtain finite-sample excess risk bounds in
the setting of unconstrained least-squares linear regression with random design. Here, Θ = R𝑑, and
the observations take the form 𝑍 = (𝑋,𝑌 ) where 𝑋 ∈ R𝑑 and 𝑌 ∈ R. The goal is to predict
response 𝑌 as a linear combination of design 𝑋 with parameter 𝜃 ∈ R𝑑, and one takes ℓ𝑍(𝜃) to be
ℓ𝑍(𝜃) = 1

2𝜎2 (𝑌 − 𝑋⊤𝜃)2. ERM then reduces to the ordinary least-squares estimator. Least-squares
correspond to the implicit assumption that the residual 𝜀 = 𝑌 − 𝑋⊤𝜃* has Gaussian distribution
𝜀 ∼ 𝒩 (0, 𝜎2) with 𝜎 > 0, and is independent of 𝑋 , which allows to factor out the distribution of 𝑋 from
the model. Note that the rate 𝑂(𝑑/𝑛) translates to the well-known minimax rate 𝑂(𝑑𝜎2/𝑛) for the mean
square error E[(𝑌 −𝑋⊤𝜃)2]− 𝜎2. Moreover, sometimes the Gaussian assumption on 𝜀 can be relaxed,
and the misspecified situation becomes essentially as favorable as the well-specified one, at least from the
asymptotic point of view. Indeed, normalizing the noise to have unit variance, and using that

∇ℓ𝑍(𝜃*) = 𝜀𝑋 and H = E[𝑋𝑋⊤],
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we get 𝑑eff = E[𝜀2‖H−1/2𝑋‖2]. Hence, 𝑑eff = 𝑑 for any distribution of 𝜀 with E[𝜀2] = 1, provided
that 𝜀 and 𝑋 are independent. Moreover, assuming that 𝑌 and all one-dimensional marginals of 𝑋 have
finite fourth moment, i.e.,

√︀
E[𝑌 4|𝑋 = 𝑥] ≤ 𝜅𝜀E[𝑌

2|𝑋 = 𝑥], ∀𝑥 ∈ R𝑑,
√︀
E[⟨𝑢,𝑋⟩4] ≤ 𝜅𝑋E[⟨𝑢,𝑋⟩2], ∀𝑢 ∈ R𝑑,

we can bound 𝑑eff as 𝑑eff ≤ 𝜅𝑋 · 𝜅𝜀 · 𝑑. In other words, 𝑑eff and 𝑑 are comparable.
Now, the approach of [HKZ12a] exploits the fact that 𝐿(𝜃) is a quadratic form,

𝐿(𝜃)− 𝐿(𝜃*) =
1
2‖𝜃 − 𝜃*‖2H, (6)

and the empirical risk is a quadratic form corresponding to H𝑛 = 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖𝑋

⊤
𝑖 :

𝐿𝑛(𝜃)− 𝐿𝑛(𝜃*) =
1
2‖𝜃 − 𝜃*‖2H𝑛

+ ⟨∇𝐿𝑛(𝜃*), 𝜃 − 𝜃*⟩.

As such, the global curvature information about 𝐿(𝜃) is encapsulated in a single matrix H, and we have
at our disposal an unbiased estimate H𝑛 of this matrix. This observation allows to dramatically simplify
the analysis: it suffices to control the deviations of H𝑛 from its expectation, which can be done using the
standard tools of random matrix theory. In particular, in [Ver12], see also Theorem A.2 in Appendix, it is
shown that whenever 𝑋 is 𝐾-subgaussian in all directions, and

𝑛 & 𝐾4(𝑑+ log(1/𝛿)), (7)

where symbol & hides a constant factor, with probability at least 1− 𝛿 it holds

1
2‖Δ‖2H ≤ ‖Δ‖2H𝑛

≤ 2‖Δ‖2H, ∀Δ ∈ R𝑑. (8)

In other words, the sample second-moment matrix H𝑛 approximates H, up to a constant factor, in the
sense of the corresponding Mahalanobis distances (in particular, H𝑛 is non-degenerate whenever H is).
This result can then be exploited as follows: since ∇𝐿𝑛(̂︀𝜃𝑛) = 0, and H𝑛 ≻ 0,

‖̂︀𝜃𝑛 − 𝜃*‖2H𝑛
= ‖∇𝐿𝑛(𝜃*)‖2H−1

𝑛
. (9)

Using (8), this gives 1
2‖̂︀𝜃𝑛 − 𝜃*‖2H ≤ 2‖∇𝐿𝑛(𝜃*)‖2H−1 , which, via (6), results in

𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) ≤ 2‖∇𝐿𝑛(𝜃*)‖2H−1 .

Finally, a non-asymptotic version of (⋆) is obtained by controlling the squared norm ‖∇𝐿𝑛(𝜃*)‖2H−1

under light-tailed (say, subgaussian or subexponential) assumptions on ∇ℓ𝑍(𝜃*) = 𝜀𝑋 , through standard
concentration inequalities. These light-tailed assumptions can further be relaxed to fourth-moment
assumption, using the generalized median-of-means estimator (see [HS16]),On the other hand, it is much
more challenging to get rid of the light-tailed assumption on 𝑋 , as obtaining covariance estimators with
guarantees of the type (8) under weak moment assumptions is by itself a non-trivial problem. Recently,
this problem has been addressed in [OR19], whose authors then proposed an estimator for ridge and
ridgeless regression with near-optimal high-probability guarantees under heavy-tailed assumptions on 𝑋
(see [OR19, Theorem 6.1]).3

The remarkable feature of the outlined analysis is that, as soon as the curvature of 𝐿(𝜃), as given
by H, is reliably estimated, the localization step is “automatic” due to (9). The only requirement is for 𝑛

3Another possibility is to use a rejection sampling argument similar to the one employed in the proof of our Theorem 3.2.
This, however, prohibits us from taking small values of the confidence parameter 𝛿, namely, those decreasing polynomially fast
with min(𝑑, 𝑛), cf. (31).
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to reach the lower bound (7), so that one could relate the norms ‖ · ‖H𝑛 and ‖ · ‖H. The crucial fact
here is that for the quadratic loss, the curvature information is global, i.e., is encoded in a single matrix.
However, for more general losses this is not the case, and there seems to be no direct way of extending the
above argument. As discussed before, the known solution to the problem [Spo12] involved localization
of the estimate, through the control of the global uniform deviations of 𝐿𝑛(𝜃), to a neighborhood of 𝜃*
where a local quadratic approximation can be used; this approach requires global assumptions on the
pointwise deviations of 𝐿𝑛(𝜃). Yet, we will show that in some other models beyond linear regression
with quadratic loss, the local analysis suffices to provide localization of the estimate, and the complicated
and opaque localization step using generic chaining, as in [Spo12], can be circumvented.

1.4 Contributions and outline

Our analysis applies to linear prediction models: observing a pair 𝑍 = (𝑋,𝑌 ) with 𝑋 ∈ 𝒳 ⊆ R𝑑

and 𝑌 ∈ 𝒴 ⊆ R, one predicts 𝑌 through linear combination 𝜂 = 𝑋⊤𝜃 with 𝜃 ∈ Θ ⊆ R𝑑. Accordingly,
we consider losses given by

ℓ𝑍(𝜃) = ℓ(𝑌,𝑋⊤𝜃)

for some function ℓ : 𝒴 × R → R assumed to be sufficiently smooth in its second argument. This
subsumes regression (𝒴 = R) and classification (𝒴 = {0, 1}). Moreover, we assume the ability to
bound the third derivative of ℓ(𝑦, 𝜂) with respect to 𝜂 via the second derivative in two alternative ways,
as will be detailed in Section 2. Such self-concordance assumptions originate from [NN94], where
they were used in the context of interior-point methods; later on, they were modified and used in the
statistical analysis of logistic regression [Bac10, BM13]. We consider both variants of self-concordance
in our analysis, and show that the canonical self-concordance assumption, introduced in [NN94], leads
to somewhat better bounds on the critical sample size than its modification suggested in [Bac10] (see
Sections 3–4). In addition to self-concordance of the loss, we make some assumptions on the local
behavior of the gradient and Hessian of the empirical risk at the population risk minimizer 𝜃*, or its
neighbordhood given by the unit Dikin ellipsoid (5) of the population risk at 𝜃*. To prove our main
results (cf. Theorems 4.1–4.2), we carefully combine these assumptions through a non-standard covering
argument, which allows us to control the uniform deviations of ∇2𝐿𝑛(𝜃) from ∇2𝐿(𝜃) over the Dikin
ellipsoid, and implies localization of the estimator. We mention once again that global assumptions in the
vein of [Spo12] about the deviations of the empirical risk, its gradient and Hessian can be avoided by
using self-concordance.

Our framework includes random-design least-squares linear regression as a baseline. However, as we
show in Section 2, it is in fact much more general. First, it encompasses some conditional generalized
linear models with random design. Here we find that both versions of self-concordance are related to
natural assumptions about the moments of 𝑌 , and discover several generalized linear models amenable
to our analysis, including logistic regression. Second, we can address some common losses in robust
estimation, which turn out to be pseudo self-concordant in the sense of [Bac10]. Moreover, we show how
to slightly modify these losses to make them canonically self-concordant, while preserving their first-
and second-order structure. According to our theory, this leads to the improved statistical performance of
the 𝑀 -estimator, as characterized by the sufficient sample size to reach the asymptotically optimal rate
for the excess risk.

Our analysis carries out the following plan. First, the local assumptions allow to make sure that
starting from the certain sample size, the sample Hessian

H𝑛 = ∇2𝐿𝑛(𝜃*)

approximates the true Hessian H = ∇2𝐿(𝜃*) up to a constant factor, completely analogous to the case
of least squares. After that, self-concordance comes at play. First, using simple analytic arguments, we
prove that with high probability, ∇2𝐿𝑛(𝜃) remains nearly constant in a Dikin ellipsoid of a smaller radius
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of order 𝑂(1/
√
𝑑), leading to a larger critical sample size than in the case of least-squares. We then use

these initial results to prove that under slightly stronger – but still local – assumptions, ∇2𝐿𝑛(𝜃) in fact
remains constant in a constant-radius Dikin ellipsoid, leading to the critical sample size comparable to
that in least-squares (cf. Theorems 4.1–4.2). This is done via a simple but somewhat non-trivial covering
argument, which might be of independent interest.

Let us now give a more detailed overview of the obtained results.
In Section 3, we show that for pseudo self-concordant losses [Bac10], the asymptotically optimal (up

to a costant factor) bound on the excess risk is guaranteed when the sample size reaches 𝑂(𝜌 · 𝑑 · 𝑑eff) up
to a logarithmic factor in 1/𝛿, where 𝜌 is the local curvature parameter linking H and Σ := E[𝑋𝑋⊤] by

Σ 4 𝜌H.

Moreover, for canonically self-concordant losses in the sense of [NN94], the dependency on 𝜌 can be
eliminated, and the critical sample size becomes 𝑂(𝑑 · 𝑑eff). We now give a simplified (and slightly
vulgarized) formulation of these two results.

Theorem 1.1 (Simplified formulation of Theorems 3.1–3.2). Assume that ℓ(𝑦, ·) is self-concordant, for
any 𝑦, in the sense of Nesterov and Nemirovski [NN94], i.e.,

|ℓ′′′𝜂 (𝑦, 𝜂)| ≤ 2ℓ′′𝜂(𝑦, 𝜂)
3/2, ∀𝜂 ∈ R, (10)

and that ℓ′𝜂(𝑌,𝑋
⊤𝜃*)𝑋 =: ∇ℓ𝑍(𝜃*) and ℓ′′𝜂(𝑌,𝑋

⊤𝜃*)
1/2𝑋 are subgaussian. Then

𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) . ‖̂︀𝜃𝑛 − 𝜃*‖2H . ‖∇𝐿𝑛(𝜃*)‖2H−1 .
𝑑eff log (𝑒/𝛿)

𝑛
(11)

with probability ≥ 1− 𝛿, 𝛿 ∈ (0, 1), as long as

𝑛 & 𝑑eff · 𝑑 · log (𝑒𝑑/𝛿) , (12)

where .,& hide constants. Moreover, if the loss satisfies the modified assumption

|ℓ′′′𝜂 (𝑦, 𝜂)| ≤ ℓ′′𝜂(𝑦, 𝜂), ∀𝜂 ∈ R (13)

instead of (10), 𝑋 is as well subgaussian, and Σ 4 𝜌H, then (11) is valid once

𝑛 & 𝜌 · 𝑑eff · 𝑑 · log (𝑒𝑑/𝛿) . (14)

While the only available generic upper bound on 𝜌 is given by the inverse of the global strong
convexity modulus of the loss, and can be very large or even infinite in the case of unbounded predictors,
the actual value of 𝜌 depends on the data distribution, and is moderate when this distribution is not chosen
adversarially, as discussed in [BM13, Sections 3.1, 4.2] and in our Section 2.2. In this vein, we show in
Appendix D that 𝜌 . 1 + ‖𝜃*‖3Σ in logistic regression with Gaussian design 𝑋 ∼ 𝒩 (0,Σ). Motivated
by this result, we propose canonically self-concordant losses for classification and robust regression in
Section 2.1.

In Section 4, we obtain improved bounds for the critical sample size, scaling near-linearly in the
parameter dimension, under slightly stronger assumption on the data distribution. Essentially, we now
require that the calibrated design ̃︀𝑋(𝜃) := [ℓ′′(𝑌,𝑋⊤𝜃)]1/2𝑋, is subgaussian uniformly over 𝜃 in the set

Θ𝑟(𝜃*) := {𝜃 : ‖𝜃 − 𝜃*‖H ≤ 𝑟} (15)

– the 𝑟-radius Dikin ellipsoid of the population risk at 𝜃*. specifically, we require 𝑟 = 1 for canonically
self-concordant losses, and 𝑟 = 1/

√
𝜌 for pseudo self-concordant losses. This assumption is still local,

and is not much more restrictive in some practical situations: in Appendix D we show, informally, that in
the case of logistic regression with Gaussian design, the tails of ̃︀𝑋(𝜃) over 𝜃 ∈ Θ1/

√
𝜌(𝜃*) are not heavier

than those of ̃︀𝑋(𝜃*) (see Proposition D.1). It allows to control the uniform deviations of the empirical
Hessians from their means on Θ𝑟(𝜃*), leading to the reduced sample size as per the following result.
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Theorem 1.2 (Simplified formulation of Theorems 4.1–4.2). In addition to the premise of Theorem 1.2,
assume that the vectors ̃︀𝑋(𝜃) := [ℓ′′(𝑌,𝑋⊤𝜃)]1/2𝑋 are subgaussian for 𝜃 ∈ Θ𝑟(𝜃*), cf. (15), with 𝑟 = 1
in the case of (10) and 𝑟 = 1/

√
𝜌 in the case of (13). Then bounds (11) in Theorem 1.1 are valid once

𝑛 &

{︃
𝑑eff ∨ 𝑑 log 𝑑 under (10),

𝜌 · 𝑑eff ∨ 𝑑 log 𝑑 under (13).
(16)

The main technical challenge when proving this result is the fact that, while (pseudo) self-concordance
of the population risk over Θ𝑟(𝜃*) with appropriate 𝑟 follows from that of the loss function (by relating
the directional derivatives of 𝐿(𝜃) to the corresponding moments of ̃︀𝑋(𝜃)), this fails to hold for the
empirical risk. Hence, we cannot uniformly control its Hessians on Θ𝑟(𝜃*) by simply integrating the
directional third derivatives of the empirical risk. Instead, such control is attained by observing that self-
concordance of the losses suffices to control Hessians in a smaller Dikin ellipsoid with radius 𝑂(1/𝑑𝜅)
for some 𝜅 ≥ 1/2, and combining this observation with a somewhat non-standard covering argument. We
hypothesize that the bounds (16) are optimal up to the log(𝑑) factor, i.e., ERM cannot provably achieve
the nonasymptotic version of (⋆) in the regime where 𝑛 is sublinear in 𝑑eff or 𝑑. This hypothesis is
motivated by the observation that 𝑛 & 𝑑 is necessary to estimate the local norm ‖ · ‖H, whereas 𝑛 & 𝑑eff
is necessary to have ‖∇𝐿𝑛(𝜃*)‖H ≤ 𝑐, which, in turn, allows to localize ̂︀𝜃𝑛 near 𝜃*.

In Section 5, we extend some of the above results to the high-dimensional setup. Specifically, we
obtain analogues of Theorem 1.1 for ℓ1-regularized𝑀 -estimators, assuming that the optimal parameter 𝜃*
is s-sparse, the matrices G and H are bounded in the operator norm, and the design is uncorrelated (the last
assumption can in principle be relaxed). In the case of pseudo self-concordant losses (Theorem 5.1), we
replace max(𝑑, 𝑑eff) with 𝑂(𝜌s log(𝑑)), both in the error rates and the minimal sample size requirements.
Unfortunately, for canonically self-concordant losses, we do not get the expected improvement by 𝜌 (see
Theorem 5.2), and the bounds essentially remain the same as in the case of pseudo self-concordance.
This, however, is not surprising, since sparsity and ℓ1-regularization depend on the choice of the basis,
and are not affine-invariant, which prevents us from fully exploiting self-concordance in the analysis by
forcing to rely on the usual ℓ1- and ℓ2-norms instead of ‖ · ‖H. More detailed discussion of these results
and their comparison with related work is deferred to Section 5.

1.5 Notation

We write 𝑓 . 𝑔 or 𝑓 = 𝑂(𝑔) to state that 𝑓(·) ≤ 𝐶𝑔(·) for any admissible arguments of 𝑓(·), 𝑔(·) and
some constant 𝐶 > 0; analogously for 𝑓 & 𝑔 or 𝑓 = Ω(𝑔). Notation 𝑓 ≈ 𝑔 means 𝑓 . 𝑔 . 𝑓 . [𝑛]
is the set of integers {1, 2, ..., 𝑛}. Throughout, 𝜃* is the unique minimizer of 𝐿(𝜃), Similarly, ̂︀𝜃𝑛 is the
minimizer of 𝐿𝑛(𝜃), which will be (provably) unique with high probability in all cases. Random vectors
are denoted with capital letters (such as 𝑍), and matrices with bold capital letters (such as A). I𝑑 is
the 𝑑× 𝑑 identity matrix. A⊤ is the transpose of A. For two square matrices A1,A2 of the same size,
we write A1 ≺ A2 (resp., A1 4 A2) when A2 −A1 is positive (semi)definite. We denote with ‖ · ‖𝑝
the ℓ𝑝-norm on R𝑑 and the Schatten ℓ𝑝-norm of a matrix; in particular, ‖A‖2 is the Frobenius and ‖A‖∞
the operator norm. For A ⪰ 0, we define the seminorm ‖𝜃‖A := ‖A1/2𝜃‖2.

2 Assumptions and examples

Before introducing the assumptions, we remind that the loss ℓ𝑍 : Θ → R is modeled as ℓ𝑍(𝜃) =
ℓ(𝑌,𝑋⊤𝜃) for some function ℓ(𝑦, 𝜂) on 𝒴 ×R(+), where 𝒴 is a subset of R, and R(+) is allowed to be
either R or the ray R+ of strictly positive numbers, which allows to encompass the exponential response
model (cf. Section 2.1). We refer to both ℓ𝑍(𝜃) and ℓ(𝑦, 𝜂) as the loss; which of the two we mean is clear
from context. The derivatives of ℓ(𝑦, 𝜂) are with respect to 𝜂.
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2.1 Self-concordance assumptions

Let us introduce the assumptions related purely to the loss, rather than to the data distribution. Our
standing assumption, which we silently use later on, is that the loss ℓ𝑧(·) is three times differentiable and
convex on Θ for any 𝑧 ∈ 𝒵 .

We first present the assumption of pseudo self-concordance, introduced in [Bac10] for the analysis
of logistic regression. The reader may refer to [STD18, TDKC15, BM13] for the uses of generalized
self-concordance in the context of quasi-Newton algorithms.

Assumption SCa. For any 𝑦 ∈ 𝒴 and 𝜂 ∈ R(+), the loss satisfies

|ℓ′′′(𝑦, 𝜂)| ≤ ℓ′′(𝑦, 𝜂).

We also consider the canonical self-concordance assumption first introduced in [NN94] in the context
of interior-point algorithms. The constant 2 is standard in the literature, but can be replaced with arbitrary
constant by rescaling the loss.

Assumption SCb. For any 𝑦 ∈ 𝒴 and 𝜂 ∈ R(+), the loss satisfies

|ℓ′′′(𝑦, 𝜂)| ≤ 2[ℓ′′(𝑦, 𝜂)]3/2.

We now present some examples in which either of these assumptions is satisfied.

2.1.1 Generalized linear models over canonical exponential family

In generalized linear models (GLM) with canonical link function ([MN89]), one has

ℓ(𝑦, 𝜂) = −𝑦𝜂 + 𝑎(𝜂)− 𝑏(𝑦), (17)

where the cumulant 𝑎(𝜂) : R(+) → R normalizes −ℓ(𝑦, 𝜂) to be a log-likelihood:

𝑎(𝜂) = log

∫︁

𝒴
exp(𝑦𝜂 + 𝑏(𝑦)) d𝑦.

With 𝜂 = 𝑋⊤𝜃, we have a conditional GLM for 𝑌 given 𝜂 = 𝑋⊤𝜃.
Note that the second and third derivatives of ℓ(𝑦, 𝜂) with respect to 𝜂 coincide with those of 𝑎(·),

hence ℓ satisfies the basic smoothness/convexity assumption whenever 𝑎(·) is three times differentiable
(as such, 𝑎(·) must be convex). In fact, the cumulant derivatives correspond to the central moments of 𝑌 :

𝑎′(𝜂) = E𝜂[𝑌 ], 𝑎′′(𝜂) = E𝜂[(𝑌 − E𝜂[𝑌 ])2], 𝑎′′′(𝜂) = E𝜂[(𝑌 − E𝜂[𝑌 ])3],

where E𝜂[·] is expectation with respect to the distribution with negative log-likelihood given by (17).
Hence, Assumption SCb states precisely that the skewness of the model distribution is bounded by a
constant uniformly over 𝜂 ∈ R(+). This is the case in the exponential response GLM where 𝑌 ∼ Exp(𝜂)
and 𝑎(𝜂) = − log(𝜂) defined on R(+) = R+.

On the other hand, Assumption SCa is satisfied whenever the third absolute central moment
of 𝑌 is uniformly bounded by the variance of 𝑌 , without the 3/2 power. This is the case in Pois-
son regression: 𝑌 ∼ Poisson(𝜆) with 𝜆 = exp(𝜂); then 𝑏(𝑦) = − log(𝑦!) and 𝑎(𝜂) = exp(𝜂) so
that 𝑎′′′(𝜂) = 𝑎′′(𝜂). This model is appropriate for count data where the rate of arrival itself depends mul-
tiplicatively on the canonical parameter 𝜂; see, e.g., [Chr06]. Perhaps most importantly, Assumption SCa
is automatically satisfied in logistic regression in which 𝒴 = {0, 1}, and 𝑌 is modeled as a Bernoulli
random variable with P𝜂{𝑌 = 1} = 𝜎(𝜂) where 𝜎(𝜂) = 1/(1 + 𝑒−𝜂) is the sigmoid function. In this
case, 𝑎(𝜂) = log(1 + 𝑒𝜂), and one can verify that 𝑎′′′(𝜂) = 𝑎′′(𝜂)(1 − 2𝜎(𝜂)), so Assumption SCa is
satisfied since |𝜎(𝜂)| < 1 for any 𝜂 ∈ R. Another way to see this is by looking at the cumulant and using
that 𝒴 = {0, 1}:

|𝑎′′′(𝜂)| ≤ |𝑌 − E𝜂[𝑌 ]| · E𝜂[(𝑌 − E𝜂[𝑌 ])2] ≤ E𝜂[(𝑌 − E𝜂[𝑌 ])2] = 𝑎′′(𝜂).
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Figure 1: Left: self-concordant pseudo-Huber loss, cf. (21). Right: self-concordant analogue of the
logistic loss suitable for classification, cf. (22). Although our classification loss does not upper-bound
the 0-1 loss on R+, it can be lower-bounded as Ω(− log(𝑦𝜂)) whenever 𝑦𝜂 > 0.

2.1.2 Robust estimation

Here, 𝒴 = R, and ℓ(𝑦, 𝜂) = 𝜙(𝑦 − 𝜂) for some contrast 𝜙 : R→ R, a function minimized in the origin
and usually even. Crucially, 𝜙(·) must be globally Lipschitz-continuous, which guarantees robustness
of the 𝑀 -estimator, see [Hub11]. On the other hand, from the statistical perspective, one can motivate
contrasts that are locally quadratic, i.e., such that 𝜙′′(0) exists and is strictly positive, see, e.g., [Loh17].4

These considerations, along with some minimax optimality results, lead to the Huber loss (see [Hub64]):

𝜙𝜏 (𝑡) =

{︃
𝑡2/2, |𝑡| ≤ 𝜏,

𝜏𝑡− 𝜏2/2, |𝑡| > 𝜏.
(18)

The Huber loss is parametrized by 𝜏 > 0, which allows to control the tradeoff between robustness and
statistical performance. Indeed, on one hand, |𝜙′

𝜏 (𝑡)| ≤ 𝜏 for any 𝑡 ∈ R, and we make estimation
more robust by decreasing 𝜏 ; on the other hand, the variance of the corresponding 𝑀 -estimator usually
decreases as 𝜏 . However, finite-sample statistical analysis of the Huber loss is complicated by the fact
that 𝜙(𝑡) is not 𝐶3-smooth. This is also unfavorable from the algorithmic perspective, as it complicates
the analysis of Newton-type algorithms for the computation of the 𝑀 -estimator. These issues can be
circumvented if one instead uses pseudo-Huber losses, which retain the favorable properties of the Huber
loss, yet are 𝐶3-smooth. E.g., such are contrasts of the form 𝜙𝜏 (𝑡) = 𝜏2𝜙(𝑡/𝜏) with

𝜙(𝑡) = log (cosh(𝑡)) , 𝜙(𝑡) =
√︀

1 + 𝑡2 − 1. (19)

In both cases, the resulting 𝜑′′𝜏 (·) satisfies 𝜑′′𝜏 (0) = 1 for any 𝜏 > 0, and |𝜙′
𝜏 (𝑡)| ≤ 𝜏 for any 𝑡 ∈ R.

Moreover, simple algebra shows that both functions in (19) satisfy Assumption SCa up to 𝑐 = 3, whence
|𝜙′′′
𝜏 (𝑡)| ≤ 3

𝜏 𝜑
′′
𝜏 (𝑡). As such, our theory is applicable to both these losses if they are properly renormalized.

2.1.3 Novel self-concordant losses

Here we construct a canonically self-concordant (up to a constant) pseudo-Huber loss, and similarly, a
canonically self-concordant loss suitable for classification and similar to the logistic loss. This construction

4However, this condition is not necessary for the asymptotic normality of 𝑀 -estimator. For example, the sample median
(𝜙(𝑡) = |𝑡|) in the model 𝑦 = 𝜃 + 𝜀 ∈ R is asymptotically normal provided that the density of 𝜀 does not vanish at 0.
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is motivated by the observation that our theory has a somewhat tighter guarantee on the critical sample
size (after which the fast rates occur) under the canonical self-concordance assumption. (However, in
practice the situation might be different as we explore in Sec. 6.) The key idea in this construction is that
self-concordance is preserved under convex conjugation (see, e.g., [STD18, Prop. 6]), while at the same
time one can control the range of the function through the domain of its convex conjugate (see [Roc70]).
Namely, consider 𝜑 : (−1, 1) → R+:

𝜑(𝑢) = − log(1− 𝑢2)/2, (20)

that is, the negative log-barrier on [−1, 1] normalized by 𝜑′′(0) = 1. Its convex conjugate 𝜙(𝑡) can be
explicitly computed:

𝜙(𝑡) =
1

2

[︃√︀
1 + 4𝑡2 − 1 + log

(︃√
1 + 4𝑡2 − 1

2𝑡2

)︃]︃
. (21)

Note that 𝜑(·) is even, satisfies 𝜑′′(0) = 1 and |𝜑′′′(𝑢)| ≤ 2
√
2[𝜑′′(𝑢)]3/2, since both functions log(1±𝑢)

satisfy Assumption SCb. By simple calculations detailed in Appendix C, 𝜙(𝑡) defined in (21) has all
the same properties. On the other hand, we have |𝜙′(𝑡)| < 1 since 𝜑(𝑢) is a barrier on [−1, 1]. Thus,
𝜙(𝑡) has all properties desired for a robust loss, and besides is canonically self-concordant (albeit with
constant 2

√
2 instead of 2). As illustrated in Figure 1, the quality of approximating the Huber loss for the

new loss is essentially as good as for the commonly used pseudo-Huber losses (19). The new loss has a
rescaled version 𝜙𝜏 (𝑡) = 𝜏2𝜙(𝑡/𝜏), for which 𝜙′′

𝜏 (0) = 1, |𝜙′
𝜏 (𝑡)| ≤ 𝜏 , and |𝜙′′′

𝜏 (𝑡)| ≤ (2/𝜏)[𝜙′′
𝜏 (𝑡)]

3/2.
Similarly, we can construct a self-concordant counterpart of the logistic loss suited for classification.

In this case, we take 𝜑(𝑢) = − log(𝑢(1 + 𝑢))/2, the normalized log-barrier of [−1, 0], whose convex
conjugate is

𝜑*(𝑡) =
1

2

[︃
−1− 𝑡+

√︀
1 + 𝑡2 + log

(︃√
1 + 𝑡2 − 1

2𝑡2

)︃]︃
.

The derivative of 𝜑*(·) must belong to (−1, 0), and is canonically self-concordant (up to a constant) by
the same reasoning as before. By rescaling and shifting it, we obtain the loss

ℓ(𝑦, 𝜂) = 2 +
1

2 log 2

[︃
−1− 𝑦𝜂 +

√︀
1 + (𝑦𝜂)2 + log

(︃√︀
1 + (𝑦𝜂)2 − 1

2(𝑦𝜂)2

)︃]︃
(22)

which can be understood as a convex surrogate of the 0-1 loss similar to the logistic loss, see Figure 1.
However, this loss is negative for 𝑦𝜂 > 2.4, and therefore does not globally upper-bound the 0-1 loss.
Fortunately, its right branch can be lower-bounded with Ω(− log(𝑦𝜂)), so the resulting “leakage” is
insignificant. On the other hand, this defect is unavoidable: one can show that a canonically self-
concordant function on R+ cannot have a horizontal asymptote: this would imply 𝜙′′(𝑡) →𝑡→+∞ 0,
contradicting Assumption SCb reformulated as |([𝜙′′(𝑡)]−1/2)′| ≤ 1. Finally, let us remark that the
“leakage” effect can also be quantified using the so-called calibration theory [BJM06].

2.2 Distribution assumptions

Preliminaries. We now introduce additional assumptions that ar e related to the distribution of the
design scaled by the derivatives of the loss at the true optimum 𝜃*. All these assumptions are fully local,
i.e., they only concern the true optimal point 𝜃*. We begin with the basic assumptions. First, we assume
the existence of the matrices

Σ := E[𝑋𝑋⊤], G := E[∇ℓ𝑍(𝜃*)∇ℓ𝑍(𝜃*)⊤], H := E[∇2ℓ𝑍(𝜃*)];
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Generally, Σ ̸= H (unless for least-squares), and G ̸= H (unless in a well-specified model). Recall that
E[∇ℓ𝑍(𝜃*)] = 0; as such, G is the covariance matrix of ∇ℓ𝑍(𝜃*). For future reference we also note that,
for any 𝜃 ∈ Θ, one has

∇ℓ𝑍(𝜃) = ℓ′(𝑌,𝑋⊤𝜃)𝑋, ∇2ℓ𝑍(𝜃) = ℓ′′(𝑌,𝑋⊤𝜃)𝑋𝑋⊤. (23)

We assume that 𝑋⊤𝜃 ∈ R(+) for any 𝜃 ∈ Θ and 𝑋 ∈ 𝒳 . This assumption is non-trivial only
whenR(+) = R+ which is of interest in the exponential response model. In this case, one can assume Θ ⊆
R𝑑+ and 𝒳 ⊆ R𝑑+ where R𝑑+ is the positive orthant, or replace the pair (R𝑑+,R

𝑑
+) with other pairs of

mutually dual convex cones in R𝑑.
Following [Ver12], we use the formalism of subgaussian, or 𝜓2-norms. The 𝜓2-norm ‖𝜉‖𝜓2 of

a random variable 𝜉 ∈ R can be defined in a number of equivalent ways (see Appendix A), e.g., as
‖𝜉‖𝜓2 := {𝜎 > 0 : E[𝑒𝜉

2/𝜎2
] ≤ 𝑒}. This definition extends to random vectors 𝑍 ∈ R𝑑 in a standard way:

‖𝑍‖𝜓2 := sup{‖⟨𝑍, 𝜃⟩‖𝜓2 : ‖𝜃‖2 ≤ 1}.

In other words, ‖𝑍‖𝜓2 is the maximal ‖ · ‖𝜓2-norm for all one-dimensional marginals of 𝑍. See
Appendix A on more details on subgaussian random variables.

Assumption D0. The decorrelated design is subgaussian: it holds

‖Σ−1/2𝑋‖𝜓2 ≤ 𝐾0.

Assumption D0 is often satisfied with a constant 𝐾0 not depending on 𝑛 or 𝑑. For example, this is the
case for zero-mean Gaussian design 𝑋 ∼ 𝒩 (0,Σ), or design with independent Bernoulli components.
Moreover, it can be shown that affine transformation of the design 𝑋 that satisfies Assumption D0 also
satisfies it, with at worst twice larger 𝐾0 (see Lemma A.5 in Appendix).

Assumption D1. The decorrelated loss gradient at 𝜃* is subgaussian:

‖G−1/2∇ℓ𝑍(𝜃*)‖𝜓2 ≤ 𝐾1.

Note that Assumption D1 can be reformulated in terms of the design vector scaled by the loss
derivative at 𝜃* since ∇ℓ𝑍(𝜃*) = ℓ′(𝑌,𝑋⊤𝜃*)𝑋 . Similarly, we can consider the random vector

̃︀𝑋 := [ℓ′′(𝑌,𝑋⊤𝜃*)]
1/2𝑋 (24)

which we call the calibrated design. Note that ̃︀𝑋 is linked with H by E[ ̃︀𝑋 ̃︀𝑋⊤] = H, cf. (23). As stated
next, we assume that the calibrated design is subgaussian. This allows to control the deviations of H𝑛

using Theorem A.2 in Appendix.

Assumption D2. The calibrated design ̃︀𝑋 := [ℓ′′(𝑌,𝑋⊤𝜃*)]
1/2𝑋 satisfies

‖H−1/2 ̃︀𝑋‖𝜓2 ≤ 𝐾2.

Assumption D2 can be reformulated in terms of the loss Hessian ∇2ℓ𝑍(𝜃*) due to (23). However,
this formulation does not give new ideas, and we omit it.

Remark 2.1. The quantities 𝐾0, 𝐾1, 𝐾2 are necessarily bounded with some absolute constant from
below. This fact follows from the moment characterization of the 𝜓2-norm (Item 2 of Lemma A.1 in
Appendix), combined with the bound (E|𝜉|4)1/4 ≥ (E|𝜉|2)1/2 for any random variable 𝜉 ∈ R, and allows
to simplify the formulation of the subsequent results.
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Remark 2.2. Assumptions D1–D2 are quite restrictive, even under Assumption D0. In particular,
in GLMs with canonical link function (cf. Section 2.1), the calibrated design at point 𝜃* is given
by ̃︀𝑋(𝜃) = [𝑎′′(𝑋⊤𝜃)]1/2𝑋 where 𝑎(𝜂) is the cumulant function. The transform [𝑎′′(𝑋⊤𝜃)]1/2 that
scales 𝑋 along a direction 𝜃 can be highly-non-linear, breaking subgaussianity for ̃︀𝑋(𝜃). For example,
Assumption D2 does not hold in Poisson regression. Another limitation of our approach is that the
constants 𝐾1,𝐾2 in Assumptions D1–D2 can depend on the magnitude of 𝜃*. In fact, for logistic
regression with Gaussian design 𝑋 ∼ 𝒩 (0,Σ), one has

𝐾2 . log(1 + ‖𝜃*‖Σ)
√︀

1 + ‖𝜃*‖Σ.

This proof of this estimate (see Appendix D) is highly non-trivial, and relies on the Gaussianity of 𝑋 . We
also show that

𝐾1 . 1 + ‖𝜃*‖3/2Σ

if the logistic model for 𝑌 |𝑋 is well-specified. This improves to 𝐾1 . 1 + ‖𝜃*‖1/2Σ if the subgaussian
norm ‖·‖𝜓2 is replaced with the subexponential norm ‖·‖𝜓1 (see Appendix D and Section 3 for details). In
other applications, one should carefully verify Assumptions D1–D2, bounding the constants 𝐾1 and 𝐾2.
This can be a non-trivial task itself, especially when the distribution of 𝑋 is unknown.

Finally, for pseudo self-concordant losses we need compatibility of Σ and H.

Assumption C. It holds Σ 4 𝜌H for some 𝜌 <∞.

Assumption C has already appeared in the statistical analysis of logistic regression in [BM13]. Note
that the simplest generic upper bound for 𝜌 is

𝜌 ≤
(︂

inf
(𝑦,𝜂)∈𝒴×R(+)

ℓ′′(𝑦, 𝜂)

)︂−1

, (25)

and unless ℓ′′(𝑦, ·) is strictly convex on R(+) (which is usually not the case), this bound is vacuous.
On the other hand, the infinum in (25) can be taken on the subset of R(+) corresponding to possible
values of 𝑋⊤𝜃*, but such bound can still be very conservative: for example, it only gives 𝜌 = 𝑂(𝑒𝑅𝐷)
in the case of logistic regression with ‖𝑋‖2 ≤ 𝑅 a.s. and Θ = {𝜃 ∈ R𝑑 : ‖𝜃‖2 ≤ 𝐷}. However, the
actual value of 𝜌 depends on the true distribution of the data, and is usually much smaller, see, e.g.,
dicsussion in [BM13, Sections 3.1, 4.2] for the case of logistic regression. For example, consider a
“quasi well-specified” robust regression model: ℓ(𝑌,𝑋⊤𝜃) = 𝜙(𝑌 −𝑋⊤𝜃) with even contrast 𝜙(·) and
unconstrained parameter. Suppose that the true distribution of 𝑌 is given by 𝑌 = 𝑋⊤𝜃*+𝜀. with 𝜀 being
independent from 𝑋 , zero-mean, and symmetrically distributed. One can check that in this case, 𝐿(𝜃) is
minimized at 𝜃*, and 𝜌 = 1/E[𝜙′′(𝜀)]. On the other hand, the worst-case bounds on 𝜌 can be enforced if
the data distribution is chosen adversarially. In particular, for logistic regression [HKL14] construct an
adversarial distribution that enforces 𝜌 = Ω(𝑒𝑅𝐷) as long as 𝑛 = 𝑂(𝑒𝑅𝐷).

3 Results under minimal assumptions

In this section, we present extensions of the asymptotic deviation bound (⋆) to the finite-sample regime
under minimal assumptions. We then refine these results in Section 4, under a slightly strengthened
version of Assumption D2, through a more subtle analysis. In the proofs, we use some probabilistic tools
collected in Appendix A; in particular, we use deviation bounds for the quadratic forms (Theorem A.1)
and for sample covariance matrices (Theorem A.2) of subgaussian vectors. We also use technical results
on (pseudo) self-concordant functions collected in Appendix B. Some of them appear to be new, and are
of independent interest. To improve readability, we defer the proofs to Appendix C.
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Preliminaries. In the results which we are about to present, there is a technical difficulty arising due to
the unboundedness of the vectors𝑋 and ̃︀𝑋 , cf. (24).5 To this end, we observe that, due to Assumptions D0
and D2, these vectors admit 𝑂(

√
𝑑) high-probability bound on their norms – more precisely, the events

ℰ0 :=
{︁
‖𝑋‖Σ−1 . 𝐾0

√︀
𝑑 log (𝑒/𝛿)

}︁
, ℰ2 :=

{︁
‖ ̃︀𝑋‖H−1 . 𝐾2

√︀
𝑑 log (𝑒/𝛿)

}︁

hold with probability ≥ 1− 𝛿, correspondingly, under Assumptions D0 and D2. To exploit this fact, we
replace the population risk 𝐿(𝜃) with the restricted risks:

𝐿ℰ0(𝜃) := E[ℓ𝑍(𝜃)1 {𝑋 ∈ ℰ0}]; 𝐿ℰ2(𝜃) := E[ℓ𝑍(𝜃)1{ ̃︀𝑋 ∈ ℰ2}], (26)

where we exclude from averaging the low-probability outcomes in which the norms of 𝑋 and ̃︀𝑋 are too
large. Provided that 𝛿 is small enough, we can show that ∇𝐿ℰ0(𝜃*) ≈ ∇𝐿ℰ2(𝜃*) ≈ 0 and ∇2𝐿ℰ0(𝜃*) ≈
∇2𝐿ℰ2(𝜃*) ≈ ∇2𝐿(𝜃*), so that the second-order structure of the population risk is preserved; at the same
time, we can now work with 𝑋 and ̃︀𝑋 as if they were almost surely bounded.

We now present our basic result for 𝑀 -estimators with self-concordant losses.

Theorem 3.1. Let Assumptions SCa, D0, D1, D2, and C hold. Whenever

𝑛 & max
{︀
𝐾4

2 (𝑑+ log (1/𝛿)) , 𝜌𝐾2
0𝐾

2
1𝑑eff 𝑑 log (𝑒𝑑/𝛿)

}︀
, (27)

with probability at least 1− 𝛿 it holds

‖∇𝐿𝑛(𝜃*)‖2H−1 .
𝐾2

1𝑑eff log (𝑒/𝛿)

𝑛
, (28)

‖̂︀𝜃𝑛 − 𝜃*‖2H . ‖∇𝐿𝑛(𝜃*)‖2H−1 . (29)

Moreover, one has

𝐿ℰ0(
̂︀𝜃𝑛)− 𝐿ℰ0(𝜃*) .

𝐾2
1𝑑eff log (𝑒/𝛿)

𝑛
(30)

provided that

𝛿 . min

⎧
⎨
⎩

(︃
1√︀

𝑛 log(𝑒𝑑eff)

)︃1+1/ log(𝑑eff)

,

(︂
1

𝐾2
2𝑑 log(𝑒𝑑)

)︂1+1/ log(𝑑)
⎫
⎬
⎭ . (31)

The main message of Theorem 3.1 is that, under minimal assumptions, the “quadratic” behavior
of the population risk, as given by (28)–(30), is guaranteed for sample sizes growing quadratically in
parameter dimension – more precisely, for 𝑛 = ̃︀Ω(𝜌 · 𝑑 · 𝑑eff), cf. the second bound in (27), where ̃︀Ω hides
subgaussian constants and the logarithmic factor in 𝛿. Technically, the curvature parameter 𝜌 appears
in (27) because of the “incorrect” power of the second derivative in Assumption SCa as compared to
power 3/2 in Assumption SCb. Indeed, for canonically self-concordant losses, the factor 𝜌𝐾2

0 in the
bound for the critical sample size get replaced with 𝐾2

2 , and Assumptions C and D0 are not needed.

Theorem 3.2. Let Assumptions SCb, D1, D2 hold, and assume that 𝛿 satisfies (31). Then, (28)–(30) are
satisfied, with 𝐿ℰ2(·) instead of 𝐿ℰ0(·), whenever

𝑛 & max
{︀
𝐾4

2 (𝑑+ log (1/𝛿)) , 𝐾2
1𝐾

2
2𝑑eff 𝑑 log (𝑒𝑑/𝛿)

}︀
. (32)

We also note that both of the above results include a technical condition (31) that does not min-
imal violation probability 𝛿. This condition is mild, as the admissible 𝛿 depends polynomially on 𝑛
and 𝑑. Moreover, this condition can be dropped if one reinforces Assumption D0 (resp., D2) by as-
suming that Σ−1/2𝑋 (resp., H−1/2 ̃︀𝑋) is almost surely bounded. The corresponding modifications of
Theorems 3.1–3.2 are given in the arXiv version of this paper [OB18, Thms 3.1–3.2].

As we previously discussed (cf. Remark 2.2), Assumptions D0–D2, although local, are quite restric-
tive, as they assume light-tailed behavior. Next we discuss how these assumptions can be relaxed.

5This issue arises due to working with individual losses; as a result, it does not appear in our refined results, presented in
Section 4, in which we analyze the empirical risk “as a whole”.
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Extension to heavy-tailed distributions. To extend the results, we might use the confidence-boosting
technique based on a version of the multi-dimensional sample median as proposed in [HS16]. This allows
to completely get rid of Assumption D1, only assuming the existence of the covariance matrix G(𝜃*).
To use the technique, one first divides the sample into 𝑘 = log(𝑒/𝛿) non-overlapping subsamples, and
computes the corresponding 𝑀 -estimators ̂︀𝜃(1), ..., ̂︀𝜃(𝑘) over each subsample. Then, one aggregates them
through [HS16, Algorithm 3], by using

dist(𝑖)(𝜃) := ‖𝜃 − ̂︀𝜃(𝑖)‖ ̂︀H(𝑖) , ̂︀H(𝑖) := ∇2𝐿𝑛(̂︀𝜃(𝑖))

as the random distance oracle related to ̂︀𝜃(𝑖). The final estimator is ̂︀𝜃(̂︀𝑖) with

̂︀𝑖 ∈ Argmin
𝑖∈[𝑘]

{︂
Median

[︂(︁
dist(𝑗)(̂︀𝜃(𝑖))

)︁
𝑗∈[𝑘]

]︂}︂
.

By Chebyshev’s inequality, each ̂︀𝜃(𝑖) admits a fixed-probability version of (28), say, with 𝛿 = 2/3. On
the other hand, for each 𝑖 ∈ [𝑘], one has

1
2H 4 ∇2𝐿𝑛(̂︀𝜃(𝑖)) 4 2H

with fixed probability. Indeed, 1
2𝐿(𝜃*) 4 𝐿𝑛(𝜃*) 4 2𝐿(𝜃*) by the analysis in Theorems 3.1–3.2.

Then, our integration argument (cf. the proof of Lemmas B.1–B.3 in appendix) allows to relate 𝐿𝑛(𝜃*)
to 𝐿𝑛(̂︀𝜃(𝑖)) and results in 1

2𝐿𝑛(𝜃*) 4 𝐿𝑛(
̂︀𝜃(𝑖)) 4 2𝐿𝑛(𝜃*). Finally, the estimators over different subsam-

ples are mutually independent. Thus, we can apply Theorem 11 of [HS16], which finally yields (30).
A similar technique also allows to somewhat weaken Assumptions D0 and D2, replacing the

subgaussian norm ‖ · ‖𝜓2 with the subexponential norm ‖ · ‖𝜓1 at the expense of an extra loga-
rithmic factor. (By definition, 𝑋 ∈ R𝑑 satisfies ‖𝑋‖𝜓1 ≤ 𝐾 if for any 𝑢 on the unit sphere one
has (E[|⟨𝑋,𝑢⟩|𝑝])1/𝑝 . 𝐾𝑝, compared to 𝐾

√
𝑝 in the case of ‖ · ‖𝜓2 , cf. Lemma A.1 in Appendix.) This

can be done by replacing Theorem A.2 (high-probability bound for subgaussian distributions) with [Ver12,
Theorem 5.48] (fixed-probability bound for subexponential distributions), controllingE[max𝑖∈[𝑛] ‖𝑋𝑖‖2H]

and E[max𝑖∈[𝑛] ‖ ̃︀𝑋𝑖‖2H] via Bernstein’s inequality (Theorem A.1 in Appendix). However, this technique
is limited to subexponential distributions of 𝑋 and ̃︀𝑋 as required by [Ver12, Theorem 5.48].

On the other hand, replacing Assumptions D0 and D2 with finite-moment assumptions (ideally, finite
kurtoses of vectors 𝑋 and ̃︀𝑋) is challenging. First of all, sample covariance estimators ̂︀Σ and ̂︀H would
have to be replaced by some estimators Σ̄ and H̄ that admit affine-invariant bounds of the form

1
2Σ 4 Σ̄ 4 2Σ, 1

2H 4 H̄ 4 2H (33)

with high probability, under the existence of only finite moments (ideally, the fourth moment) of 𝑋 and ̃︀𝑋
in any direction. Such estimators were recently obtained in [OR19] based on the iterative appication of the
truncated covariance estimator analyzed in [WM17]. Computing such an estimator on the hold-out sample
would allow to get rid of Assumption D0 in Theorem 3.1. However, this technique by itself does not allow
relax Assumption D2, note first that we do not know the true minimizer 𝜃*, and hence cannot directly
compute the robust estimator H̄. A possible remedy, leading to the extension of Theorems 3.1–3.2, is to
apply an approximation technique on top of the affine-invariant covariance estimator, similarly to the
one used below to prove Theorems 4.1–4.2 with improved critical sample size. As we will discuss in the
end of Section 4, this would allow to get rid of Assumptions D0 and D2 in Theorems 3.1–3.2 but not in
Theorems 4.1–4.2.

4 Improved results: near-linear critical sample size

As we demonstrate next, the previously obtained bounds on the critical sample size can be improved:
essentially, the product of 𝑑eff and 𝑑 can be replaced with their maximum. This requires to slightly
strengthen Assumption D2 as follows.
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Assumption D2*. The calibrated design ̃︀𝑋(𝜃) := [ℓ′′(𝑌,𝑋⊤𝜃)]1/2𝑋 satisfies

‖H(𝜃)−1/2 ̃︀𝑋(𝜃)‖𝜓2 ≤ 𝐾̄2(𝑟),

where H(𝜃) = E[ ̃︀𝑋(𝜃) ̃︀𝑋(𝜃)⊤], for any 𝜃 in the Dikin ellipsoid Θ𝑟(𝜃*) given by

Θ𝑟(𝜃*) := {𝜃 ∈ R𝑑 : ‖𝜃 − 𝜃*‖H(𝜃*) ≤ 𝑟}.

Note that Assumption D2 corresponds to Assumption D2* with 𝑟 = 0, the correspondence being
given by 𝐾2 = 𝐾̄2(0). On the other hand, the strengthened assumption is still local, i.e., it only concerns
the points 𝑟-close to 𝜃*, in the local Hessian metric, rather than in the whole domain Θ. With the new
assumption at hand, we now state the improved result for canonically self-concordant losses.

Theorem 4.1. Assume SCb, D1, and D2* with 𝑟 & 1. Then, (28), (29) and

𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) .
𝐾2

1𝑑eff log (𝑒/𝛿)

𝑛
(34)

hold as long as
𝑛 & max

{︀
𝐾̄4

2 (𝑟)𝑑 log (𝑒𝑑/𝛿) , 𝐾
2
1𝐾̄

6
2 (𝑟)𝑑eff log (𝑒/𝛿)

}︀
. (35)

Let us briefly explain the key ideas behind this result. First of all, recall that the extra factor 𝑑 in the
bound of Theorem 3.2 appears because self-concordance of the individual losses only allows to obtain a
second-order approximation of the empirical risk in a small Dikin ellipsoid with radius 𝑂(1/

√
𝑑), due

to the fact that ‖ ̃︀𝑋‖H−1 = Ω(
√
𝑑) with high probability. This second-order approximation then allows

to localize the estimate as soon as ‖∇𝐿𝑛(𝜃*)‖H−1 becomes smaller than the radius of the ellipsoid in
which such an approximation holds, cf. the proof of Proposition B.3. Hence, the extra factor 𝑑 would
be eliminated if we managed to provide a second-order Taylor approximation of 𝐿𝑛(𝜃) in the constant-
radius Dikin ellipsoid Θ𝑐(𝜃*). The immediately arising difficulty is that unlike the individual losses, the
empirical risk is not self-concordant, hence, the desired Taylor approximation cannot be obtained purely
by integration. Instead, we conduct a somewhat non-standard argument (see Figure 2) which combines (i)
self-concordance of the population risk following from Assumption D2*; (ii) self-concordance of the
individual losses; (iii) a covering argument in which ellipsoid Θ𝑐(𝜃*) is covered with small ellipsoids
with radius 𝑂(1/𝑑𝛾) for some 𝛾 ≥ 1/2. In particular, we choose 𝛾 = 2: this simplifies the calculations
in the final step of the proof without breaking (35) since 𝑑𝛾 enters the analysis under logarithm, when
bounding covering numbers.

Next we present a counterpart of Theorem 4.1 for pseudo self-concordant losses. As one might expect,
the bound on the critical sample size degrades by 𝜌.

Theorem 4.2. Assume SCa, D0, D1,C, and D2* with 𝑟 & 1/
√
𝜌. Then, (28), (29) and (34) hold whenever

𝑛 & max
{︀
𝐾̄4

2 (𝑟)𝑑 log (𝑒𝑑/𝛿) , 𝜌𝐾
2
0𝐾

2
1𝐾̄

4
2 (𝑟)𝑑eff log (𝑒/𝛿)

}︀
. (36)

The two results above merit some discussion.
First, note that, in the case of pseudo self-concordance, the radius of the Dikin ellipsoid in which

Assumption D2* is required to hold is
√
𝜌 times smaller than in the case of canonical self-concordance.

As it will become clear from the proof of Theorem 4.2, this deflation is related to the fact that we cannot
control the Hessians of 𝐿(𝜃) over Dikin ellipsoids with a larger radius, even when Assumption D2*

holds on such an ellipsoid. On the other hand, decreasing the radius 𝑟 of the Dikin ellipsoid allows to
control 𝐾̄2(𝑟): in Appendix D we show that, in logistic regression with Gaussian design 𝑋 ∼ 𝒩 (0,Σ),

𝐾̄2
2 (𝑟) . 𝐾̄

2
2 (0) + 𝑟

√
𝜌.
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•<latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit>

•<latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit><latexit sha1_base64="XWcYDnWW9PR4DT0yfDO+qP4AA98=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jGCeUCyhNlJbzJk9sFMrxCWfIQXD4p49Xu8+TdOkj1oYkFDUdVNd1eQKmnIdb+dtfWNza3t0k55d2//4LBydNwySaYFNkWiEt0JuEElY2ySJIWdVCOPAoXtYHw389tPqI1M4keapOhHfBjLUApOVmr3gkwppH6l6tbcOdgq8QpShQKNfuWrN0hEFmFMQnFjup6bkp9zTVIonJZ7mcGUizEfYtfSmEdo/Hx+7pSdW2XAwkTbionN1d8TOY+MmUSB7Yw4jcyyNxP/87oZhTd+LuM0I4zFYlGYKUYJm/3OBlKjIDWxhAst7a1MjLjmgmxCZRuCt/zyKmld1jy35j1cVeu3RRwlOIUzuAAPrqEO99CAJggYwzO8wpuTOi/Ou/OxaF1zipkT+APn8wd4EY+k</latexit>

•<latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit><latexit sha1_base64="NBxMvorF0uI5cm6qXLzfrn5RL+s=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkoigh6LXjxWsK3QhLLZTtqlmw92J2IJwYt/xYsHRbz6K7z5b9ymOWjrg4HHezM7O89PBFdo299GZWl5ZXWtul7b2Nza3jF39zoqTiWDNotFLO98qkDwCNrIUcBdIoGGvoCuP76a+t17kIrH0S1OEvBCOox4wBlFLfXNAxfhAYt3Ml+kkGeunwoBmPfNut2wC1iLxClJnZRo9c0vdxCzNIQImaBK9Rw7QS+jEjkTkNfcVEFC2ZgOoadpRENQXlaszq1jrQysIJa6IrQK9fdERkOlJqGvO0OKIzXvTcX/vF6KwYWX8ShJESI2WxSkwsLYmuZhDbgEhmKiCWWS679abEQlZahTq+kQnPmTF0nntOHYDefmrN68LOOokkNyRE6IQ85Jk1yTFmkTRh7JM3klb8aT8WK8Gx+z1opRzuyTPzA+fwDmwJhh</latexit>

✓0 2 N"
<latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit><latexit sha1_base64="QywVmX585ztVAZ5gLmS2oBxJPWc=">AAACDHicbVDLSgNBEJyN7/iKevQyGERPYVcEPYpePEkEo0I2hN5JxwyZnV1megNhyQd48Ve8eFDEqx/gzb9xssnBV8FAUVXNdFeUKmnJ9z+90szs3PzC4lJ5eWV1bb2ysXltk8wIbIhEJeY2AotKamyQJIW3qUGII4U3Uf9s7N8M0FiZ6CsaptiK4U7LrhRATmpXqiH1kGCPh1LzMAbqCVD5xagdDsBgaqUqUn7NL8D/kmBKqmyKervyEXYSkcWoSSiwthn4KbVyMCSFwlE5zCymIPpwh01HNcRoW3lxzIjvOqXDu4lxTxMv1O8TOcTWDuPIJcfr2t/eWPzPa2bUPW7lUqcZoRaTj7qZ4pTwcTO8Iw0KUkNHQBjpduWiBwYEuf7KroTg98l/yfVBLfBrweVh9eR0Wsci22Y7bJ8F7IidsHNWZw0m2D17ZM/sxXvwnrxX720SLXnTmS32A977F/Hcm48=</latexit>

✓ 2 ⇥c(✓⇤)
<latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit><latexit sha1_base64="0AXCeeEJni/ahJyWqX4VUbLLs/Y=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiVBclEUGXRTcuK/QGTQmT6aQdOpmEmROhhK7c+CpuXCji1mdw59s4abvQ1h8GPv5zDmfOHySCa3Ccb6uwsrq2vlHcLG1t7+zu2fsHLR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Davtx+Y0jyWDRgnrBeRgeQhpwSM5dvHHgwZEOxxib1Gjj6tzDz//My3y07VmQovgzuHMpqr7ttfXj+macQkUEG07rpOAr2MKOBUsEnJSzVLCB2RAesalCRiupdNz5jgU+P0cRgr8yTgqft7IiOR1uMoMJ0RgaFerOXmf7VuCuF1L+MySYFJOlsUpgJDjPNMcJ8rRkGMDRCquPkrpkOiCAWTXMmE4C6evAyti6rrVN37y3LtZh5HER2hE1RBLrpCNXSH6qiJKHpEz+gVvVlP1ov1bn3MWgvWfOYQ/ZH1+QPbs5gS</latexit>

✓⇤<latexit sha1_base64="NLwadCwAqrj2PuHY7U0krI/qC3A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIsgHkoigh6LXjxWsLXQhrLZTtulm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSKFIc/7dgorq2vrG8XN0tb2zu5eef+gaeJUc2zwWMa6FTKDUihskCCJrUQji0KJD+HoZuo/PKE2Ilb3NE4wiNhAib7gjKzU6tAQiXXPuuWKV/VmcJeJn5MK5Kh3y1+dXszTCBVxyYxp+15CQcY0CS5xUuqkBhPGR2yAbUsVi9AE2ezeiXtilZ7bj7UtRe5M/T2RsciYcRTazojR0Cx6U/E/r51S/yrIhEpSQsXni/qpdCl2p8+7PaGRkxxbwrgW9laXD5lmnGxEJRuCv/jyMmmeV32v6t9dVGrXeRxFOIJjOAUfLqEGt1CHBnCQ8Ayv8OY8Oi/Ou/Mxby04+cwh/IHz+QPCy4/F</latexit><latexit sha1_base64="NLwadCwAqrj2PuHY7U0krI/qC3A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIsgHkoigh6LXjxWsLXQhrLZTtulm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSKFIc/7dgorq2vrG8XN0tb2zu5eef+gaeJUc2zwWMa6FTKDUihskCCJrUQji0KJD+HoZuo/PKE2Ilb3NE4wiNhAib7gjKzU6tAQiXXPuuWKV/VmcJeJn5MK5Kh3y1+dXszTCBVxyYxp+15CQcY0CS5xUuqkBhPGR2yAbUsVi9AE2ezeiXtilZ7bj7UtRe5M/T2RsciYcRTazojR0Cx6U/E/r51S/yrIhEpSQsXni/qpdCl2p8+7PaGRkxxbwrgW9laXD5lmnGxEJRuCv/jyMmmeV32v6t9dVGrXeRxFOIJjOAUfLqEGt1CHBnCQ8Ayv8OY8Oi/Ou/Mxby04+cwh/IHz+QPCy4/F</latexit><latexit sha1_base64="NLwadCwAqrj2PuHY7U0krI/qC3A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIsgHkoigh6LXjxWsLXQhrLZTtulm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSKFIc/7dgorq2vrG8XN0tb2zu5eef+gaeJUc2zwWMa6FTKDUihskCCJrUQji0KJD+HoZuo/PKE2Ilb3NE4wiNhAib7gjKzU6tAQiXXPuuWKV/VmcJeJn5MK5Kh3y1+dXszTCBVxyYxp+15CQcY0CS5xUuqkBhPGR2yAbUsVi9AE2ezeiXtilZ7bj7UtRe5M/T2RsciYcRTazojR0Cx6U/E/r51S/yrIhEpSQsXni/qpdCl2p8+7PaGRkxxbwrgW9laXD5lmnGxEJRuCv/jyMmmeV32v6t9dVGrXeRxFOIJjOAUfLqEGt1CHBnCQ8Ayv8OY8Oi/Ou/Mxby04+cwh/IHz+QPCy4/F</latexit><latexit sha1_base64="NLwadCwAqrj2PuHY7U0krI/qC3A=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIsgHkoigh6LXjxWsLXQhrLZTtulm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSKFIc/7dgorq2vrG8XN0tb2zu5eef+gaeJUc2zwWMa6FTKDUihskCCJrUQji0KJD+HoZuo/PKE2Ilb3NE4wiNhAib7gjKzU6tAQiXXPuuWKV/VmcJeJn5MK5Kh3y1+dXszTCBVxyYxp+15CQcY0CS5xUuqkBhPGR2yAbUsVi9AE2ezeiXtilZ7bj7UtRe5M/T2RsciYcRTazojR0Cx6U/E/r51S/yrIhEpSQsXni/qpdCl2p8+7PaGRkxxbwrgW9laXD5lmnGxEJRuCv/jyMmmeV32v6t9dVGrXeRxFOIJjOAUfLqEGt1CHBnCQ8Ayv8OY8Oi/Ou/Mxby04+cwh/IHz+QPCy4/F</latexit>

Figure 2: The crucial step in the proof of Theorem 4.1 is to ensure that 1
2H(𝜃*) 4 H𝑛(𝜃) 4 2H(𝜃*)

holds with high probability uniformly over the constant-radius Dikin ellipsoid Θ𝑐(𝜃*) (in green). Using
Assumption D2*, we first prove that 1

2H(𝜃*) 4 H(𝜃) 4 2H(𝜃*) for any 𝜃 ∈ Θ𝑐(𝜃*). On the other hand,
self-concordance of individual losses provides a constant-order approximation of H𝑛(·) within a smaller
ellipsoid with radius 𝑂(1/𝑑𝛾), for some 𝛾 ≥ 1/2, around 𝜃. As such, the problem is reduced to the
control of the uniform deviations of H𝑛(𝜃) from H(𝜃) for 𝜃 ∈ 𝒩𝜀, where 𝒩𝜀 is the epsilon-net of Θ1(𝜃*)
with respect to the norm ‖ · ‖H(𝜃*) with 𝜀 = 𝑂(1/𝑑𝛾). This is done by using Theorem A.2.

Thus Assumption D2* with 𝑟 = 1/
√
𝜌 is essentially equivalent to Assumption D2.

Second, note that the second threshold in (35) has an extra 𝐾̄4
2 (𝑟) factor compared to that in (32) if

we do not distinguish between 𝐾̄2(𝑟) and 𝐾2 = 𝐾̄2(0), and similarly when comparing (36) and (27).
This can be a substantial difference since 𝐾2 and 𝐾̄2(𝑟) can both depend on the norm of 𝜃*. In
fact, in Appendix D (Proposition D.1) we show, by a technical calculation, that in logistic regression
with 𝑋 ∼ 𝒩 (0,Σ) one has

𝜌 . (1 + ‖𝜃*‖Σ)3,
this bound being tight, while the bound on 𝐾̄2(1/

√
𝜌) is

𝐾̄2(1/
√
𝜌) .

√︀
1 + ‖𝜃*‖Σ

up to a logarithmic factor. Thus, 𝐾̄4
2 (1/

√
𝜌) can potentially be as large as 𝜌2/3. On the other hand, when

the distribution of ̃︀𝑋(𝜃) is log-concave and centrally symmetric at any 𝜃 ∈ Θ𝑟(𝜃*), the factor 𝐾̄4
2 (𝑟) can

be eliminated. This amounts to using the improved relation between the third and second moments of the
marginals of H(𝜃)−1/2 ̃︀𝑋(𝜃) in step 1𝑜 of the analysis in Theorems 4.1–4.2:

E[|⟨H(𝜃)−1/2 ̃︀𝑋(𝜃), 𝑢⟩|3| ≤ 7(E[⟨𝑢,H(𝜃)−1/2 ̃︀𝑋(𝜃), 𝑢⟩2])3/2,

as follows from [BE15, Lem. 2] by simple algebra, using log-concavity of H(𝜃)−
1
2 ̃︀𝑋(𝜃).
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Extending Theorems 4.1–4.2 to heavy-tailed distributions. One fact playing the key role in the
proofs of the last two theorems is that in the bound

𝐾2(𝑑+ log(𝑒/𝛿)) (37)

for the sample complexity of estimating a single covariance matrix, the confidence term log(1/𝛿)
is additive with 𝑑. This allows to take the union bound over an exponential in 𝑑 number of events
correponding to the centers of the epsilon net, while still preserving a near-linear in 𝑑 sample complexity.

As discussed in Section 3, the main technical challenge when trying to extend our results to heavy-
tailed distributions is posed by Assumption D2, which for Theorems 4.1–4.2 gets strengthened to As-
sumption D2*. To get rid of it, one could replace the empirical Hessians ̂︀H(𝜃) by some estimator H̄(𝜃)
that estimates H(𝜃) with high confidence in the positive-semidefinite sense (cf. (33)) under weak moment
assumptions. Given such estimators, we can essentially repeat the covering argument in the analysis of
Theorems 4.1–4.2, replacing the Hessian estimate in any 𝜃 ∈ Θ𝑟(𝜃*) (with 𝑟 = 1 or 𝑟 = 1/

√
𝜌) with

the estimate H̄(𝜃′) in the closest center 𝜃′ of the cover, and replacing empirical risk minimization with a
version of stochastic quasi-Newton algorithm with H̄(𝜃′) as the Hessian oracle for H(𝜃). Unfortunately,
the only known to us estimator that provably satisfies a high-confidence affine-invariant bound under
weak moment assumptions is the one from [OR19], and its sample complexity scales as

𝐾2𝑑 log(𝑒/𝛿),

i.e., the confidence term enters multiplicatively with 𝑑. After taking the union bound over 𝑑𝑂(𝑑) events,
this bound becomes quadratic in 𝑑. While this is sufficient to extend Theorems 3.1–3.2, the argument in
Theorems 4.1–4.2 is destroyed. Thus, extending the latter theorems, and obtaining near-linear sample
complexity, has to rely on 4-type covariance estimation with additive confidence, cf. (37). The closest in
this direction is the recent work [MZ18] which establishes a high-probability bound in the operator norm,
‖̂︀Σ −Σ‖ ≤ 𝑐‖Σ‖, holding with probability ≥ 1 − 𝛿 when 𝑛 ≥ 𝐶(𝜅)[𝑟(Σ) + log(1/𝛿)], where 𝐶(𝜅)
is a constant depending only on the kurtosis, and 𝑟(Σ) := Tr(Σ)/‖Σ‖ ≤ 𝑑 is the effective rank.
Unfortunately, it is challenging to apply this result in our context, since the operator-norm bounds cannot
be translated to4-type guarantees akin to (33) when the estimator is not affine-equivariant. Some progress
in this direction has recently been obtained in [OR19]; see [OR19, Sec. 2.3] for a detailed discussion.

5 High-dimensional setup

Our next goal is to extend the results obtained so far to the high-dimensional setting. Namely, we
assume that Θ = R𝑑 with 𝑑 ≫ 𝑛, and that the optimal parameter 𝜃* is sparse, i.e., the number of
non-zero components of 𝜃* is at most s ≪ 𝑑. Note that if the support 𝒮 of 𝜃* was known, a reasonable
estimator could be obtained by replacing 𝑋 with its projection 𝑋𝒮 on 𝒮, and minimizing the empirical
risk on 𝒮. As in the case of quadratic loss, and the classical Lasso estimator, this would lead to the
improvement over the results of Section 3–4: the ambient dimension 𝑑 would be replaced with s, and 𝑑eff
with the quantity Tr(H−1

𝒮 G𝒮) where G𝒮 = E[ℓ′(𝑌,𝑋⊤
𝒮 𝜃*)𝑋𝒮𝑋

⊤
𝒮 ] and H𝒮 = E[ℓ′′(𝑌,𝑋⊤

𝒮 𝜃*)𝑋𝒮𝑋
⊤
𝒮 ].

However, in reality 𝒮 is unknown, and the common recommendation is to use the ℓ1-penalized 𝑀 -
estimator, given by

̂︀𝜃𝜆,𝑛 ∈ Argmin
𝜃∈R𝑑

𝐿𝑛(𝜃) + 𝜆‖𝜃‖1. (38)

In the case of quadratic loss, it is well-known that the risk of the ℓ1-penalized estimator, when mea-
sured in terms of the ℓ1-loss or the “prediction” loss corresponding to the design covariance matrix,
is within a logarithmic in 𝑑 factor from the “ideal” risk of the projection oracle, provided that the pe-
nalization parameter 𝜆 is appropriately chosen, and the design is near-isotropic and subgaussian – see,
e.g., [Tib96], [CT07], [BRT09], [JN11]. While the statistical theory for the quadratic loss is almost
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complete, this is not yet the case for general 𝑀 -estimators. Here our goal is to partially close this gap,
providing analogues of Theorems 3.1 and 3.2 in the high-dimensional setting. These results extend those
obtained in [Bac10] for the logistic loss using pseudo self-concordance, and are close to those proved
in [vdGM12]; we discuss the connections with these works in the end of this section. Finally, notice that
we do not prove analogues of Theorems 4.1–4.2, which would have resulted in a near-linear, rather than
quadratic, dependency of the critical sample size from s. We leave such extensions for future work.

We now introduce the final assumption complimentary to Assumption C.

Assumption C*. One has Σ = I. Moreover, for some κ1,κ2 > 0 it holds

G 4 κ1I, H 4 κ2I.

Together, Assumptions C and C* imply the bounds in operator norm:

‖G‖∞ ≤ κ1, ‖H‖∞ ≤ κ2, ‖H−1‖∞ ≥ 1/𝜌.

Moreover, we can reasonably expect that in the ill-specified case, G < H, which is a stronger version of
the natural inequality 𝑑eff ≥ 𝑑. When this is the case, the eigenvalues of both H and G belong to the
interval [𝜌−1,κ] where κ := max(κ1,κ2). Then, the product

𝑄 := 𝜌κ

can be considered as the condition number of the estimation problem at hand. In particular, we are about
to see that the excess risk bounds, as well the bounds for the critical sample size, get inflated by 𝑄 in the
high-dimensional regime. This reflects the requirement that the problem should be well-conditioned with
respect to the standard coordinate basis, since both ℓ0-“norm” and ℓ1-norm depend on the choice of the
basis. Some further remarks are given below.

• Similarly to the bound (25), we can always bound κ1 and κ2:

κ1 ≤ sup
(𝑦,𝜂)∈𝒴×R

|ℓ′(𝑦, 𝜂)|, κ2 ≤ sup
(𝑦,𝜂)∈𝒴×R

ℓ′′(𝑦, 𝜂).

Arguably, these bounds are more informative than the bound (25) for 𝜌, as they involve the suprema
of the loss derivatives (e.g., the right-hand sides are constants for pseudo-Huber and logistic losses).

• Correlated designs can also be considered, but this would lead to the inflation of the bounds by the
condition number of Σ. This is natural, as ℓ1-regularization fixes the basis, and the estimator is not
affine-invariant.

The next result characterizes the statistical properties of the ℓ1-penalized 𝑀 -estimator (38) with a
canonically self-concordant loss, extending Theorem 3.1.

Theorem 5.1. Assume SCa, D0, D1, D2, C, C*, and |𝜃*|0 ≤ s.

1. Whenever
𝑛 & max

{︀
𝜌κ2𝐾

4
2s log (𝑒𝑑/𝛿) , 𝜌

2κ1𝐾
2
0𝐾

2
1s

2 log (𝑒𝑑𝑛/𝛿)
}︀
, (39)

and the regularization parameter satisfies

𝐾1

√︂
κ1 log(𝑒𝑑/𝛿)

𝑛
. 𝜆 .

1

𝜌𝐾0s
√︀

log(𝑒𝑑𝑛/𝛿)
, (40)

we have that with probability at least 1− 𝛿,

‖̂︀𝜃𝜆,𝑛 − 𝜃*‖1 . 𝜌s𝜆, ‖̂︀𝜃𝜆,𝑛 − 𝜃*‖2H . 𝜌s𝜆2. (41)
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2. Define ℰ := {‖𝑋‖∞ . 𝐾0

√︀
log (𝑒𝑑/𝛿)}. Then, P(ℰ) ≥ 1− 𝛿, and whenever

𝛿 .

(︃
𝜆

𝐾1

√︀
κ1 log(𝑒𝑑)

)︃1+ 1
log(𝑑)

,

the restricted risk 𝐿ℰ(𝜃) := E[ℓ𝑍(𝜃)1ℰ(𝑋)] w.p. at least 1− 𝛿 satisfies

𝐿ℰ(̂︀𝜃𝜆,𝑛)− 𝐿ℰ(𝜃*) . 𝜌s𝜆
2. (42)

Clearly, the right choice of 𝜆 is the one attaining the lower bound in (40):

𝜆 ≈ 𝐾1

√︂
κ1 log(𝑒𝑑/𝛿)

𝑛

This choice is always possible since the left-hand side in (40) is upper-bounded with the right-hand
side due to the second bound in (39). With such 𝜆, both the prediction error and the (restricted) excess
risk 𝐿ℰ(̂︀𝜃𝜆,𝑛)− 𝐿ℰ(𝜃*) are at most

𝑂

(︂
𝑄s log(𝑒𝑑/𝛿)

𝑛

)︂

whenever 𝑛 & max(𝑄s, 𝜌𝑄s2) log(𝑒𝑑/𝛿), ignoring the dependence on the subgaussian constants. Thus,
in the case of pseudo self-concordant losses, 𝑑 and 𝑑eff both get replaced with s, at the expense of
extra 𝑂(𝑄 log 𝑑) factor in the bounds.

Next we state a version of Theorem 5.1 for canonically self-concordant losses.

Theorem 5.2. Assume SCb, D1, D2, C, C*, and |𝜃*|0 ≤ s.

1. Whenever
𝑛 & max

{︀
𝜌κ2𝐾

4
2s log (𝑒𝑑/𝛿) , 𝜌

2κ1κ2𝐾
2
1𝐾

2
2s

2 log (𝑒𝑑𝑛/𝛿)
}︀

(43)

and the regularization parameter satisfies

𝐾1

√︂
κ1 log(𝑒𝑑/𝛿)

𝑛
. 𝜆 .

1

𝜌𝐾2s
√︀
κ2 log(𝑒𝑑𝑛/𝛿)

, (44)

we have that with probability at least 1− 𝛿,

‖̂︀𝜃𝜆,𝑛 − 𝜃*‖1 . 𝜌s𝜆, ‖̂︀𝜃𝜆,𝑛 − 𝜃*‖2H . 𝜌s𝜆2. (45)

2. The event ℰ := {‖ ̃︀𝑋‖∞ . 𝐾2

√︀
κ2 log (𝑒𝑑/𝛿)} satisfies P(ℰ) ≥ 1− 𝛿. Moreover, whenever

𝛿 .

(︃
𝜆

𝐾1

√︀
κ1 log(𝑒𝑑)

)︃1+ 1
log(𝑑)

,

the restricted risk 𝐿ℰ(𝜃) := E[ℓ𝑍(𝜃)1ℰ(𝑋)] w.p. at least 1− 𝛿 satisfies

𝐿ℰ(̂︀𝜃𝜆,𝑛)− 𝐿ℰ(𝜃*) . 𝜌s𝜆
2. (46)
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Comparison of Theorems 5.1 and 5.2. The usual gain of 𝜌 that we have observed so far for canonically
viz. pseudo self-concordant losses is not preserved in ℓ1-regularized estimators. Instead, the second
bound in (39) and the upper bound in (40) get inflated with κ2, and the critical sample size, given the
“ideal” choice of the regularization parameter corresponding to the lower bound in (44), becomes 𝑛 &
max(𝑄s, 𝑄2s2) log(𝑒𝑑/𝛿). Essentially, the reason for that is that ℓ1-regularization does not “know”
anything about the matrices H and H𝑛, and, in a sense, violates the affine-invariant structure of the proofs
for non-regularized 𝑀 -estimators. This seems to be a fundamental problem with ℓ1-regularization, rather
than the artifacts of our proofs, since ℓ1-regularized 𝑀 -estimators are themselves not affine-invariant. As
such, we believe the additional factors of 𝑄 and 𝑄2 to be unimprovable in the high-dimensional setup
without further assumptions.

Comparison with prior work. Theorem 5.1 extends the result of [Bac10, Theorem 5] for logistic
regression with fixed design, obtained using the pseudo self-concordance of the logistic loss. While
the established error bounds are similar, our results have important novelties. First, we analyze the
random-design setting, whereas [Bac10] assumes fixed design. Second, the result of [Bac10] requires
larger sample size, scaling with the product of s and𝑅2 where𝑅 is an upper bound on ‖𝑋‖2. Typically,𝑅
scales as Ω(

√
𝑑) (e.g., this is the case where the design is pre-generated by sampling from a subgaussian

distribution), thus [Bac10] essentially proves the bound 𝑂(s𝑑) for the critical sample size.
On the other hand, our results can be compared to those in [vdGM12] who establish the rate 𝑂(𝜆s)

for the ℓ1-error and 𝑂(𝜆2s) for the prediction error (see their Theorems 5.2 and 7.3), addressing a larger
class of models including GLMs with non-canonical link functions, and general convex robust losses.
However, in order to control the precision of the local quadratic approximations of the risk, the authors
of [vdGM12] assume that ℓ′′(𝑌,𝑋⊤𝜃*) is bounded from below (Conditions A4 and B), which can only
be guaranteed by assuming that 𝜃* is bounded in ℓ1-norm. Thus, their results do not address the case of
unbounded parameter. Remarkably, these results similarly require the sample size to scale as Ω(s2 log 𝑑).

Remark 5.1. In the proofs of Theorems 5.1–5.2, matrices H and H𝑛 only interact with residual Δ which
with high probability satisfies the restricted subspace condition (105). Hence, we can strengthen the
result, replacing Assumption C and the inequality H 4 κ2I in Assumption C* with the requirement that

‖Δ‖22/𝜌 ≤ ‖Δ‖2H ≤ κ2‖Δ‖22

in the case where Δ ∈ R𝑑 is approximately sparse, i.e., satisfies ‖Δ− [Δ]s‖1 ≤ 3‖[Δ]s‖1, where [Δ]s is
the projection of Δ to the span of its s largest coordinates. This observation can be exploited to accelerate
computation of the estimator (38) when using proximal Newton-type methods (see [LSS14]) via Hessian
sketching, i.e., by replacing the estimates H𝑛(𝜃) with the estimates H𝑚(𝜃) :=

1
𝑚

∑︀𝑚
𝑗=1

̃︀𝑋𝑗(𝜃) ̃︀𝑋𝑗(𝜃)
⊤

computed from a small subsample.

We defer further discussion of related work on ℓ1-regularized 𝑀 -estimators to Section 7.

6 Numerical experiments

We now present two numerical experiments that illustrate our theoretical results.6

Critical sample size grows linearly with model dimensionality. Here the point is to illustrate the
results in Section 4, namely Theorems 4.1–4.2. Recall that, in a nutshell, these results state that the
fast 𝑂(𝑑/𝑛) rate for the excess risk becomes available starting from the critical sample size which
is 𝑂(𝑑eff ∨ 𝑑), where 𝑂(·) hides factors depending on the distribution-dependent constants 𝐾0,𝐾1, 𝐾̄2, 𝜌

6All our codes are available online at http://github.com/ostrodmit/self-concordant.
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arising in Assumptions D0, D1, D2*, and C. In our first experiment (see Fig. 3), we empirically demon-
strate that the critical sample size indeed scales linearly with the parameter dimension. For growing sample
size 𝑛 = 10𝑘, 𝑘 ∈ [1, 3], we generate an i.i.d. sample (𝑋𝑖, 𝑌𝑖)

𝑛
𝑖=1 with standard Gaussian design 𝑋𝑖 ∼

𝒩 (0, I𝑑) and conditional distribution of the (binary) label given by P[𝑌𝑖 = 1] = 1/(1 + exp(−𝑋⊤
𝑖 𝜃*))

(i.e., such that the logistic model is well-specified) or by P[𝑌𝑖 = 1] = 1− 𝜑(𝑋⊤𝜃*), where 𝜑(·) is the
standard Gaussian c.d.f., which corresponds to the probit regression. Thus, the logistic model for 𝑌 |𝑋
is well-specified in the second case We take 𝜃* = 1𝑑/

√
𝑑 (thus ‖𝜃*‖2 = 1) and consider the following

three quantities for 𝑑 ∈ {8, 16, 32, 64}:

1. Excess risk 𝐿(̂︀𝜃𝑛)− 𝐿(𝜃*) of the logistic regression estimator, i.e., for the 𝑀 -estimator with the
logistic loss ℓ(𝑦, 𝜂) = log(1 + 𝑒𝜂)− 𝑦𝜂.

2. Excess risk𝐿SC(̂︀𝜃SC
𝑛 )−𝐿SC(𝜃SC

* ) for the𝑀 -estimator with loss (22) – canonically self-concordant
analogue of the logistic loss proposed in Sec. 2.1. Here 𝐿SC(𝜃) := E[ℓSC(𝑌,𝑋⊤𝜃)] with ℓSC(𝑦, 𝜂)
given by (22); 𝜃SC

* minimizes 𝐿SC(𝜃) and might be different from 𝜃*. Note that ℓSC(𝑦, ·) and ℓ(𝑦, ·)
have the same second-order Taylor expansion around 𝜂 = 0 (see Fig.1).

3. Excess risk 𝐿(̂︀𝜃SC
𝑛 )− 𝐿(𝜃*) that evaluates ̂︀𝜃SC

𝑛 as a surrogate estimator.

In all three cases, we approximate the excess risk via a test sample with 𝑁 = 104 observations, and we
compute 𝜃SC

* by running fmincon optimization routine in Matlab (we use the constraint ‖𝜃‖2 ≤ 2 to
avoid numerical instabilities). Then, for each value of 𝑑 and the three notion of excess risk, we plot the
excess risk against the sample size in the log10− log10 scale. The experiment is repeated 𝑇 = 800 times,
and the averaged curve is then plotted along with a 3𝜎-confidence interval.

The results are shown in Fig. 3. We can distinctively see the elbow effect: the initial slow convergence
rate (slope around −1/2 on the log-log scale) changes to the fast rate (slope −1) for larger sample size.
This is observed for all three curves, all values of 𝑑, and both conditional distributions of 𝑌 .

• For the logistic distribution, ̂︀𝜃𝑛 outperforms ̂︀𝜃SC
𝑛 in the fast rate zone (i.e., with sample sizes above

the critical level) in terms of their corresponding “native” risks as well as the logistic risk. This
is expected: while ̂︀𝜃𝑛 is well-specified, estimator ̂︀𝜃SC

𝑛 has to pay for model misspecification, and
its excess risk depends on 𝑑eff rather than 𝑑 (cf. (34) in Theorem (4.1)). Meanwhile, for smaller
sample sizes 𝐿SC(̂︀𝜃SC

𝑛 )− 𝐿SC(𝜃SC
* ) is smaller than the other two excess risks. This seems to be

simply due to ℓSC(𝑦, 𝜂) being smaller than ℓ(𝑦, 𝜂) away from 𝜂 = 0 (cf. Fig. 1).

• In the case of probit distribution, both estimators are misspecified, and turn out to have very close
performance in terms of all three excess risks.

Finally, and most importantly, we see that the “elbow” on the curves moves to the right in (roughly)
constant increments as we increase 𝑑 geometrically. This is what we expect: according to Theorems 4.2–
4.1, the critical sample size grows linearly with 𝑑 or 𝑑eff in the misspecified case (and here 𝑑eff is itself
linear in 𝑑).

Critical sample size growing as 𝑒𝑅𝐷 for “bad” design distributions. Here we empirically investigate
the dependency of constants 𝐾0,𝐾1, 𝐾̄2, 𝜌 from the norm 𝐷 = ‖𝜃*‖Σ of the population risk minimizer.
Recall that in Appendix D we provide polynomial bounds in the case of logistic regression with Gaussian
design. However, for certain (quite artificial) distributions of design the dependency might be exponential
as implied by the results of [HKL14]. In this experiment, we consider the adversarial distribution
proposed in [HKL14, Sec. 3.2], in which 𝑋 ∈ R2 is supported on three points with carefully chosen
probabilities (see [HKL14, Figs. 3-4]) and 𝑌 ≡ 1. The authors prove the Ω(1/

√
𝑛) lower bound (and

hence the absence of fast rate) for the excess risk long as 𝑛 . 𝑒𝑅𝐷, where 𝑅 = ‖𝑋‖Σ−1 . We empirically
discover a similar phenomenon for the self-concordant loss (22). To this end, we follow a similar protocol
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as in the previous experiment but generate the pairs (𝑋𝑖, 𝑌𝑖) according to the distribution in [HKL14]
and linearly increase 𝐷 while fixing 𝑑 = 2. The experiment is repeated 𝑇 = 1600 times for sample
sizes 𝑛 ∈ [101, 104], and the population risk is approximated via a test sample with size 𝑁 = 5 · 104.
We then plot the same three dependencies as in the previous experiment (again in the log-log scale)
for 𝐷 ∈ {1, 3, 5, 7}.

The results are presented in Fig. 4. For small sample sizes the curves oscillate, which seems to be
due to the special low-dimensional structure of the design distribution. However, the upper envelope
of the curve clearly exhibits the same “elbow” effect as before: the slope changes from roughly −1/2
to −1 for large sample sizes. Moreover, the horizontal location of the elbow moves in nearly uniform
increments as we change 𝐷 linearly, precisely as expected from the theory in [HKL14]. We also note
that the “transfer” risk 𝐿(̂︀𝜃SC

𝑛 )− 𝐿(𝜃*) converges to a non-zero value, which shows that 𝜃SC
* ̸= 𝜃* for

the distribution considered here.

7 Related work

Self-concordant analysis of logistic regression. Our approach is inspired by [Bac10], and we reuse
and extend some of their technical results in our Propositions B.3–B.4. However, our results and analysis
are crucially different from those in [Bac10] in several ways. First, we address the random-design
setting, whereas in [Bac10] the design is fixed. Second, [Bac10] considers only pseudo self-concordant
losses, focusing on logistic regression, whereas we also provide results for canonically self-concordant
losses, and, crucially, compare the two cases. Third, we obtain similar results for ill-specified models,
whereas [Bac10] only establishes a slow rate in this case. Finally, and most importantly, while we use
very similar tools to those in [Bac10], the “core” of our analysis is more direct. Namely, [Bac10] studies
the minimizer ̂︀𝜃𝜆,𝑛 of the ℓ2-penalized empirical risk with strictly positive regularization parameter 𝜆,
and moreover, imposes some technical condition on the minimal magnitude of 𝜆, see their Eq. (13). Upon
close inspection, this condition implies

𝑛 & 𝜌 · df2𝜆, df𝜆 := Tr[H(H+ 𝜆I)−1], (47)

where the degrees of freedom parameter df𝜆 replaces 𝑑 in the ℓ2-penalized setting. This, in turn, allows
to carry out an argument analogous to ours, but applying Proposition B.4 to the regularized empirical risk.
However, ℓ2-penalization makes the analysis much more involved, as it rests on the comparison of the
regularized risks, and accordingly, relates 𝜃* and ̂︀𝜃𝜆,𝑛 through the intermediate point – the minimizer 𝜃𝜆
of the regularized average risk. The extra condition in [Bac10], which makes this analysis possible, is
non-trivial, and requires some fine balance between the regularization parameter, sample size, and various
types of degrees of freedom and biases. We manage to circumvent these difficulties for the plain ERM,
including the ill-specified case, by realizing that the only condition needed to carry out the argument
based on self-concordance, in the non-regularized case, is the sufficient sample size.

Self-concordant analysis and improper algorithms. Another relevant work is [Bac14] which studies
logistic regression with random design, but analyzes an estimate computed by stochastic approximation
with averaging. While this estimator is more advantageous from the computational standpoint, the
control of the distance to the optimum is more involved (see [Bac14, Proposition 7]) which leads to the
suboptimal risk bound

E𝑛[𝐿(̂︀𝜃)]− 𝐿(𝜃*) .
𝑅2(𝑅4𝐷4

0 + 1)

𝜇𝑛
, (48)

where 𝜇 is the minimal eigenvalue of H, 𝑅 is an upper bound for ‖𝑋‖2 and sup𝜃∈Θ ‖∇ℓ𝑍(𝜃)‖2,
and 𝐷0 := ‖𝜃0 − 𝜃*‖2 is the initial ℓ2-distance from the optimum (in fact, if 𝐷0 is known up to a
constant factor, 𝑅4𝐷4

0 in (48) can be replaced with 𝑅2𝐷2
0). The bound (48) reflects the fact that gradient
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Figure 3: The comparison of two 𝑀 -estimators: with the logistic loss (estimator ̂︀𝜃𝑛) and its canonically
self-concordant analogue (22) (estimator ̂︀𝜃SC

𝑛 ) in the first experiment. “Logistic”, “self-conc” and “cali-
brated” correspond to the three notions of excess risk: the “native” risks for ̂︀𝜃𝑛, ̂︀𝜃SC

𝑛 and the “transfer”
risk for ̂︀𝜃SC

𝑛 with logistic loss (see p. 22).
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Figure 4: The comparison of 𝑀 -estimators ̂︀𝜃𝑛, ̂︀𝜃SC
𝑛 in the second experiment, using the adversarial

data distribution from [HKL14] (see p. 22 for more details). “Logistic”, “self-conc” and “calibrated”
correspond to the same three notions of excess risk as in the first experiment (see Fig. 3).

descent trajectory is not affine-invariant, hence the distances are not “measured” in terms of the natural
norm ‖ · ‖H. For the natural gradient, that is, gradient descent on the tranformed problem 𝜃 = H1/2𝜃,
factor 𝜇 would disappear from (48), but 𝑅 would be replaced with max(𝑑eff, 𝜌 ·𝑑), and 𝐷0 with the initial
prediction distance ‖𝜃0 − 𝜃*‖H, which would lead to a bound scaling as the cube of max(𝑑eff, 𝜌𝑑). The
follow-up work [BM13] studies a version of the quasi-Newton method, solving the quadratic subproblems
via stochastic approximation. This allows to conduct affine-invariant analysis of the outer loop, and
results in

E𝑛[𝐿(̂︀𝜃)]− 𝐿(𝜃*) .
𝜌2(𝑅4𝐷4

0 + 1)max(𝑑eff, 𝜌𝑑)

𝑛
(49)

whenever 𝑛 & (𝑅4𝐷4
0 +1). It should be noted that the curvature parameter 𝜌 that appears in these results,

as well as in our results for pseudo self-concordant losses, is problem-dependent. In particular, it depends
on the true distribution 𝒫 of the data, and can be very large if this distribution is chosen adversarially. By
constructing such an adversarial distribution, [HKL14] prove a lower bound Ω(

√︀
𝑅𝐷/𝑛), i.e., for the

excess risk of any algorithm, in logistic regression in the finite-sample regime 𝑛 = 𝑂(𝑒𝑅𝐷). This implies
that 𝜌 grows super-polynomially in 𝑅𝐷 for this distribution. Notably, the lower bound of [HKL14] is
not applicable in the setting of improper prediction, where one is allowed to estimate 𝜂* := 𝑋⊤𝜃* with
any predictor ̂︀𝜂 : 𝑋 ↦→ R, not necessarily with a linear one. Making such an observation, [FKL+18]
recently proposed an improper estimator which attains the excess risk 𝑂(𝑑/𝑛) up to logarithmic factors
in 𝑅𝐷, 𝑛, and 1/𝛿. Their estimator reduces to Vovk’s Aggregating Algorithm [Vov98] for online convex
optimization, combined with a simple “boosting the confidence” scheme proposed in [Meh17].
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Non-parametric setup and ℓ2-regularization. After the arXiv preprint of this work began circulating,7

our analysis was extended in [MFOBR19] to 𝑀 -estimators with ℓ2-regularization, including the case
of infinite-dimensional parameter. The reader might refer to [MFOBR19] for an overview of related
work in this direction. In a nutshell, [MFOBR19] proves asymptotically near-optimal bounds ̃︀𝑂(𝑑eff/𝑛)
on the “variance” term corresponding to the excess risk 𝐿(̂︀𝜃𝜆,𝑛) − 𝐿(𝜃𝜆), and the additional “bias”
term 𝐿(𝜃𝜆)− 𝐿(𝜃), under condition (47), and without extra conditions in the vein of those in [Bac10].
Moreover, it is shown that the classical source and capacity conditions [CDV07], known to lead to faster
non-parametric rates in ridge regression, can be extended to 𝑀 -estimators with self-concordant losses.
However, [MFOBR19] does not extend our improved results with near-linear sample size (Theorems 4.1–
4.2) to the ℓ2-penalized case. We believe that such extension is possible by replacing Theorem A.2 with a
similar result for regularized covariance matrices such as [KL17, Thm. 9]. This, however, would be of
little practical interest, since typically under source condition, df𝜆 is a constant depending only on the
rate of decay of the eigenvalues of H.

Quasi-Newton algorithms. We also mention in passing that recently there has been a surge of interest
in stochastic quasi-Newton methods applied to the finite-sum setting with self-concordant losses, see,
e.g., [ZL15], [ZGG17]. However, none of these works establishes generalization bounds for the associated
estimator. In fact, such bounds have recently been established in the work [MFBR19] for a certain
(globally convergent) ad-hoc quasi-Newton scheme. These generalization bounds are similar to those
established in [MFOBR19] for the exact ERM, with similar criticism.

Empirical processes. The use of empirical processes in the context of parametric estimation was
pioneered in [Spo12], which has been one of the main inspirations for our work. Apart from the
technical difficulty in the proofs, our main critique of [Spo12] is the global conditions they impose –
most importantly, they require ∇𝐿𝑛(𝜃) to be subgaussian uniformly over the whole parametric set Θ.
As can be seen from the proof of Proposition D.1 in Appendix D, verification of such global conditions
can be quite technical; moreover, such conditions can in fact be way more restrictive than their local
counterparts (see, e.g., the bounds in Proposition D.1 which degrade drastically when ‖𝜃*‖Σ ≫ 1, and
which are sharp as can be seen from the analysis).

Recently we learned about the work [MBM18] that applies empirical processes to study constrained
empirical risk minimization with smooth non-convex losses. (Its preprint came out after that of our
work.) Essentially, [MBM18] proves that in the regime 𝑛 & 𝑑 log 𝑑 (resp. 𝑛 & s log 𝑑 in the high-
dimensional setup), the sample gradients 𝐿𝑛(𝜃) and Hessians ∇2𝐿𝑛(𝜃) uniformly converge to their
population counterparts, assuming that ∇𝐿𝑛(𝜃) is subgaussian, and ∇2𝐿𝑛(𝜃) is subexponential on the
whole domain Θ. This allows to establish correspondence between the stationary points of 𝐿(·) and 𝐿𝑛(·).
While the focus of [MBM18] is different, we expect that one may also prove asymptotically optimal rates
for the excess risk in this regime, i.e., prove “local” analogues of our improved results (cf. Section 4),
by localizing a minimizer ̂︀𝜃𝑛 to the unit Dikin ellipsoid of the associated population risk minimizer 𝜃*.8

However, [MBM18] has the same limitations as [Spo12], requiring “global” conditions on the tails
of ∇𝐿𝑛(𝜃) and ∇2𝐿𝑛(𝜃). Similar criticism applies to the literature on ℓ1-regularized 𝑀 -estimators in
high dimensions ([vdGM12, NRWY12, Loh17]); we discuss these results in more detail in Section 5.

Further related work on ℓ1-regularized 𝑀 -estimators. Interestingly, [ZWJ17] showed that, in ab-
sense of restricted-eigenvalue (RE) type conditions imposed on the (fixed) design matrix, decomposable
regularizers only lead to slow 𝑂(1/

√
𝑛) rates, even with quadratic loss. Hence, the light-tailed design

condition that we impose appears to be necessary when ℓ1-regularized 𝑀 -estimators are considered.
7This happened in October 2018.
8This, however, would require restating their Assumptions 1-3 in affine-invariant manner.
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Not directly relevant to our results here, we note that, whenever the computational considerations
are not important, the ℓ1-regularization can perform worse than other types of regularization. In fact, ℓ0-
regularized estimators are known to achieve 𝑂(s/𝑛) rate for the prediction error without RE-type
conditions (in the fixed-design setup) [ZWJ17]. Moreover, there are other (non-convex) penalties that
have favorable statistical properties without incoherence, see, e.g., [LW17, LW15, Loh17, LW11].

After the preprint of this work had been publicized, the statistical performance of regularized 𝑀 -
estimators has been studied in the asymptotic regime 𝑛, 𝑑 → ∞ with 𝑑/𝑛 = 𝑐, including the “high-
dimensional” case with 𝑐≫ 1 – see [TAH18, SC19].

8 Conclusion

Our work sheds light on the mechanism behind the transition to the fast-rate regime in 𝑀 -estimators with
smooth losses. Our analysis allows to deal with𝑀 -estimators with losses satisfying self-concordance-type
assumptions, including logistic regression, other generalized linear models, and robust regression. Self-
concordance assumptions allow to control the precision of the local quadratic approximations of empirical
risk. Simple analysis under minimal assumptions leads to a fast-rate guarantee for large sample sizes –
larger (in order) than 𝑑 · 𝑑eff, where 𝑑eff is the effective dimensionality of the parametric model. However,
a refined analysis under slightly stronger assumptions leads to the 𝑂(max{𝑑eff, 𝑑 log 𝑑}) sample size
threshold. This is done through a combination of self-concordance with a covering argument, allowing to
control the uniform deviations of the empirical risk Hessian in the Dikin ellipsoid around the population
risk minimizer. We also extend the analysis to ℓ1-regularized 𝑀 -estimators in the high-dimensional
regime. Finally, we verify the empirical performance of a canonically self-concordant analogue of the
logistic loss in numerical experiments.
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A Probabilistic tools

A.1 Subgaussian distributions

We recall the definition of subgaussian norm for random variables 𝜉 ∈ R:

‖𝜉‖𝜓2 := inf
{︀
𝜎 > 0 : E[𝑒𝜉

2/𝜎2
] ≤ 𝑒

}︀
.

The lemma below provides equivalent definitions of the subgaussian norm.

Lemma A.1 ([Ver12, Lemma 5.5]). There exists an absolute constant 𝑐 > 0 such that ‖𝜉‖𝜓2 ≤ 𝜎 is
equivalent to either of the following:

1. Subgaussian tails: for any 𝑡 ≥ 0, P {|𝜉| > 𝑡} ≤ exp
(︀
1− 𝑐𝑡2/𝜎2

)︀
.

2. Subgaussian moments: for any 𝑝 ≥ 1, E[|𝜉|𝑝]1/𝑝 ≤ 𝑐𝜎
√
𝑝.

Moreover, if E[𝜉] = 0, each of these properties is equivalent to the moment bound

E exp(𝑡𝜉) ≤ exp(𝑐𝜎2𝑡2).
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Following [Ver12], we define the ‖ · ‖𝜓2-norm of a random vector as follows:

‖𝑍‖𝜓2 := sup
𝜃∈𝒮𝑑−1

‖⟨𝑍, 𝜃⟩‖𝜓2 , (50)

where 𝒮𝑑−1 is the unit sphere in R𝑑. Note that this is indeed a norm; in particular, it satisfies the
triangle inequality: ‖𝑍1 + 𝑍2‖𝜓2 ≤ ‖𝑍1‖𝜓2 + ‖𝑍2‖𝜓2 for any pair of random vectors 𝑍1, 𝑍2. Another
elementary property is that ‖J𝑍‖𝜓2 ≤ ‖J‖∞‖𝑍‖𝜓2 for arbitrary matrix J. Some well-known properties
of subgaussian random vectors are summarized in the following lemmas.

Lemma A.2. Let the entries of 𝑍 ∈ R𝑑 satisfy ‖𝑍𝑖‖𝜓2 ≤ 𝐾, 𝑖 ∈ [𝑑]. Then, with probability at least 1−𝛿,

‖𝑍‖∞ . 𝐾
√︀
log(𝑒𝑑/𝛿).

Proof. The claim follows from Item 1 of Lemma A.1 by the union bound. �

Next we give a bound for the 𝑝-th moment of ‖𝑍‖∞. Although this bound is loose for any fixed 𝑝,
we only use it in the regime 𝑝 ≈ log 𝑑 where it is tight.9

Lemma A.3. In the assumptions of the previous lemma, for any 𝑝 ≥ 1 it holds

E[‖𝑍‖𝑝∞]1/𝑝 . 𝐾𝑑1/𝑝
√
𝑝.

Proof. Using the bound from Lemma A.2, we obtain

E[‖𝑍‖𝑝∞] =

∫︁ ∞

0
P {‖𝑍‖∞ ≥ 𝑢} d(𝑢𝑝) ≤ 𝑒𝑑

∫︁ ∞

0
𝑒−

𝑐2𝑢2

𝐾2 d(𝑢𝑝)

≤ 𝑒𝑑

(︂
𝐾

𝑐

)︂𝑝 𝑝
2
Γ
(︁𝑝
2

)︁
≤ 𝑒𝑑

(︂
𝐾

𝑐

)︂𝑝 𝑝
2

(︁𝑝
2

)︁𝑝/2
=
𝑑(𝐾

√
𝑝)𝑝𝑒𝑝

2(𝑐
√
2)𝑝

.

We obtain the claim by extracting the 𝑝-th root and doing simple estimates. �

Lemma A.4 (Hoeffding-type inequality, follows from [Ver12, Lemma 5.9] via (50)). Let 𝑍1, ..., 𝑍𝑛 be
i.i.d. random vectors, then one has ‖∑︀𝑛

𝑖=1 𝑍𝑖‖
2
𝜓2
.
∑︀𝑛

𝑖=1 ‖𝑍𝑖‖2𝜓2
.

The next result shows that the ‖ · ‖𝜓2-norm is stable under affine transforms.

Lemma A.5 (Subgaussian norm after affine transform and decorrelation). Suppose that 𝑋 ∈ R𝑑

satisfies E[𝑋] = 0, Σ := E[𝑋𝑋⊤], and ‖Σ−1/2𝑋‖𝜓2 ≤ 𝐾. Then for any 𝐴 ∈ R𝑑×𝑑, 𝑏 ∈ R𝑑,
vector ̂︀𝑋 = 𝐴𝑋 + 𝑏 satisfies

‖̂︀Σ−1/2 ̂︀𝑋‖𝜓2 . 𝐾, where ̂︀Σ = E[ ̂︀𝑋 ̂︀𝑋⊤].

Proof. The quantity Σ−1/2𝑋 is invariant with respect to linear transforms, so it only remains to treat the
case ̂︀𝑋 = 𝑋 + 𝑏. Now, in this case, ̂︀Σ = Σ+ 𝑏𝑏⊤, and

‖̂︀Σ−1/2 ̂︀𝑋‖𝜓2 ≤ ‖̂︀Σ−1/2
𝑋‖𝜓2 + ‖̂︀Σ−1/2

𝑏‖𝜓2 ≤ ‖̂︀Σ−1/2
𝑋‖𝜓2 + ‖̂︀Σ−1/2

𝑏‖2.

Since ̂︀Σ < Σ, we have ‖̂︀Σ−1/2
𝑋‖𝜓2 ≤ ‖Σ−1/2𝑋‖𝜓2 ≤ 𝐾. On the other hand,

‖̂︀Σ−1/2
𝑏‖22 = 𝑏⊤ ̂︀Σ−1

𝑏⊤ ≤ 1.

by the Sherman-Morrison formula. Finally, note that 𝐾 & 1, as follows from the inequality E[𝜉4] ≥
(E[𝜉2])2 applied to 𝜉 = ⟨𝑢,𝑋⟩, and Item 2 of Lemma A.1. �

9Tight bounds for all moments can be obtained via the Chernoff method combined with the general Orlicz norms ‖ · ‖𝜓𝛼

with 𝛼 = 2/𝑝, see, e.g., [Pol90]. It is beyond the scope of this paper.
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A.2 Quadratic forms of subgaussian vectors

We call random vector 𝑍 ∈ R𝑑 isotropic if E[𝑍] = 0 and E[𝑍𝑍⊤] = I𝑑. The following result is a devia-
tion bound for quadratic forms of isotropic subgaussian random vectors. It is obtained from [HKZ12b,
Theorem 2.1] using the isotropicity assumption which allows to get rid of the 𝐾2 factor ahead of Tr(J).

Theorem A.1. Let 𝑍 ∈ R𝑑 be an isotropic random vector with ‖𝑍‖𝜓2 ≤ 𝐾, and let J ∈ R𝑑×𝑑 be
positive semidefinite. Then,

P
{︀
‖𝑍‖2J − Tr(J) ≥ 𝑡

}︀
≤ exp

(︂
−𝑐min

{︂
𝑡2

𝐾2‖J‖22
,

𝑡

𝐾‖J‖∞

}︂)︂
.

In other words, with probability at least 1− 𝛿 it holds

‖𝑍‖2J − Tr(J) . 𝐾2
(︁
‖J‖2

√︀
log (1/𝛿) + ‖J‖∞ log (1/𝛿)

)︁
.

Corollary A.1. We obtain a deviation bound for the ℓ2-norm of the projection of an isotropic subgaussian
vector 𝑍 onto an arbitrary direction 𝑢 ∈ R𝑑: with probability at least 1− 𝛿 it holds

|⟨𝑢, 𝑍⟩| . ‖𝑢‖2𝐾
√︀
log (𝑒/𝛿). (51)

This follows, through some elementary algebra, by applying Theorem A.1 to the rank-one matrix J = 𝑢𝑢⊤

which satisfies ‖J‖∞ = ‖J‖2 = Tr(J) = ‖𝑢‖22.

The next result follows from Theorem A.1 since ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J).

Corollary A.2. Under the premise of Theorem A.1, 𝜁 = ‖𝑍‖J is subgaussian:

P
{︀
𝜁 ≥ 𝑐(1 + 𝑡)𝐾

√︀
Tr(J)

}︀
≤ exp(−𝑡2).

As a consequence, P
{︀
𝜁 ≥ 𝑐𝑢𝐾

√︀
Tr(J)

}︀
≤ exp

(︀
𝑐1 − 𝑢2/𝑐2

)︀
, so that

‖𝜁‖𝜓2
≤ 𝑐𝐾

√︀
Tr(J).

A.3 Sample covariance matrices

Next we focus on sample second-moment matrices of subgaussian vectors.

Theorem A.2 ([Ver12, Theorem 5.39]). Assume that the random vector ̃︀𝑋 ∈ R𝑑 satisfies E[ ̃︀𝑋 ̃︀𝑋⊤] = H
and ‖H−1/2 ̃︀𝑋‖𝜓2 ≤ 𝐾. Let H𝑛 = 1

𝑛

∑︀𝑛
𝑖=1

̃︀𝑋𝑖
̃︀𝑋⊤
𝑖 where ̃︀𝑋1, ..., ̃︀𝑋𝑛 are independent copies of ̃︀𝑋 .

Whenever
𝑛 & 𝐾4(𝑑+ log(1/𝛿)),

with probability at least 1− 𝛿 it holds

‖Δ‖2H/2 ≤ ‖Δ‖2H𝑛
≤ 2‖Δ‖2H, ∀Δ ∈ R𝑑. (52)

Next we present an extension of this result to the high-dimensional setting.

Theorem A.3 ([Zho09, Theorem 1.6]). Let H, H𝑛, and ̃︀𝑋 be as in the previous theorem, and suppose
that H satisfies the (𝜌,κ, s)-restricted eigenvalues (RE) condition for some 𝜌,κ > 0 and s ≤ 𝑑. Namely,
for any Δ ∈ R𝑑 such that ‖Δ𝒮𝑐‖1 ≤ 3‖Δ𝒮‖1, where 𝒮 is the subspace of R𝑑 correponding to s largest
coordinates of Δ, and 𝒮𝑐 is the complement of 𝒮, it holds

‖Δ‖22/𝜌 ≤ ‖Δ‖2H ≤ κ‖Δ‖22.
Then, whenever

𝑛 & 𝜌κ𝐾4s log (𝑒𝑑/𝛿) ,

it holds that with probability ≥ 1− 𝛿, for any Δ ∈ R𝑑 satisfying the RE condition,

‖Δ‖2H/2 ≤ ‖Δ‖2H𝑛
≤ 2‖Δ‖2H.
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B Technical results for self-concordant (-like) functions

Here we summarizing the technical results related to self-concordant-like functions. These results are
used later on to control the population and empirical risks 𝐿(𝜃), 𝐿𝑛(𝜃) in the proofs in Appendix C. In
what follows, we fix 𝜃0, 𝜃1 ∈ Θ, and let 𝜃𝑡 := 𝜃0 + 𝑡(𝜃1 − 𝜃0), 𝑡 ∈ [0, 1]. We define functions 𝜑(·), 𝜑𝑛(·)
on [0, 1] by

𝜑(𝑡) := 𝐿(𝜃𝑡), 𝜑𝑛(𝑡) := 𝐿𝑛(𝜃𝑡). (53)

The next result follows from the assumptions of Section 2.1 via the chain rule.

Proposition B.1. Suppose that ℓ𝑧(·) is convex, and ℓ′′′𝑧 (·) exists on Θ.

(a) If Assumption SCa is satisfied, then for any 𝑡 ∈ [0, 1], one has

|𝜑′′′𝑛 (𝑡)| ≤ 𝜑′′𝑛(𝑡)max
𝑖∈[𝑛]

|⟨𝑋𝑖, 𝜃1 − 𝜃0⟩|, (54)

|𝜑′′′(𝑡)| ≤ 𝜑′′(𝑡) sup
𝑥∈𝒳

|⟨𝑥, 𝜃1 − 𝜃0⟩|. (55)

(b) If Assumption SCb is satisfied instead, then for any 𝑡 ∈ [0, 1], one has

|𝜑′′′𝑛 (𝑡)| ≤ 𝜑′′𝑛(𝑡)
[︀
max
𝑖∈[𝑛]

𝜑′′𝑍𝑖(𝑡)
]︀1/2

, (56)

|𝜑′′′(𝑡)| ≤ 𝜑′′(𝑡)
[︀
sup
𝑧∈𝒵

𝜑′′𝑧(𝑡)
]︀1/2

. (57)

Proof. Recall that 𝜃𝑡 = 𝜃0 + 𝑡(𝜃1 − 𝜃0) for 𝑡 ∈ [0, 1], and denote Δ := 𝜃1 − 𝜃0. Differentiating under
the expectation, we obtain that the derivatives of 𝜑(𝑡) = 𝐿(𝜃𝑡) and 𝜑𝑛(𝑡) = 𝐿𝑛(𝜃𝑡) are given by

𝜑(𝑝)(𝑡) = E[ℓ(𝑝)(𝑌, ⟨𝑋, 𝜃𝑡⟩)⟨𝑋,Δ⟩𝑝], (58)

𝜑(𝑝)𝑛 (𝑡) =
1

𝑛

∑︁

𝑖∈[𝑛]

ℓ(𝑝)(𝑌𝑖, ⟨𝑋𝑖, 𝜃𝑡⟩)⟨𝑋𝑖,Δ⟩𝑝. (59)

This holds for 𝑝 ≤ 3 due to the basic smoothness assumption. Now, let Assumption SCa be satisfied.
Using (58) with 𝑝 ∈ {2, 3}, we get

|𝜑′′′(𝑡)| ≤ E[|ℓ′′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)||⟨𝑋,Δ⟩|3] ≤ E[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)⟨𝑋,Δ⟩2] sup
𝑥∈𝒳

|⟨𝑥,Δ⟩|,

arriving at (55). Analogously, we obtain (54) from (59), replacing 𝒳 with the set {𝑋1, ..., 𝑋𝑛}. On the
other hand, if Assumption SCb is satisfied instead,

|𝜑′′′(𝑡)| ≤ E[|ℓ′′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)||⟨𝑋,Δ⟩|3] ≤ E[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)3/2|⟨𝑋,Δ⟩|3]
≤ E[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)⟨𝑋,Δ⟩2] sup

𝑥,𝑦∈𝒳×𝒴

{︁√︀
ℓ′′(𝑦, ⟨𝑥, 𝜃𝑡⟩)|⟨𝑥,Δ⟩|

}︁
,

implying (57). We obtain (56) by replacing E[·] with sample averaging. �

The next proposition, whose proof follows [Nes13], allows to control the second derivative of the
loss when it is restricted to a straight line.

Proposition B.2. Suppose 𝑔 : R→ R is differentiable, non-negative, and

|𝑔′(𝑡)| ≤ 2𝑐[𝑔(𝑡)]3/2, ∀𝑡 ∈ R(+) : 𝑐|𝑡|
√︀
𝑔(0) ≤ 1

for some 𝑐 ≥ 0. Then, for any 𝑡 ∈ R(+) such that 𝑐|𝑡|
√︀
𝑔(0) ≤ 1, it holds

𝑔(0)

(1 + 𝑐|𝑡|
√︀
𝑔(0))2

≤ 𝑔(𝑡) ≤ 𝑔(0)

(1− 𝑐|𝑡|
√︀
𝑔(0))2

.
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Proof. We first treat the case 𝑔(0) > 0. Consider the segment

𝑇0 =
[︀
− 1/𝑐

√︀
𝑔(0), 1/𝑐

√︀
𝑔(0)

]︀
,

and assume that 𝑔(𝑡) > 0 on the whole 𝑇0. Then, we can define 𝜓(𝑡) := 1/
√︀
𝑔(𝑡) on 𝑇0, and the

premise of the proposition translates to |𝜓′(𝑡)| ≤ 𝑐. Now, let 𝑡 ∈ 𝑇0 be positive without loss of generality.
Integrating from 0 to 𝑡, we get

−𝑐𝑡 ≤ 1/
√︀
𝑔(𝑡)− 1/

√︀
𝑔(0) ≤ 𝑐𝑡.

Multiplying by the product
√︀
𝑔(𝑡)𝑔(0) > 0, and rearranging the terms, we prove the claim in the case

where 𝑔(𝑡) does not vanish on 𝑇0 (the case of negative 𝑡 is treated analogously). Now, let 𝑡0 ∈ 𝑇0 be the
leftmost zero of 𝑔(𝑡) on 𝑇0 ∪R+ (recall that we still assume 𝑔(0) > 0). Then the preceding argument is
valid for any 𝑡 ∈ [0, 𝑡0], which implies that 𝑔(𝑡0) > 0, thus yielding a contradiction. This argument can
be repeated for negative 𝑡, taking 𝑡0 to be the rightmost negative zero of 𝑔(𝑡) on 𝑇0. Hence, 𝑔(0) > 0 in
fact implies that 𝑔(𝑡) > 0 on the whole 𝑇0.

Finally, assume that 𝑔(0) = 0. Then if 𝑔(𝑡) ≡ 0 on the whole 𝑇0, we are done. Otherwise, there
is a point 𝑡′ ∈ 𝑇0 in which 𝑔(𝑡′) > 0. W.l.o.g. assume that 𝑡′ > 0, let 𝑡0 be the rightmost zero of 𝑔(𝑡)
on 𝑇0 ∪R+, and take a pair of points 𝑡1, 𝑡2 ∈ 𝑇0 such that 𝑡0 < 𝑡1 < 𝑡2. Integrating 𝜓′(𝑡) from 𝑡1 to 𝑡2,
we get

−𝑐(𝑡2 − 𝑡1) ≤ 1/
√︀
𝑔(𝑡2)− 1/

√︀
𝑔(𝑡1) ≤ 𝑐(𝑡2 − 𝑡1),

which, after the mutiplication by
√︀
𝑔(𝑡1)𝑔(𝑡2) and rearrangement, results in

𝑔(𝑡1) ≥
𝑔(𝑡2)

1 + (𝑡2 − 𝑡1)
√︀
𝑔(𝑡2)

.

When 𝑡1 → 𝑡0, by continuity of 𝑔(𝑡) we get a contradiction with 𝑔(𝑡0) = 0. �

The next proposition describes the local properties of multivariate functions whose restrictions to
line segments behave as pseudo self-concordant functions (Case (a)), or similarly but with a weaker
control of the third derivative (Case (b)). Case (a) repeats [Bac10, Proposition 1], and suffices for pseudo
self-concordant losses; Case (b) allows to treat canonically self-concordant losses.

Proposition B.3. Let 𝐹 : Θ → R be a convex𝐶3-mapping, fix 𝜃0, 𝜃1 ∈ Θ, and let 𝜑𝐹 (𝑡) := 𝐹 (𝜃𝑡), 𝜃𝑡 :=
𝜃0 + 𝑡(𝜃1 − 𝜃0). Assume that H0 := ∇2𝐹 (𝜃0) ≻ 0. Finally, for some 𝑊 ∈ R𝑑, define

𝑆 := |⟨𝑊, 𝜃1 − 𝜃0⟩|.

(a) [Bac10, Proposition 1]. Suppose that 𝜑𝐹 (𝑡) satisfies

|𝜑′′′𝐹 (𝑡)| ≤ 𝑆𝜑′′𝐹 (𝑡), 0 ≤ 𝑡 ≤ 1, then,

𝐹 (𝜃1)− 𝐹 (𝜃0)−∇𝐹 (𝜃0)⊤(𝜃1 − 𝜃0) ≤ 𝑒𝑆−𝑆−1
𝑆2 ‖𝜃1 − 𝜃0‖2H0

, (60)

𝐹 (𝜃1)− 𝐹 (𝜃0)−∇𝐹 (𝜃0)⊤(𝜃1 − 𝜃0) ≥ 𝑒−𝑆+𝑆−1
𝑆2 ‖𝜃1 − 𝜃0‖2H0

. (61)

(b) Suppose that 𝜃1/𝑆 ∈ Θ, and 𝜑𝐹 (𝑡) satisfies, instead,

|𝜑′′′𝐹 (𝑡)| ≤ 𝑆
1−𝑆𝑡𝜑

′′
𝐹 (𝑡), 0 ≤ 𝑡 < 1/𝑆. Then

1
3𝑆2 ‖𝜃1 − 𝜃0‖2H0

≤ 𝐹 (𝜃1/𝑆)− 𝐹 (𝜃0)− 1
𝑆∇𝐹 (𝜃0)⊤(𝜃1 − 𝜃0) ≤ 1

𝑆2 ‖𝜃1 − 𝜃0‖2H0
. (62)

Moreover, if 𝑆 < 1, we have

1
2+𝑆 ‖𝜃1 − 𝜃0‖2H0

≤ 𝐹 (𝜃1)− 𝐹 (𝜃0)−∇𝐹 (𝜃0)⊤(𝜃1 − 𝜃0) ≤ 1
2−𝑆 ‖𝜃1 − 𝜃0‖2H0

. (63)
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Proof. We first treat the one-dimensional case, extending Proposition B.2.

Lemma B.1 (Lemma 1 in [Bac10]). Let 𝑔 : [0, 1] → R be a three times differentiable and convex
function such that 𝑔′′(0) > 0, and for some 𝑆 ≥ 0,

|𝑔′′′(𝑡)| ≤ 𝑆𝑔′′(𝑡), 0 ≤ 𝑡 ≤ 1.

Then, for any 0 ≤ 𝑡 ≤ 1, one has
𝑒−𝑆𝑡+𝑆𝑡−1

𝑆2 𝑔′′(0) ≤ 𝑔(𝑡)− 𝑔(0)− 𝑔′(0)𝑡 ≤ 𝑒𝑆𝑡−𝑆𝑡−1
𝑆2 𝑔′′(0), 0 ≤ 𝑡 ≤ 1. (64)

Proof. First assume that 𝑔′′(𝑡) > 0 on [0, 1]. Then, the premise of the lemma implies that −𝑆d𝑡 ≤
d log 𝑔′′(𝑡) ≤ 𝑆d𝑡 for 0 ≤ 𝑡 ≤ 1. Integrating this, we get

𝑔′′(0)𝑒−𝑆𝑡 ≤ 𝑔′′(𝑡) ≤ 𝑔′′(0)𝑒𝑆𝑡. (65)

Two more integrations successively give

1−𝑒−𝑆𝑡
𝑆 𝑔′′(0) ≤ 𝑔′(𝑡)− 𝑔′(0) ≤ 𝑒𝑆𝑡−1

𝑆 𝑔′′(0),

and then (64). Now, let 𝑡0 ∈ (0, 1] be the leftmost zero of 𝑔′′(𝑡). Then, the preceding argument can be
applied on [0, 𝑡0], yielding a contradiction due to the left inequality in (65). �

Lemma B.2. Let 𝑔 : [0, 1] → R be a three times differentiable and convex function such that 𝑔′′(0) > 0,
and for some 𝑆 ≥ 0,

|𝑔′′′(𝑡)| ≤ 𝑆
1−𝑡𝑔

′′(𝑡), 0 ≤ 𝑡 < 1.

Then, for any 0 ≤ 𝑡 ≤ 1, one has

𝑔(𝑡)− 𝑔(0)− 𝑔′(0)𝑡 ≥ (1−𝑡)2+𝑆+(2+𝑆)𝑡−1
(1+𝑆)(2+𝑆) 𝑔′′(0),

𝑔(𝑡)− 𝑔(0)− 𝑔′(0)𝑡 ≤ (1−𝑡)2−𝑆+(2−𝑆)𝑡−1
(1−𝑆)(2−𝑆) 𝑔′′(0),

(66)

where the upper bound holds whenever 𝑆 < 1 for any 𝑡 ∈ [0, 1), and whenever 𝑆 < 2 when 𝑡 = 1. In
particular, taking 𝑡 = 1, we have

1
2+𝑆 𝑔

′′(0) ≤ 𝑔(1)− 𝑔(0)− 𝑔′(0) ≤ 1
2−𝑆 𝑔

′′(0).

Proof. W.l.o.g., we assume 𝑔′′(𝑡) > 0; the general case can be treated as in Lemma B.1. We follow the
same steps as in Lemma B.1: after the first integration,

(1− 𝑡)𝑆𝑔′′(0) ≤ 𝑔′′(𝑡) ≤ (1− 𝑡)−𝑆𝑔′′(0). (67)

Integrating two more times, and assuming 𝑆 < 1 for the upper bound, we get

1−(1−𝑡)1+𝑆
1+𝑆 𝑔′′(0) ≤ 𝑔′(𝑡)− 𝑔′(0) ≤ 1−(1−𝑡)1−𝑆

1−𝑆 𝑔′′(0)

and then (66). When 𝑡 = 1, the term (1−𝑆) vanishes from the denominator of the right-hand side of (66),
hence in this case we can take 𝑆 < 2. �

Lemma B.3. Let 𝑔 : [0, 1] → R be a three times differentiable and convex function such that 𝑔′′(0) > 0,
and for some 𝑆 ≥ 0,

|𝑔′′′(𝑡)| ≤ 𝑆
1−𝑆𝑡𝑔

′′(𝑡), 0 ≤ 𝑡 < 1/𝑆.

Then, for any 0 ≤ 𝑡 ≤ 1/𝑆, one has
(︁
𝑡2

2 − 𝑆𝑡3

6

)︁
𝑔′′(0) ≤ 𝑔(𝑡)− 𝑔(0)− 𝑔′(0)𝑡 ≤ 𝑆𝑡+(1−𝑆𝑡) log(1−𝑆𝑡)

𝑆2 𝑔′′(0). (68)

In particular, taking 𝑡 = 1/𝑆, we have

𝑔′′(0)

3𝑆2
≤ 𝑔(1/𝑆)− 𝑔(0)− 𝑔′(0)

𝑆
≤ 𝑔′′(0)

𝑆2
.
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Proof. We again assume w.l.o.g. that 𝑔′′(𝑡) > 0. Integrating three times, we get

(1− 𝑆𝑡)𝑔′′(0) ≤ 𝑔′′(𝑡) ≤ 1
1−𝑆𝑡𝑔

′′(0),

then (︁
𝑡− 𝑆𝑡2

2

)︁
𝑔′′(0) ≤ 𝑔′(𝑡)− 𝑔′(0) ≤

(︁
− log(1−𝑆𝑡)

𝑆

)︁
𝑔′′(0), (69)

implying (68). The last claim follows by continuity of 𝑓(𝑢) = 𝑢 log 𝑢 at 0. �

Proof of the proposition Case (a), the first statement of Case (b), and the second statement of Case (b)
follow, correspondingly, from Lemmas B.1, B.3, and B.2 applied to 𝑔(𝑡) = 𝜑𝐹 (𝑡) and using that 𝑔(𝑡) =
𝐹 (𝜃𝑡), 𝑔′(0) = ⟨𝐹 ′(𝜃0), 𝜃1 − 𝜃0⟩, and 𝑔′′(0) = ‖𝜃1 − 𝜃0‖2H0

. Note that the inner-product structure of 𝑆
does not play a role here, but is used in Proposition B.4. �

The next result describes the behavior of (pseudo) self-concordant functions close to the optimum.
Case (a) corresponds to [Bac10, Proposition 2]. The argument for Case (b) appears to be new, and
is of independent interest. We note that a very similar argument was independently invented by U.
Marteau-Ferey in [MFOBR19].

Proposition B.4. Suppose that one of the Cases (a)–(b) in Proposition B.3 holds with fixed 𝜃0, all 𝜃1 ∈ Θ,
and 𝑊 ∈ R𝑑 which can depend on 𝜃1. Whenever

‖𝑊‖H−1
0
‖∇𝐹 (𝜃0)‖H−1

0
≤ 1/4,

function 𝐹 (𝜃) has a unique minimizer 𝜃 ∈ Θ, and ‖𝜃 − 𝜃0‖H0 ≤ 4‖∇𝐹 (𝜃0)‖H−1
0
.

The key message of Proposition B.4 is that the local information about 𝐹 (·) at one point efficiently
amounts to the global information about how close is this point to the optimum. When applied to
the empirical risk with 𝜃0 = 𝜃* and 𝜃 = ̂︀𝜃𝑛, this proposition allows to localize ̂︀𝜃𝑛 using that the
quantity ‖∇𝐿𝑛(𝜃*)‖2H−1 decreases at rate 𝑂(𝑑eff/𝑛) under the i.i.d. assumption.

Proof. Note that from (65), (67), or (69), depending on the case, it follows that ∇2𝐹 (𝜃) ≻ 0 for any
𝜃 ∈ Θ, hence the minimum 𝜃 is unique provided that it exists. Now, consider the level set

Θ𝐹 (𝐹 (𝜃0)) := {𝜃 ∈ Θ : 𝐹 (𝜃) ≤ 𝐹 (𝜃0)}.

Let 𝜃1 ∈ Θ𝐹 (𝐹 (𝜃0)) be arbitrary, and 𝑟 = ‖𝜃1−𝜃0‖H0 . Denote 𝜈 := ‖∇𝐹 (𝜃0)‖H−1
0

and𝑅 := ‖𝑊‖H−1
0

;
note that 𝑆 ≤ 𝑅𝑟. We now treat all cases of Proposition B.3.

Case (a). By (61), we have

𝐹 (𝜃1) ≥ 𝐹 (𝜃0) + ⟨∇𝐹 (𝜃0), 𝜃1 − 𝜃0⟩+ 𝑒−𝑅𝑟−1+𝑅𝑟
𝑅2𝑟2

𝑟2 ≥ 𝐹 (𝜃0)− 𝜈𝑟 + 𝑒−𝑅𝑟−1+𝑅𝑟
𝑅2 ,

where we first used that 𝑢 ↦→ (𝑒−𝑢 − 1 + 𝑢)/𝑢 is a decreasing function, and then the Cauchy-Schwarz
inequality. Denoting 𝑢 = 𝑅𝑟, we arrive at

𝑒−𝑢 − 1 + 𝑢 ≤ 𝜈𝑅𝑢. (70)

By the premise, we know that 𝜈𝑅 ≤ 1/2, hence 𝑒−𝑢 − 1 + 𝑢/2 ≤ 0. We can check numerically that
this implies 𝑢 ≤ 2; moreover, one has 𝑒−𝑢 − 1 + 𝑢 ≥ 𝑢2/4 for such 𝑢. Plugging this back into (70), we
arrive at 𝑢 ≤ 4𝜈𝑅, that is, ‖𝜃1 − 𝜃0‖H0 ≤ 4𝜈. In other words, the level set Θ𝐹 (𝐹 (𝜃0)) is compact and
belongs to the ‖ · ‖H0-ball of radius 4𝜈 centered at 𝜃0. Hence, the minimum 𝜃 exists and belongs to the
same ball; it is also unique since 𝐹 (𝜃) ≻ 0.
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Case (b) with 𝑆 < 1. By the lower bound in (63), we have

𝐹 (𝜃1) ≥ 𝐹 (𝜃0) + ⟨∇𝐹 (𝜃0), 𝜃1 − 𝜃0⟩+ 1
2+𝑅𝑟𝑟

2 ≥ 𝐹 (𝜃0)− 𝜈𝑟 + 1
2+𝑅𝑟𝑟

2,

where we used that 𝑢 ↦→ 1/(2 + 𝑢) is a decreasing function on R+. Whence,

𝑢

𝑢+ 2
≤ 𝜈𝑅,

where 𝑢 := 𝑅𝑟. Since 𝜈𝑅 ≤ 1/2, we have 𝑢 ≤ 2. Thus, we get 𝑟 ≤ 4𝜈 as required.

Case (b) with arbitrary 𝑆 ≥ 0. First assume that 𝑅𝑟 ≥ 𝑆 ≥ 1. Then, 𝜃1/𝑆 belongs to the seg-
ment [𝜃0, 𝜃1] and to Θ. Whence 𝐹 (𝜃1/𝑆) ≤ 𝐹 (𝜃0) by convexity of Θ𝐹 (𝐹 (𝜃0)). On the other hand, from
the lower bound in (62) we have

𝐹 (𝜃1/𝑆) ≥ 𝐹 (𝜃0)−
𝜈𝑟

𝑆
+

𝑟2

3𝑆2
.

Whence 𝜈 ≥ 𝑟
3𝑆 ≥ 1

3𝑅 , and we arrive at the contradiction. Thus, the only possibility is that 𝑆 < 1, in
which case the statement has already been proved. �

B.1 Properties of pseudo-Huber loss (21)

We can check that the Fenchel dual of 𝜑 : (−1, 1) → R defined in (20) is indeed 𝜙(𝑡), cf. (21), by
solving a quadratic equation. Since 𝜑 is a barrier on (−1, 1), we have |𝜙′(𝑡)| < 1 for any 𝑡 ∈ R. Now,
we have 𝜑′(𝜙′(𝑡)) = 𝑡 for 𝑡 ∈ R, see, e.g., [Roc70]. Differentiating this identity, we obtain

𝜑′′(𝜙′(𝑡)) · 𝜙′′(𝑡) = 1. (71)

Clearly, the Fenchel dual of an even function is also even, hence 𝜙′(0) = 0, and 𝜙′′(0) = 1/𝜑′′(0).
Differentiating once again, we get

𝜑′′′(𝜙′(𝑡)) · [𝜙′′(𝑡)]2 + 𝜑′′(𝜙′(𝑡)) · 𝜙′′′(𝑡) = 0,

whence, using that 𝜑′′(𝑢) > 0 for any 𝑢 ∈ (−1, 1),

|𝜙′′′(𝑡)| = |𝜑′′′(𝜙′(𝑡))|
𝜑′′(𝜙′(𝑡))

[𝜙′′(𝑡)]2.

Whence, if |𝜑′′′(𝑢)| ≤ 𝑐[𝜑′′(𝑢)]3/2, we get that |𝜑′′′(𝑢)| ≤ 𝑐[𝜑′′(𝑢)]3/2 via (71). �

C Proofs of theorems

C.1 Proof of Theorem 3.1

1𝑜. Recall that H = ∇2𝐿(𝜃*), and let H𝑛 := ∇2𝐿𝑛(𝜃*). Note that due to Assumption D2 and the
first bound on 𝑛 in the premise of the theorem, we can apply Theorem A.2 to H𝑛 and H. Thus, with
probability at least 1− 𝛿 we have

1
2H 4 H𝑛 4 2H. (72)

On the other hand, we can prove (28) using Assumption D1. Indeed, the vectors

∇ℓ𝑍𝑖(𝜃*) = ℓ′(𝑌𝑖, 𝑋
⊤
𝑖 𝜃*)𝑋𝑖, 𝑖 ∈ [𝑛],
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are independent, zero mean and with covariance G. Hence, the random vectors G−1/2∇ℓ𝑍𝑖(𝜃*). 𝑖 ∈
[𝑛], are independent and isotropic (have zero mean and unit covariance). Moreover, by Assump-
tion D1, ‖G−1/2∇ℓ𝑍𝑖(𝜃*)‖𝜓2 ≤ 𝐾1. Hence, by Lemma A.4 about the subgaussian norm of the sum
of i.i.d. random vectors, we have that the random vector 𝑉𝑛 :=

√
𝑛G−1/2∇𝐿𝑛(𝜃*), is isotropic, satis-

fies ‖𝑉𝑛‖𝜓2 . 𝐾1, and, moreover,

‖∇𝐿𝑛(𝜃*)‖2H−1 = 1
𝑛‖𝑉𝑛‖2J with J := G1/2H−1G1/2. (73)

Using that ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J) = 𝑑eff, by Theorem A.1, we arrive at (28).
2𝑜. Our next goal is proving (29). Let 𝜇 := E[𝑋] and Σ𝑜 := E[(𝑋 − 𝜇)(𝑋 − 𝜇)⊤] so that Σ =

Σ𝑜 + 𝜇𝜇⊤. Denoting Q = Σ
1/2
𝑜 Σ−1Σ

1/2
𝑜 , we have

‖𝑋𝑖‖2Σ−1 = ‖𝑋𝑖 − 𝜇‖2
Σ−1 + 2⟨Σ−1/2𝜇,Σ−1/2(𝑋𝑖 − 𝜇)⟩+ ‖𝜇‖2

Σ−1

= ‖Σ−1/2
𝑜 (𝑋𝑖 − 𝜇)‖2Q + 2⟨Q1/2Σ−1/2

𝑜 𝜇,Q1/2Σ−1/2
𝑜 (𝑋𝑖 − 𝜇)⟩+ ‖Σ−1/2𝜇‖22.

(74)

By construction, Σ−1/2
𝑜 (𝑋𝑖−𝜇) is isotropic. Moreover, ‖Σ−1/2

𝑜 (𝑋𝑖−𝜇)‖𝜓2 . 𝐾0 due to Assumption D0
and Lemma A.5. Note that ‖Q‖2 ≤ Tr(Q) ≤ 𝑑 and ‖Q‖∞ ≤ 1. Hence, by Theorem A.1, with probability
at least 1− 𝛿 one has

‖Σ−1/2
𝑜 (𝑋𝑖 − 𝜇)‖2Q . 𝐾2

0𝑑
[︀√︀

log (𝑒/𝛿) + log (1/𝛿)
]︀
. 𝐾2

0𝑑 log (𝑒/𝛿) .

Now, the second term in the right-hand side of (74) can be controlled as follows:

|⟨Q1/2Σ−1/2
𝑜 𝜇,Q1/2Σ−1/2

𝑜 (𝑋𝑖 − 𝜇)⟩| ≤ ‖Q‖1/2∞ ‖Q1/2Σ−1/2
𝑜 𝜇‖2‖Σ−1/2

𝑜 (𝑋𝑖 − 𝜇)‖2
= ‖Q‖1/2∞ ‖Σ−1/2𝜇‖2‖Σ−1/2

𝑜 (𝑋𝑖 − 𝜇)‖2
≤ ‖Σ−1/2𝜇‖2‖Σ−1/2

𝑜 (𝑋𝑖 − 𝜇)‖2
. 𝐾0

√︀
𝑑 log (𝑒/𝛿)‖Σ−1/2𝜇‖2,

where the last inequality holds with probability ≥ 1− 𝛿 by Corollary A.1. Finally,

‖Σ−1/2𝜇‖22 ≤ 𝜇⊤Σ−1𝜇 = 𝜇⊤(Σ𝑜 + 𝜇𝜇⊤)−1𝜇 ≤ 1.

Combining these results with the union bound, (72), and Assumption C, we have

max
𝑖∈[𝑛]

‖𝑋𝑖‖2H−1
𝑛
. 𝜌𝐾2

0𝑑 log (𝑒𝑛/𝛿) , ∀𝑖 ∈ [𝑛] (75)

with probability ≥ 1− 𝛿. Now, (28), (72), and the 2nd bound in (27) imply that

max
𝑖∈[𝑛]

‖𝑋𝑖‖2H−1
𝑛
‖∇𝐿𝑛(𝜃*)‖2H−1

𝑛
≤ 𝑐. (76)

Now, putting 𝑐 = 1/4, this results in (29). Indeed, invoking the bound (54) of Proposition B.1, we
see that 𝐿𝑛(·) falls into Case (a) of Proposition B.3 with 𝜃0 = 𝜃*, H0 = H𝑛, and 𝑊 (𝜃) = 𝑋𝑗(𝜃)

for 𝑗(𝜃) ∈ Argmax𝑖∈[𝑛] |⟨𝑋𝑖, 𝜃 − 𝜃*⟩|. Hence, we can apply Proposition B.4: clearly, ‖𝑊 (𝜃)‖H−1
𝑛

≤
max𝑖∈[𝑛] ‖𝑋𝑖‖H−1

𝑛
for all 𝜃 ∈ Θ, and then (76) with 𝑐 = 1/4 implies that the minimizer ̂︀𝜃𝑛 of ̂︀𝐿𝑛(·) is

unique and satisfies ‖̂︀𝜃 − 𝜃*‖2H𝑛
≤ 4‖∇𝐿𝑛(𝜃*)‖2H−1

𝑛
. By (72), this results in (29).

3𝑜. Let us now prove (30). To this end, consider the restricted risk 𝐿ℰ0(𝜃), fix two arbitrary points
𝜃0, 𝜃1 ∈ Θ, and consider function 𝜑ℰ0(𝑡) := 𝐿ℰ0(𝜃𝑡) where 𝜃𝑡 = 𝜃0 + 𝑡(𝜃1 − 𝜃0) for 𝑡 ∈ [0, 1].
Differentiating 𝜑ℰ0(𝑡) three times (note that ℰ0 does not depend on 𝜃), we see that (55) can now be
replaced with

|𝜑′′′ℰ0(𝑡)| ≤ 𝜑′′ℰ0(𝑡) sup
𝑥∈𝒳ℰ0

|⟨𝑥, 𝜃1 − 𝜃0⟩|,

35



where 𝒳ℰ0 := {𝑥 ∈ 𝒳 : ‖𝑥‖H−1 ≤ √
𝜌B0}, with B0 := 𝐾0

√︀
𝑑 log(𝑒/𝛿), is the (1 − 𝛿)-confidence

set (under ℰ0) for 𝑋 . (We used Assumption C.) Besides, let us momentarily assume that the new
Hessian Hℰ0 := ∇2𝐿ℰ0(𝜃*) is invertible, and approximates H in the positive-semidefinite sense: for
some constants 𝑐, 𝐶 > 0,

𝑐H 4 Hℰ0 4 𝐶H. (77)

Later on, we will verify this under condition (31) on 𝛿. Now, under (77), we can apply Case (a) of
Proposition B.3 to 𝐿ℰ(·) with 𝜃0 = 𝜃*, 𝜃1 = ̂︀𝜃𝑛, H0 = Hℰ0 , and 𝑊 = 𝑊 (𝜃) ∈ Argmax𝑥∈𝒳ℰ0

|⟨𝑥, 𝜃 −
𝜃*⟩|. Observe that ‖𝑊 (𝜃)‖H−1 ≤ √

𝜌B0, and let 𝑟 := ‖̂︀𝜃𝑛 − 𝜃*‖2H. By (60) combined with the
Cauchy-Schwarz inequality,

𝐿ℰ0(
̂︀𝜃𝑛)− 𝐿ℰ0(𝜃*) .

(︃
𝑒
√
𝜌B0𝑟 − 1−√

𝜌B0𝑟

𝜌B2
0𝑟

2

)︃
𝑟2 +∇𝐿ℰ0(𝜃*)

⊤(̂︀𝜃𝑛 − 𝜃*).

Now, observe that the term in the parentheses is at most a constant. Indeed,
√
𝜌B0𝑟 . 1 follows from the

combination of (27)–(29), and then 𝑓(𝑢) = 𝑒𝑢 − 1− 𝑢 . 𝑢2 whenever 𝑢 . 1 (in particular, 𝑓(𝑢) ≤ 𝑢2

when 𝑢 ≤ 1). Thus,
𝐿ℰ0(

̂︀𝜃𝑛)− 𝐿ℰ0(𝜃*) . 𝑟
2 + 𝑟‖∇𝐿ℰ0(𝜃*)‖H−1 . (78)

In order to prove (30), it remains to control ‖∇𝐿ℰ0(𝜃*)‖H−1 and to verify (77).
4𝑜. To estimate the additional term in (78), consider the complementary risk:

𝐿ℰ𝑐0 (𝜃*) := E[ℓ𝑍(𝜃*)1ℰ𝑐0 (𝑋)],

where ℰ𝑐0 is the complement of ℰ0, so thatP(ℰ𝑐0) ≤ 𝛿. Note that, since ∇𝐿(𝜃*) = 0, we have ∇𝐿ℰ0(𝜃*) =
−∇𝐿ℰ𝑐0 (𝜃*), whence

‖∇𝐿ℰ0(𝜃*)‖H−1 = ‖∇𝐿ℰ𝑐0 (𝜃*)‖H−1 .

We now estimate ‖∇𝐿ℰ𝑐0 (𝜃*)‖H−1 through a technique inspired by the one in [Ver11, Section 1.3]. For
any 𝑝, 𝑞 such that 1/𝑝+ 1/𝑞 = 1, we have by Hölder’s inequality:

‖∇𝐿ℰ𝑐0 (𝜃*)‖H−1 ≤ E[‖∇ℓ𝑍(𝜃*)‖H−11ℰ𝑐0 ] ≤ E[‖∇ℓ𝑍(𝜃*)‖
𝑝
H−1 ]

1/𝑝𝛿1/𝑞, (79)

Note that
‖∇ℓ𝑍(𝜃*)‖2H−1 = ‖G−1/2∇ℓ𝑍(𝜃*)‖2J

where J = G1/2H−1G1/2, and G−1/2∇ℓ𝑍(𝜃*) is isotropic and satisfies

‖G−1/2∇ℓ𝑍(𝜃*)‖𝜓2 ≤ 𝐾1.

Hence, by Corollary A.2, 𝜁 := ‖H−1/2∇ℓ𝑍(𝜃*)‖ satisfies ‖𝜁‖𝜓2 . 𝐾1

√
𝑑eff. As such, we can bound the

moments of 𝜁 using Lemma A.1:

E[‖∇ℓ𝑍(𝜃*)‖𝑝H−1 ]
1/𝑝 . 𝐾1

√︀
𝑝𝑑eff.

Combining this with (78)–(79) and (28)–(29), and choosing 𝑝 = log(𝑒𝑑eff) and 𝑞 = 1 + 1/log(𝑑eff), we
obtain

𝐿ℰ0(
̂︀𝜃𝑛)− 𝐿ℰ0(𝜃*) . 𝐾

2
1

√︁
𝑑eff log(𝑒/𝛿)

𝑛

(︂√︁
𝑑eff log(𝑒/𝛿)

𝑛 + 𝛿
log(𝑑eff)

log(𝑑eff)+1
√︀
𝑑eff log(𝑒𝑑eff)

)︂
.

Finally, (31) implies that 𝛿
log(𝑑eff)

log(𝑑eff)+1
√︀
log(𝑑eff) .

√︀
log(𝑒/𝛿)/𝑛, and (30) follows.
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5𝑜. It remains to verify (77), i.e., that the Hessians H and Hℰ0 are close. First, the upper bound in (77)
is trivial. Indeed defining the complementary Hℰ𝑐0 := ∇2𝐿ℰ𝑐0 (𝜃*), we see that Hℰ0 = H −Hℰ𝑐0 4 H
since Hℰ𝑐0 < 0. On the other hand, the lower bound in (77) with 𝑐 ∈ (0, 1) would follow from the bound

‖H−1/2Hℰ𝑐0H
−1/2‖∞ ≤ 𝑐′,

where 𝑐′ ∈ (0, 1). Let us show that this bound is satisfied under the second bound in (31), using a
technique similar to the one used to control ∇𝐿ℰ0(𝜃*). For any 𝑝, 𝑞 ≥ 1 such that 1/𝑝 + 1/𝑞 = 1, we
have by Hölder’s and Young’s inequalities:

‖H−1/2Hℰ𝑐0H
−1/2‖∞ ≤ E[‖H−1/2∇2ℓ𝑍(𝜃*)H

−1/2‖𝑝∞]1/𝑝𝛿1/𝑞

= E[‖H−1/2 ̃︀𝑋 ̃︀𝑋⊤H−1/2‖𝑝∞]1/𝑝𝛿1/𝑞

= E[‖H−1/2 ̃︀𝑋‖2𝑝2 ]1/𝑝𝛿1/𝑞 . 𝐾2
2𝑝𝑑𝛿

1/𝑞,

where in the end we used that 𝜁 = ‖H−1/2 ̃︀𝑋‖2 satisfies ‖𝜁‖𝜓2 ≤ 𝐾2

√
𝑑 by Corollary A.2. Choosing 𝑝 =

log(𝑒𝑑), we see that 𝐾2
2𝑝𝑑𝛿

1/𝑞 . 1 under (31). �

C.2 Proof of Theorem 3.2

Disclaimer. The key distinction from Theorem 3.1 is the absence of curvature parameter 𝜌 in the
derived critical sample size (cf. (32) viz. (27)). This improvement is achieved by carefully exploiting
Assumption SCb. In particular, we invoke Case (b), instead of Case (a), in Propositions B.1 and B.3.
Meanwhile, the role of the bounding vector 𝑊 is now relegated from 𝑋 to ̃︀𝑋 = ℓ′′(𝑌,𝑋⊤𝜃*)

1/2𝑋 .
The proof of the theorem below recycles results from the proof of Theorem 3.1.

Proof. We repeat step 1𝑜 in the previous proof verbatim, arriving at (28) and (72).
2𝑜. In order to prove (29), we use Case (b) of Proposition B.1. To this end, fix arbitrary 𝜃 ∈ Θ,

let 𝜃𝑡 = 𝜃* + 𝑡(𝜃 − 𝜃*) for 𝑡 ∈ [0, 1), and define 𝜑𝑧(𝑡) := ℓ𝑧(𝜃𝑡) for arbitrary 𝑧 ∈ 𝒵 . Due to
Assumption SCb, for any 𝑧 ∈ 𝒵 = R𝑑 × 𝒴 , we have |𝜑′′′𝑧 (𝑡)| ≤ 2[𝜑′′𝑧(𝑡)]

3/2. Hence, we can apply
Proposition B.2 to 𝑔(𝑡) = 𝜑′′𝑧(𝑡) with 𝑐 = 1. Thus, with ̃︀𝑥 := [ℓ′′(𝑦, 𝑥⊤𝜃*)]

1/2𝑥 for arbitrary (𝑥, 𝑦) ∈ 𝒵 ,
we have

𝜑′′𝑧(𝑡) ≤
𝜑′′𝑧(0)

(1− 𝑡
√︀
𝜑′′𝑧(0))

2
=

⟨̃︀𝑥, 𝜃 − 𝜃*⟩2
(1− 𝑡|⟨̃︀𝑥, 𝜃 − 𝜃*⟩|)2

(80)

for any 𝑡 ≥ 0 such that the denominator is non-zero. Combining this with (56),

|𝜑′′′𝑛 (𝑡)| ≤ 𝜑′′𝑛(𝑡)max
𝑖∈[𝑛]

|⟨ ̃︀𝑋𝑖, 𝜃 − 𝜃*⟩|
1− 𝑡|⟨ ̃︀𝑋𝑖, 𝜃 − 𝜃*⟩|

= 𝜑′′𝑛(𝑡)
|⟨ ̃︀𝑋𝑗(𝜃), 𝜃 − 𝜃*⟩|

1− 𝑡|⟨ ̃︀𝑋𝑗(𝜃), 𝜃 − 𝜃*⟩|
, (81)

where 𝑗(𝜃) ∈ Argmax𝑖∈[𝑛] |⟨ ̃︀𝑋𝑖, 𝜃 − 𝜃*⟩|, and again we can take any 𝑡 ≥ 0 such that the denominator is
positive. Thus, 𝐿𝑛(𝜃) falls into Case (b) of Proposition B.3 with 𝜃0 = 𝜃*, H0 = H𝑛, and 𝑊 =𝑊 (𝜃) =
̃︀𝑋𝑗(𝜃). On the other hand, repeating the analysis that led to (75), we obtain that, for any fixed 𝜃,

‖ ̃︀𝑋𝑗(𝜃)‖2H−1
𝑛
. B2

2 := 𝐾2
2𝑑 log (𝑒𝑛/𝛿)

with probability ≥ 1− 𝛿. Combining this result with the second bound in (32),

‖ ̃︀𝑋𝑗(𝜃)‖2H−1
𝑛
‖∇𝐿𝑛(𝜃*)‖2H−1

𝑛
. 1, (82)

cf. (76). Hence, we can apply Proposition B.4 to 𝐿𝑛(𝜃) at 𝜃0 = 𝜃*, and repeating the final argument in
step 2𝑜 of the proof of Theorem 3.1, we arrive at (29).
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3𝑜. We now prove (30) with 𝐿ℰ0 replaced by 𝐿ℰ2 . Similarly to (81), from (80) and (57) we have

|𝜑′′′(𝑡)| ≤ 𝜑′′(𝑡)
|⟨𝑊 (𝜃), 𝜃 − 𝜃*⟩|

1− 𝑡|⟨𝑊 (𝜃), 𝜃 − 𝜃*⟩|
, (83)

with probability ≥ 1− 𝛿, where 𝑊 (𝜃) ∈ Argmax
𝑥∈ ̃︀𝒳ℰ2

|⟨𝑥, 𝜃 − 𝜃*⟩| for the set

̃︀𝒳ℰ2 := {̃︀𝑥 = [ℓ′′(𝑦, 𝑥⊤𝜃*)]
1/2𝑥 : ‖̃︀𝑥‖2H−1 . B2

2}.

(Clearly, ̃︀𝒳ℰ2 is the (1− 𝛿)-confidence set for the new observation ̃︀𝑋 .) Thus,

|⟨𝑊 (𝜃), ̂︀𝜃𝑛 − 𝜃*⟩| ≤ B2𝑟, 𝑟 := ‖̂︀𝜃𝑛 − 𝜃*‖H;

moreover, due to (28), (29), and the 2nd bound in (32) we have B2𝑟 . 1. As such, whenever 𝑐H 4
∇2𝐿ℰ2(𝜃*) 4 𝐶H, the restricted risk 𝐿ℰ2(·), cf. (26), falls under Case (b) of Proposition B.3 with 𝜃1 =
̂︀𝜃𝑛 and 𝑆 < 1; the upper bound in (63) then gives the analogue of (78):

𝐿ℰ2(
̂︀𝜃𝑛)− 𝐿ℰ2(𝜃*) .

𝑟2

2−B2𝑟
+∇𝐿ℰ2(𝜃*)

⊤(̂︀𝜃𝑛 − 𝜃*) . 𝑟
2 + 𝑟‖∇𝐿ℰ2(𝜃*)‖H−1 .

It remains to estimate the right-hand side and to verify 𝑐H 4 ∇2𝐿ℰ2(𝜃*) 4 𝐶H, using (31) in both cases.
This repeats steps 4𝑜–5𝑜 in the proof of Theorem 3.1. �

C.3 Proof of Theorem 4.1

1𝑜. Without loss of generality, we assume that Θ = R𝑑; the argument can be extended to the general case
simply by replacing all arising Dikin ellipsoids with their intersections with Θ. For simplicity, we also
assume that Assumption D2* holds with 𝑟 = 1, and denote 𝐾̄2 := 𝐾̄2(1). First of all, for any 𝑟 ≥ 0 and
𝜃 ∈ Θ1(𝜃*), we define the Dikin ellipsoid with center 𝜃 and radius 𝑟:

Θ𝑟(𝜃) := {𝜃′ ∈ R𝑑 : ‖𝜃′ − 𝜃‖H(𝜃) ≤ 𝑟}.

We will prove that the Hessians H(𝜃) := ∇2𝐿(𝜃) are close to H(𝜃*) within the Dikin ellipsoid with
radius Ω(1/𝐾̄3

2 ). To this end, fix 𝜃0 = 𝜃* and arbitrary 𝜃1 ∈ R𝑑, and let 𝜃𝑡 = 𝜃0 + 𝑡(𝜃1 − 𝜃0), 𝑡 ≥ 0. By
using Assumptions SCb and D2*, we can prove that for the function 𝜑(𝑡) = 𝐿(𝜃𝑡) it holds

𝜑′′′(𝑡) ≤ 2𝑐[𝜑′′(𝑡)]3/2

for any 𝑡 ≥ 0 such that 𝜃𝑡 ∈ Θ1/𝑐(𝜃*) with 𝑐 & 1/𝐾̄3
2 . Indeed, let Δ := 𝜃1 − 𝜃0, and recall that

𝜑(𝑝)(𝑡) = E[ℓ(𝑝)(𝑌, ⟨𝑋, 𝜃𝑡⟩)⟨𝑋,Δ⟩𝑝], 𝑝 ∈ {2, 3},

cf. the proof of Proposition B.1. Putting ̃︀𝑋(𝜃𝑡) := [ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)]1/2𝑋 , this gives

𝜑′′(𝑡) = E[⟨ ̃︀𝑋(𝜃𝑡),Δ⟩2] = E[⟨H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)

1/2Δ⟩2] = ‖Δ‖2H(𝜃𝑡)
,

On the other hand, due to Assumption SCb,

|𝜑′′′(𝑡)| ≤ E[|ℓ′′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)| · |⟨𝑋,Δ⟩|3]
≤ 2E[|⟨[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)]1/2𝑋,Δ⟩|3]
= 2E[|⟨H(𝜃𝑡)

−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)
1/2Δ⟩|3].
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Now, recall that whenever 𝜃 ∈ Θ𝑐(𝜃*), one has ‖H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡)‖𝜓2 ≤ 𝐾̄2 due to Assumption D2*.

Thus, for such 𝜃𝑡 we have

‖⟨H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)

1/2Δ⟩‖𝜓2 ≤ 𝐾̄2‖Δ‖H(𝜃𝑡),

and by Lemma A.1,

E[|⟨H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)

1/2Δ⟩|3] ≤ 𝐶𝐾̄3
2‖Δ‖3H(𝜃𝑡)

for some absolute constant 𝐶 > 0. Without the loss of generality we can assume that 𝐶 ≥ 1. Combining
the above inequalities, we observe that

|𝜑′′′(𝑡)| ≤ 2𝐶𝐾̄3
2 [𝜑

′′(𝑡)]3/2, 0 ≤ 𝑡[𝜑′′(0)]1/2 ≤ 1,

where we used that 𝜃𝑡 ∈ Θ1(𝜃*) is equivalent to 𝑡2𝜑′′(0) ≤ 1. We can now apply Proposition B.2
to 𝑔(𝑡) = 𝜑′′(𝑡), putting

𝑐 := 𝐶𝐾̄3
2 & 1,

and arriving at

𝜑′′(0)

(1 + 𝑐𝑡
√︀
𝜑′′(0))2

≤ 𝜑′′(𝑡) ≤ 𝜑′′(0)

(1− 𝑐𝑡
√︀
𝜑′′(0))2

whenever 0 ≤ 𝑐𝑡[𝜑′′(0)]1/2 ≤ 1. Finally, since 𝜑′′(𝑡) = ‖Δ‖2H(𝜃𝑡)
, this results in

H(𝜃*)

(1 + 𝑐‖𝜃 − 𝜃*‖H(𝜃*))
2
4 H(𝜃) 4

H(𝜃*)

(1− 𝑐‖𝜃 − 𝜃*‖H(𝜃*))
2
,

whenever 𝜃 ∈ Θ1/𝑐(𝜃*). In particular, for any 𝜃 ∈ Θ1/(2𝑐)(𝜃*) we have

4
9H(𝜃*) 4 H(𝜃) 4 4H(𝜃*). (84)

2𝑜. Next, we derive a similar approximation result for the Hessian of empirical risk H𝑛(𝜃) :=
∇2𝐿𝑛(𝜃). This can be done by constructing an epsilon-net on Θ1/(2𝑐)(𝜃*) with respect to the ‖ · ‖H(𝜃*)-
norm. Then, one can control the uniform deviations of H𝑛(𝜃) from H(𝜃) for 𝜃 on the net, while
approximating H𝑛(𝜃) for 𝜃 outside the net, by exploiting the self-concordance of the individual losses,
and appropriately choosing the net resolution. To this end, recall that H𝑛(𝜃) writes

H𝑛(𝜃) =
1

𝑛

𝑛∑︁

𝑖=1

ℓ′′(𝑌𝑖, 𝑋
⊤
𝑖 𝜃)𝑋𝑖𝑋

⊤
𝑖 .

Hence, we can relate H𝑛(𝜃) to H𝑛(𝜃
′) at some other point 𝜃′ by relating ℓ′′(𝑌𝑖, 𝑋⊤

𝑖 𝜃) to ℓ′′(𝑌𝑖, 𝑋⊤
𝑖 𝜃

′).
Namely, fix arbitrary 𝜃0 ∈ Θ1/(2𝑐)(𝜃*) and 𝜃1 ∈ Θ, and observe that, by Assumption SCb, 𝜑𝑍(𝑡) = ℓ𝑍(𝜃𝑡)
satisfies

|𝜑′′′𝑍 (𝑡)| ≤ 2[𝜑′′𝑍(𝑡)]
3/2,

hence we can apply Proposition B.2 to 𝜑′′𝑍(𝑡). For 0 ≤ 𝑡[𝜑′′𝑍(0)]
1/2 ≤ 1 this gives

𝜑′′𝑍(0)

(1 + 𝑡[𝜑′′𝑍(0)]
1/2)2

≤ 𝜑′′𝑍(𝑡) ≤
𝜑′′𝑍(0)

(1− 𝑡[𝜑′′𝑍(0)]
1/2)2

.

cf. (80). Recalling that 𝜑′′𝑍(𝑡) = ℓ′′(𝑌,𝑋⊤𝜃𝑡) · ⟨𝑋,Δ⟩2 = ⟨ ̃︀𝑋(𝜃𝑡),Δ⟩2, where again Δ = 𝜃1 − 𝜃0 but
now without the constraint that 𝜃0 = 𝜃*, we arrive at

ℓ′′(𝑌,𝑋⊤𝜃0)

(1 + 𝑡|⟨ ̃︀𝑋(𝜃0),Δ⟩|)2
≤ ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≤

ℓ′′(𝑌,𝑋⊤𝜃0)

(1− 𝑡|⟨ ̃︀𝑋(𝜃0),Δ⟩|)2
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when 𝑡|⟨ ̃︀𝑋(𝜃0),Δ⟩| ≤ 1. By the Cauchy-Schwarz inequality and (84), this gives

ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≥
ℓ′′(𝑌,𝑋⊤𝜃0)

(1 + 2𝑡‖ ̃︀𝑋(𝜃0)‖H(𝜃0)−1‖Δ‖H(𝜃*))
2

ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≤
ℓ′′(𝑌,𝑋⊤𝜃0)

(1− 2𝑡‖ ̃︀𝑋(𝜃0)‖H(𝜃0)−1‖Δ‖H(𝜃*))
2
,

where 𝑡 ≥ 0 is such that the denominator is strictly positive. As a result, we have

ℓ′′(𝑌,𝑋⊤𝜃′) ≥ ℓ′′(𝑌,𝑋⊤𝜃)

(1 + 2‖H(𝜃)−1/2 ̃︀𝑋(𝜃)‖2‖𝜃′ − 𝜃‖H(𝜃*))
2
,

ℓ′′(𝑌,𝑋⊤𝜃′) ≤ ℓ′′(𝑌,𝑋⊤𝜃)

(1− 2‖H(𝜃)−1/2 ̃︀𝑋(𝜃)‖2‖𝜃′ − 𝜃‖H(𝜃*))
2

(85)

for any 𝜃 ∈ Θ1/(2𝑐)(𝜃*), and any 𝜃′ for which the denominator is strictly positive.
3𝑜. Now, consider the smallest epsilon-net 𝒩𝜀 for Θ1/(2𝑐)(𝜃*) with respect to the norm ‖ · ‖H(𝜃*),

i.e., the smallest subset of Θ1/(2𝑐)(𝜃*) such that for any 𝜃 ∈ Θ1/(2𝑐)(𝜃*) there exists a point 𝜃′ ∈ 𝒩𝜀 such
that ‖𝜃′ − 𝜃‖H(𝜃*) ≤ 𝜀. Note that such 𝒩𝜀 can be obtained as the affine image of the epsilon-net for the
‖ · ‖2-ball with radius 1/(2𝑐) with respect to the standard ‖ · ‖2-norm. Hence, we can apply the bound for
covering numbers of Euclidean balls: for any 𝜀 ≤ 1,

|𝒩𝜀| ≤
(︂

3

2𝑐𝜀

)︂𝑑
. (86)

Consider random vectors H(𝜃)−1/2 ̃︀𝑋𝑖(𝜃), where 𝑖 ∈ [𝑛] and 𝜃 ∈ 𝒩𝜀 for some 𝜀 to be defined later. Each
of them has unit covariance matrix, and is subgaussian with 𝜓2-norm at most 𝐾̄2 due to Assumption D2*.
Repeating the argument from part 1𝑜 of the proof of Theorem 3.1 (to account for the fact that the vectors
are not centered), we can show that with probability at least 1− 𝛿,

‖H(𝜃)−1/2 ̃︀𝑋𝑖(𝜃)‖2 ≤ 𝐶2𝐾̄2

√︀
𝑑 log (𝑒/𝛿)

for some constant 𝐶2 ≥ 1. Here we used that 𝒩𝜀 ⊂ Θ1/2𝑐(𝜃*) ⊆ Θ1(𝜃*). Thus,

sup
𝑖∈[𝑛], 𝜃0∈𝒩𝜀

‖H(𝜃)−1/2 ̃︀𝑋𝑖(𝜃)‖2 ≤ 𝐶2𝐾̄2

√︃
𝑑 log

(︂
𝑒𝑛|𝒩𝜀|
𝛿

)︂
≤ 𝐶2𝐾̄2𝑑

√︃
log

(︂
3𝑒𝑛

𝛿𝜀

)︂
, (87)

with probability ≥ 1− 𝛿, where in the second step we used (86). Now, we choose

𝜀 =
1

64𝐶2
2𝐾̄

2
2𝑑

2 log (𝑒𝑛/𝛿)
. (88)

By some simple algebra, such choice of 𝜀 ensures that

𝜀

√︃
log

(︂
3𝑒𝑛

𝛿𝜀

)︂
≤ 1

4𝐶2𝐾̄2𝑑
.

Combining this with (85) and (87), we see that the following is true with probability ≥ 1 − 𝛿: for
any 𝜃′ ∈ Θ1/(2𝑐)(𝜃*), there exists 𝜃 ∈ 𝒩𝜀 such that

4
9ℓ

′′(𝑌𝑖, 𝑋
⊤
𝑖 𝜃) ≤ ℓ′′(𝑌𝑖, 𝑋

⊤
𝑖 𝜃

′) ≤ 4ℓ′′(𝑌𝑖, 𝑋
⊤
𝑖 𝜃), 𝑖 ∈ [𝑛].
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This implies that with probability ≥ 1− 𝛿, it holds
4
9H𝑛(𝜋*(𝜃)) 4 H𝑛(𝜃) 4 4H𝑛(𝜋*(𝜃)), ∀𝜃 ∈ Θ1/(2𝑐)(𝜃*), (89)

where 𝜋*(·) is the operation of ‖ · ‖H(𝜃*)-projection on the epsilon-net 𝒩𝜀. Finally, to establish the
uniform approximation of H𝑛(·) on Θ1/(2𝑐)(𝜃*), it remains to control H𝑛(𝜃) on the net itself. This can
be done by combining the deviation bounds for sample covariance matrices with the results of 1𝑜. First,
by Theorem A.2, for any 𝜃 ∈ 𝒩𝜀 we have that with probability at least 1− 𝛿,

1
2H(𝜃) 4 H𝑛(𝜃) 4 2H(𝜃),

provided that 𝑛 & 𝐾̄4
2 (𝑑+ log(1/𝛿)). Taking the union bound over 𝒩𝜀, and using (86) and (88), we see

that
1
2H(𝜃) 4 H𝑛(𝜃) 4 2H(𝜃), ∀𝜃 ∈ 𝒩𝜀 (90)

holds with probability ≥ 1− 𝛿, provided that

𝑛 & 𝐾̄4
2𝑑 log

(︁ 𝑒

𝑐𝛿𝜀

)︁
& 𝐾̄4

2𝑑 [log (𝑒𝑑/𝛿) + log log (𝑒𝑛/𝛿)] .

By simple algebra, it suffices that
𝑛 & 𝐾̄4

2𝑑 log (𝑒/𝛿) . (91)

Combining (89), (90), and (84), we see that the sample size satisfying (91) guarantees uniform ap-
proximation of empirical Hessians on the Dikin ellipsoid Θ1/(2𝑐)(𝜃*): with probability ≥ 1 − 𝛿, for
any 𝜃 ∈ Θ1/(2𝑐)(𝜃*) it holds

0.09H(𝜃*) 4 H𝑛(𝜃) 4 32H(𝜃*). (92)

4𝑜. With (92) at hand, we can localize the estimate through a similar argument to that in Proposi-
tion B.4, but with 𝑆 replaced with a constant. Indeed, fixing 𝜃0 = 𝜃* and taking arbitrary 𝜃1 ∈ Θ1/(2𝑐)(𝜃*),
we see that (92) reduces to

0.09𝜑′′(0) ≤ 𝜑′′𝑛(𝑡) ≤ 32𝜑′′(0), 0 ≤ 𝑡 ≤ 1.

Integrating this twice, we get 0.045𝜑′′(0)𝑡2 ≤ 𝜑𝑛(𝑡)− 𝜑𝑛(0)− 𝜑′𝑛(0)𝑡 ≤ 16𝜑′′(0)𝑡2. Putting 𝑡 = 1, and
noting that 𝜑′′(0) = ‖𝜃1 − 𝜃*‖2H(𝜃*)

, we obtain that for any 𝜃 ∈ Θ1/(2𝑐)(𝜃*), with high probability it
holds

0.045‖𝜃 − 𝜃*‖2H(𝜃*)
≤ 𝐿𝑛(𝜃)− 𝐿𝑛(𝜃*)− ⟨∇𝐿𝑛(𝜃*), 𝜃 − 𝜃*⟩ ≤ 16‖𝜃 − 𝜃*‖2H(𝜃*)

. (93)

cf. (62). Now we can proceed as in the proof of Proposition B.4, Case (b). Namely, consider the
event ̂︀𝜃𝑛 /∈ Θ1/(2𝑐)(𝜃*). Under this event, there exists 𝜃𝑛 ∈ [𝜃*, ̂︀𝜃𝑛] such that ‖𝜃𝑛 − 𝜃*‖H(𝜃*) = 1/2𝑐.
On the other hand, clearly, 𝐿𝑛(𝜃𝑛) ≤ 𝐿𝑛(𝜃*). Combining these facts with (93), we obtain that with
probability at least 1− 𝛿,

‖∇𝐿𝑛(𝜃*)‖2H(𝜃*)−1 & 1/𝑐2 & 1/𝐾̄6
2 .

On the other hand, we know (see part 1𝑜 of the proof of Theorem 3.1) that

‖∇𝐿𝑛(𝜃*)‖2H(𝜃*)−1 .
𝐾2

1𝑑eff log (𝑒/𝛿)

𝑛

with probability ≥ 1− 𝛿. Thus, whenever 𝑛 & 𝐾2
1𝐾̄

6
2𝑑eff log(𝑒/𝛿), we have a contradiction, so ̂︀𝜃𝑛 must

belong to Θ1/(2𝑐)(𝜃*). Then, (93) with 𝜃 = ̂︀𝜃𝑛 yields

‖̂︀𝜃𝑛 − 𝜃*‖2H(𝜃*)
. ‖∇𝐿𝑛(𝜃*)‖2H(𝜃*)−1 .

It remains to bound the excess risk. To this end, recall (84) which translates to
4
9𝜑

′′(0) ≤ 𝜑′′(𝑡) ≤ 4𝜑′′(0), 0 ≤ 𝑡 ≤ 1.

Integrating this twice on [0, 1], we obtain 4
9𝜑

′′(0)𝑡2 ≤ 𝜑(𝑡) − 𝜑(0) ≤ 4𝜑′′(0)𝑡2, The upper bound
translates to 𝐿(𝜃) − 𝐿(𝜃*) ≤ ‖𝜃 − 𝜃*‖2H(𝜃*)

for any 𝜃 ∈ Θ1/2𝑐(𝜃*). But we have already proved

that ̂︀𝜃𝑛 ∈ Θ1/2𝑐(𝜃*) with high probability. �
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C.4 Proof of Theorem 4.2

We use the same conventions as in the proof of Theorem 4.1. We assume w.l.o.g. that Assumption D2*

holds with 𝑟 = 1/
√
𝜌, and use 𝐾̄2 := 𝐾̄2(1/

√
𝜌) for brevity.

1𝑜. Our first goal is to prove that the Hessians H(𝜃) := ∇2𝐿(𝜃) are close to H(𝜃*) within the
Dikin ellipsoid with radius 1/(𝑐

√
𝜌) for some 𝑐 depending on constants 𝐾0, 𝐾̄2. Fix 𝜃0 = 𝜃* and

arbitrary 𝜃1 ∈ R𝑑, and let 𝜃𝑡 = 𝜃0 + 𝑡(𝜃1 − 𝜃0), Δ := 𝜃1 − 𝜃0. Putting ̃︀𝑋(𝜃𝑡) := [ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)]1/2𝑋
as before, we have

𝜑′′(𝑡) = E[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)⟨𝑋,Δ⟩2] = E[⟨H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)

1/2Δ⟩2] = ‖Δ‖2H(𝜃𝑡)
.

On the other hand, due to Assumption SCa,

|𝜑′′′(𝑡)| ≤ E[|ℓ′′′(𝑌, ⟨𝑋, 𝜃𝑡⟩)| · |⟨𝑋,Δ⟩|3]
≤ E[ℓ′′(𝑌, ⟨𝑋, 𝜃𝑡⟩) · |⟨𝑋,Δ⟩|3]
≤ E[⟨ ̃︀𝑋(𝜃𝑡),Δ⟩2 · |⟨𝑋,Δ⟩|]
= E[⟨H(𝜃𝑡)

−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)
1/2Δ⟩2 · |⟨Σ−1/2𝑋,Σ1/2Δ⟩|]

≤
√︁
E[⟨H(𝜃𝑡)−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)1/2Δ⟩4] ·

√︁
E[⟨Σ−1/2𝑋,Σ1/2Δ⟩2],

where the last step is by Cauchy-Schwarz. Now, for 𝜃𝑡 ∈ Θ1/
√
𝜌(𝜃*), one has ‖H(𝜃𝑡)

−1/2 ̃︀𝑋(𝜃𝑡)‖𝜓2 ≤
𝐾̄2 due to Assumption D2*. On the other hand, ‖Σ−1/2𝑋‖𝜓2 ≤ 𝐾0. Hence, by Lemma A.1 and
Assumption C, we have

E[⟨H(𝜃𝑡)
−1/2 ̃︀𝑋(𝜃𝑡),H(𝜃𝑡)

1/2Δ⟩4] ≤ 𝐶𝐾̄4
2‖Δ‖4H(𝜃𝑡)

,

E[⟨Σ−1/2𝑋,Σ1/2Δ⟩2] ≤ 𝐶𝐾2
0‖Δ‖2Σ ≤ 𝜌𝐶𝐾̄2

0‖Δ‖2H(𝜃*)
,

for some constant 𝐶 > 0; moreover, we can safely assume that 𝐶 > 1 by weakening the bounds
otherwise. Combining the above results, we arrive at

|𝜑′′′(𝑡)| ≤ 𝐶𝐾0𝐾̄
2
2 [𝜌𝜑

′′(0)]1/2𝜑′′(𝑡), 0 ≤ 𝑡[𝜌𝜑′′(0)]1/2 ≤ 1.

We now formulate a specification of Proposition B.2 for the present situation.

Proposition C.1. Assume 𝑔 : R→ R is differentiable, non-negative, and

|𝑔′(𝑡)| ≤ 𝑐
√︀
𝑔(0)𝑔(𝑡), |𝑡| ≤ 𝑇

for 𝑐 ≥ 0. Then for 𝑡 : |𝑡| ≤ 𝑇 one has 𝑔(0)𝑒−𝑐|𝑡|
√
𝑔(0) ≤ 𝑔(𝑡) ≤ 𝑔(0)𝑒𝑐|𝑡|

√
𝑔(0).

Proof. We assume that 𝑔(𝑡) > 0 for 𝑡 : |𝑡| ≤ 𝑇 ; the argument can be generalized in exactly the same
way as in the proof of Proposition B.2. Denoting 𝜓(𝑡) = log 𝑔(𝑡), we obtain by integrating 𝜓′(𝑡) that
−𝑐
√︀
𝑔(0)𝑡 ≤ log(𝑔(𝑡))− log(𝑔(0)) ≤ 𝑐

√︀
𝑔(0)𝑡, Rearranging this, we arrive at the claim. �

Now, putting
𝑐 := 𝐶𝐾0𝐾̄

2
2 , (94)

and applying Proposition C.1 to 𝑔(𝑡) = 𝜑′′(𝑡), under 𝑐|𝑡|
√︀
𝜌𝜑′′(0) ≤ 1 we get

𝜑′′(0)𝑒−𝑐|𝑡|
√
𝜌𝜑′′(0) ≤ 𝜑′′(𝑡) ≤ 𝜑′′(0)𝑒𝑐|𝑡|

√
𝜌𝜑′′(0).
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Finally, since 𝜑′′(𝑡) = ‖Δ‖2H(𝜃𝑡)
, this translates to the analogue of (84):

1

𝑒
H(𝜃*) 4 H(𝜃) 4 𝑒H(𝜃*), 𝜃 ∈ Θ𝑟(𝜃*), 𝑟 :=

1

𝑐
√
𝜌
. (95)

Here we used that Θ𝑟(𝜃*) ⊆ Θ1/
√
𝜌(𝜃*) since 𝑐 ≥ 1.

2𝑜. We now provide a local approximation of H𝑛(𝜃) using pseudo self-concordance of individual
losses. Fix 𝜃0 ∈ Θ𝑟(𝜃*) and 𝜃1 ∈ Θ, and note that

|𝜑′′′𝑍 (𝑡)| = |ℓ′′′(𝑌,𝑋⊤𝜃𝑡) · ⟨𝑋,Δ⟩|3

≤ |ℓ′′′(𝑌,𝑋⊤𝜃𝑡) · ⟨𝑋,Δ⟩|3 = ⟨ ̃︀𝑋(𝜃𝑡),Δ⟩2 · |⟨𝑋,Δ⟩| = 𝜑′′𝑍(𝑡) · |⟨𝑋,Δ⟩|.
By the argument analogous to those in Propositions B.2 and C.1, we obtain

𝜑′′𝑍(0)𝑒
−𝑡|⟨𝑋,Δ⟩| ≤ 𝜑′′𝑍(𝑡) ≤ 𝜑′′𝑍(0)𝑒

𝑡|⟨𝑋,Δ⟩|,

which translates to ℓ′′(𝑌,𝑋⊤𝜃0)𝑒
−𝑡|⟨𝑋,Δ⟩| ≤ ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≤ ℓ′′(𝑌,𝑋⊤𝜃0)𝑒

𝑡|⟨𝑋,Δ⟩|. Thus, denoting H :=
H(𝜃*) for brevity, we have

ℓ′′(𝑌,𝑋⊤𝜃0)𝑒
−𝑡‖𝑋‖H−1‖Δ‖H ≤ ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≤ ℓ′′(𝑌,𝑋⊤𝜃0)𝑒

𝑡‖𝑋‖H−1‖Δ‖H .

Equivalently, for any 𝜃 ∈ Θ𝑟(𝜃*) and 𝜃′ ∈ Θ,

ℓ′′(𝑌,𝑋⊤𝜃0)𝑒
−‖𝑋‖H−1‖𝜃′−𝜃‖H ≤ ℓ′′(𝑌,𝑋⊤𝜃𝑡) ≤ ℓ′′(𝑌,𝑋⊤𝜃0)𝑒

‖𝑋‖H−1‖𝜃′−𝜃‖H . (96)

By Assumption D0, random vector Σ−1/2𝑋 has 𝜓2-norm at most 𝐾̄0. Hence, repeating the argument
from 1𝑜 in the proof of Theorem 3.1 we can show that, for some constant𝐶0, with probability at least 1−𝛿
one has

max
𝑖∈[𝑛]

‖𝑋𝑖‖H−1 ≤ 𝐶0𝐾0

√︂
𝜌𝑑 log

(︁𝑒𝑛
𝛿

)︁
. (97)

3𝑜. Let 𝒩𝜀 be the epsilon-net on Θ𝑟(𝜃*), with respect to the norm ‖ · ‖H, with

𝜀 =
1

𝐶0𝐾0

√︀
𝜌𝑑 log (𝑒𝑛/𝛿)

. (98)

Combining this with (96) and (97), we obtain that with probability at most 1− 𝛿,
1
𝑒H𝑛(𝜋(𝜃)) 4 H𝑛(𝜃) 4 𝑒H𝑛(𝜋(𝜃)), ∀𝜃 ∈ Θ𝑟(𝜃*), (99)

where 𝜋(·) is the projection operator on the net 𝒩𝜀. On the other hand, by Theorem A.2, it holds that
1
2H(𝜃) ≤ H𝑛(𝜃) ≤ 2H(𝜃), ∀𝜃 ∈ 𝒩𝜀 (100)

with probability at least 1 − 𝛿, whenever 𝑛 & 𝑑 + log (|𝒩𝜀|/𝛿). Recaling that |𝒩𝜀| ≤ (3𝑟/𝜀)𝑑, it is
sufficient that

𝑛 & 𝑑 log
(︁𝑒𝑟
𝜀𝛿

)︁
& 𝑑 log

(︃
𝑒𝐾0

√︀
𝑑 log(𝑒𝑛/𝛿)

𝑐𝛿

)︃
& 𝑑 log

(︃
𝑒
√︀
𝑑 log(𝑒𝑛/𝛿)

𝐾̄2
2𝛿

)︃
,

where we used (94) and (98). Noting that 𝐾̄2 ≥ 1, by simple algebra we have that (100) holds with
probability at least 1− 𝛿 whenever

𝑛 & 𝑑 log (𝑒𝑑/𝛿) .

Finally, if this is the case, with probability at least 1− 𝛿 it holds
𝑒2

2 H(𝜃*) 4 H𝑛(𝜃) 4 2𝑒2H(𝜃*), ∀𝜃 ∈ Θ𝑟(𝜃*),

where we combined (100) with (99) and (95).
4𝑜. As the empirical Hessians are uniformly approximated by H(𝜃*) in the Dikin ellipsoid with

radius 𝑟 = 1/(𝐶𝐾0𝐾̄
2
2
√
𝜌), we can proceed in the same way as in step 4𝑜 in the proof of Theorem 4.1,

showing that (34) holds whenever ‖∇𝐿𝑛(𝜃*)‖2H−1 . 1/(𝜌𝑐2) . 1/(𝜌𝐾2
0𝐾̄

4
2 ), cf. (94). This leads to the

second bound on the critical sample size from the premise of the theorem. �
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C.5 Proof of Theorem 5.1

0𝑜. First, we follow the standard idea in the analysis of ℓ1-penalized estimators (see, e.g., [BCW11]):
using the convexity of 𝐿𝑛(𝜃), we show that whenever 𝜆 dominates ∇𝐿𝑛(𝜃) – which is in fact enforced
by the lower bound in (40) – the essential part of the residual Δ := ̂︀𝜃𝜆,𝑛 − 𝜃* with high probability
concentrates on the support 𝒮. Indeed, due to the optimality of ̂︀𝜃 := ̂︀𝜃𝜆,𝑛, we have

𝐿𝑛(̂︀𝜃)− 𝐿𝑛(𝜃*) ≤ 𝜆(‖𝜃*‖1 − ‖̂︀𝜃‖1). (101)

Let Δ𝒮 be the orthogonal projection of Δ onto 𝒮 , and denote Δ𝒮𝑐 = Δ−Δ𝒮 = ̂︀𝜃𝒮 its projection onto 𝒮𝑐,
the orthogonal complement of 𝒮. By the triangle inequality,

‖𝜃*‖1 − ‖̂︀𝜃‖1 ≤ ‖Δ𝒮‖1 − ‖Δ𝒮𝑐‖1. (102)

On the other hand, by convexity of 𝐿𝑛(𝜃), we have

𝐿𝑛(̂︀𝜃)− 𝐿𝑛(𝜃*) ≥ −‖∇𝐿𝑛(𝜃*)‖∞‖̂︀𝜃 − 𝜃*‖1 ≥ −‖∇𝐿𝑛(𝜃*)‖∞(‖Δ𝒮‖1 + ‖Δ𝒮𝑐‖1). (103)

Collecting (101)–(103), we get

(𝜆− ‖∇𝐿𝑛(𝜃*)‖∞) ‖Δ𝒮𝑐‖1 ≤ (𝜆+ ‖∇𝐿𝑛(𝜃*)‖∞) ‖Δ𝒮‖1.

Whence if
𝜆 ≥ 2‖∇𝐿𝑛(𝜃*)‖∞, (104)

we have that Δ satisfies the restricted subspace condition:

‖Δ𝒮𝑐‖1 ≤ 3‖Δ𝒮‖1, (105)

combining which with ‖Δ𝒮‖1 ≤
√
𝑠‖Δ𝒮‖2 ≤

√
𝑠‖Δ‖2 results in

‖Δ‖1 ≤ 4
√
𝑠‖Δ‖2. (106)

Later on, we will show that the lower bound in (40) implies (104) with probability at least 1 − 𝛿. For
now, let us assume that (104) holds.

1𝑜. To localize the estimate, we now use a similar technique to the one used in the proof of
Proposition B.4, but replace the Cauchy-Schwarz inequality with Young’s inequality. First, applying (61)
to 𝐿𝑛(𝜃) with 𝜃0 = 𝜃*, 𝜃1 = ̂︀𝜃, and 𝑊 = 𝑋𝑗 for some (random) 𝑗 ∈ [𝑛], we have

𝑒−|⟨𝑋𝑗 ,Δ⟩| − 1 + |⟨𝑋𝑗 ,Δ⟩|
|⟨𝑋𝑗 ,Δ⟩|2 ‖Δ‖2H𝑛

≤ 𝐿𝑛(̂︀𝜃)− 𝐿𝑛(𝜃*)− ⟨∇𝐿𝑛(𝜃*),Δ⟩,

Since function 𝑢 ↦→ (𝑒−𝑢 − 1 + 𝑢)/𝑢2 is non-increasing, we can replace |⟨𝑋𝑗 ,Δ⟩| with ‖𝑋𝑗‖∞‖Δ‖1.
Combining this with (101) and (102), bounding −⟨∇𝐿𝑛(𝜃*),Δ⟩ via Young’s inequality, and using (104),
we get

𝑒−‖𝑋𝑗‖‖Δ‖1 − 1 + ‖𝑋𝑗‖∞‖Δ‖1
‖𝑋𝑗‖2∞‖Δ‖21

‖Δ‖2H𝑛
≤ 3𝜆‖Δ‖1

2
. (107)

We now use the standard result from compressed sensing theory (see Theorem A.3 in Appendix) which
states the following. Suppose that all s-restricted eigenvalues of H belong to [1/𝜌,κ2], meaning that

‖Δ‖2/𝜌 ≤ ‖Δ‖2H ≤ κ‖Δ‖2
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for any Δ satisfying the restricted subspace property (105) – which is clearly the case for H in question,
due to Assumptions C and C*. Then, the corresponding sample covariance matrix H𝑛 with probability at
least 1− 𝛿 satisfies

1
2‖Δ‖2H 4 ‖Δ‖2H𝑛

4 2‖Δ‖2H, (108)

for any Δ satisfying (105), provided that

𝑛 & 𝜌κ2𝐾
4
2s log (𝑒𝑑/𝛿) ,

cf. (39). Combining this result with

‖Δ‖2H ≥ ‖Δ‖22
𝜌

≥ ‖Δ‖21
16𝜌s

,

where we used (106), we have that under (39) with probability 1− 𝛿 it holds

‖Δ‖2H𝑛
≥ ‖Δ‖21

32𝜌s
. (109)

Combining this with (107), and denoting

Bsup := max
𝑖∈[𝑛]

‖𝑋𝑖‖∞, 𝑢 := Bsup‖Δ‖1,

we obtain 𝑒−𝑢 − 1 + 𝑢 ≤ 48𝜌s𝜆Bsup𝑢. From now on, we proceed as in the proof of Proposition B.4,
cf. (70). That is, under

48𝜌s𝜆Bsup ≤ 1/2, (110)

we sequentially obtain 𝑢 ≤ 2, 𝑒−𝑢 − 1 + 𝑢 ≥ 𝑢2

4 , then 𝑢 ≤ 192𝜌sBsup𝜆, and

‖Δ‖1 ≤ 192𝜌s𝜆.

This is the first inequality in (41), and the second one is obtained by combining it with (107)–(108). Thus,
both inequalities in (41) are satisfied under the two assumed conditions (104) and (110). It remains to
show that these conditions are indeed guatanteed to be satisfied with high probability under (40). For that,
we have to bound the quantities ‖∇𝐿𝑛(𝜃*)‖∞ and Bsup from above. Indeed, due to Assumption D1, we
have

‖∇ℓ𝑍(𝜃*)‖𝜓2 ≤ 𝐾1
√
κ1.

By Lemma A.4, this gives ‖∇𝐿𝑛(𝜃*)‖𝜓2 . 𝐾1

√︀
κ1/𝑛. Whence, ‖[∇𝐿𝑛(𝜃*)]𝑖‖𝜓2 . 𝐾1

√︀
κ1/𝑛 com-

ponentwise for any 𝑖 ∈ [𝑛]. Whence, by Lemma A.2, one has

‖∇𝐿𝑛(𝜃*)‖∞ . 𝐾1

√︂
κ1 log (𝑒𝑑/𝛿)

𝑛

with probability at least 1− 𝛿. This guarantees (104) under the lower bound in (40). Similarly, we can
show that with probability at least 1− 𝛿,

Bsup . 𝐾0

√︀
log (𝑒𝑑𝑛/𝛿),

which guarantees (110) under the upper bound in (40). The first claim of the theorem is proved; note that
the upper bound in (39) is a corollary of (40).

2𝑜. To prove the second claim, we bound the excess risk using a similar technique as in the proof
of Theorem 3.1. Note that P(ℰ) ≥ 1 − 𝛿 by the results of 1𝑜. As in the proof of Theorem 3.1,
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let Hℰ := ∇2𝐿ℰ(𝜃*); recall that Hℰ 4 H. Applying (60) to 𝐿ℰ(𝜃) with 𝑆 ≤ ‖𝑋‖∞‖Δ‖1 (recall
that 𝑋 ∈ ℰ), we have

𝐿ℰ(̂︀𝜃)− 𝐿ℰ(𝜃*) ≤ ‖∇𝐿ℰ(𝜃*)‖∞‖Δ‖1 +
𝑒‖𝑋‖∞‖Δ‖1 − 1− ‖𝑋‖∞‖Δ‖1

‖𝑋‖2∞‖Δ‖21
‖Δ‖2H

. ‖∇𝐿ℰ(𝜃*)‖∞‖Δ‖1 + ‖Δ‖2H,

where we bounded the factor ahead of ‖Δ‖2H by a constant using the results of 1𝑜. Now, define 𝐿ℰ𝑐(𝜃) :=
E[ℓ𝑍(𝜃)1ℰ𝑐(𝑋)] where ℰ𝑐0 is the complimentary event to ℰ . Since ∇𝐿(𝜃*) = 0, we have ∇𝐿ℰ(𝜃*) =
∇𝐿ℰ𝑐(𝜃*). On the other hand, for any 𝑝, 𝑞 ≥ 1 such that 1/𝑝+ 1/𝑞 = 1, we have

‖∇𝐿ℰ𝑐(𝜃*)‖∞ ≤ E[‖∇ℓ𝑍(𝜃*)‖∞1ℰ𝑐(𝑋)] ≤ E[‖∇ℓ𝑍(𝜃*)‖𝑝∞]
1
𝑝 𝛿

1
𝑞 ≤ 𝐾1

√
𝑝κ1 𝑑

1
𝑝 𝛿

1
𝑞 .

where we applied Hölder’s and Young’s inequalities, and then Lemma A.3. Recall that in 1𝑜 we obtained
that ‖Δ‖1 . 𝜌s𝜆 and ‖Δ‖2H . 𝜌s𝜆2 with probability at least 1− 𝛿. Combining these observations, we
arrive at

𝐿ℰ(̂︀𝜃)− 𝐿ℰ(𝜃*) ≤ (𝜆+𝐾1
√
𝑝κ1 𝑑

1/𝑝𝛿1/𝑞)𝜌s𝜆.

Choosing 𝑝 = log(𝑒𝑑), so that 𝑞 = log(𝑒𝑑)/ log(𝑑), we arrive at the claim. �

C.6 Proof of Theorem 5.2

1𝑜. Let ̂︀𝜃 = ̂︀𝜃𝜆,𝑛 for brevity. The step 0𝑜 of the proof of Theorem 5.1 can be repeated verbatim. As a
result, whenever

𝜆 ≥ 2‖∇𝐿𝑛(𝜃*)‖∞, (111)

we have
𝐿𝑛(̂︀𝜃)− 𝐿(𝜃*) ≤ 𝜆(‖Δ𝒮‖1 − ‖Δ𝒮𝑐‖1) ≤ 𝜆‖Δ‖1, (112)

‖Δ𝒮𝑐‖1 ≤ 3‖Δ𝒮‖1, (113)

‖Δ‖1 ≤ 4
√
𝑠‖Δ‖2. (114)

Moreover, we know (cf. the end of step 1𝑜 of the proof of Theorem 5.1) that (111) holds with probability
at least 1− 𝛿 as long as

‖∇𝐿𝑛(𝜃*)‖∞ . 𝐾1

√︂
κ1 log (𝑒𝑑/𝛿)

𝑛
. (115)

Hence, (111) and (115) are satisfied under the lower bound in (44). Finally, under (113) we have

1
2‖Δ‖2H 4 ‖Δ‖2H𝑛

4 2‖Δ‖2H (116)

and

‖Δ‖2H𝑛
≥ ‖Δ‖21

32𝜌s
, (117)

both with probability at least 1− 𝛿, whenever 𝑛 & 𝜌κ2𝐾
4
2s log (𝑒𝑑/𝛿) .

2𝑜. However, (107) does not hold since we cannot use (61). Instead, we prove

‖Δ‖2H𝑛

1 + 3‖ ̃︀𝑋𝑗‖∞‖Δ‖1
≤ 𝐿𝑛(̂︀𝜃)− 𝐿(𝜃*)− ⟨∇𝐿𝑛(𝜃*),Δ⟩, (118)

where 𝑗 ∈ Argmax𝑖∈[𝑛] |⟨ ̃︀𝑋𝑖,Δ⟩|. Indeed, to this end denote 𝑆 = |⟨ ̃︀𝑋𝑗 ,Δ⟩|. Whenever 𝑆 < 1,
function 𝐿𝑛(𝜃) satisfies the second statement of Case (b) of Proposition B.3, and we obtain (118) from
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the lower bound in (63). On the other hand, when 𝑆 ≥ 1 function 𝐿𝑛(𝜃) satisfies the basic statement of
Case (b) of Proposition B.3, and we can use the lower bound in (62), i.e.,

1
3𝑆2 ‖Δ‖2H𝑛

≤ 𝐿𝑛(𝜃1/𝑆)− 𝐿(𝜃*)− 1
𝑆 ⟨∇𝐿𝑛(𝜃*),Δ⟩, (119)

where 𝜃1/𝑆 is the convex combination of 𝜃* and ̂︀𝜃 given by

𝜃1/𝑆 = (1− 1/𝑆) · 𝜃* + 1/𝑆 · ̂︀𝜃.

By convexity, we have 𝐿𝑛(𝜃1/𝑆) ≤ (1 − 1
𝑆 )𝐿𝑛(𝜃*) +

1
𝑆𝐿𝑛(

̂︀𝜃), whence 𝐿𝑛(̂︀𝜃) − 𝐿𝑛(𝜃*) ≤ (𝐿𝑛(̂︀𝜃) −
𝐿𝑛(𝜃*))/𝑆. When combined with (119), this results in

1
3𝑆 ‖Δ‖2H𝑛

≤ 𝐿𝑛(̂︀𝜃)− 𝐿(𝜃*)− ⟨∇𝐿𝑛(𝜃*),Δ⟩.

Whence (118) follows by Young’s inequality. Now, (118), (112), and (111) imply

‖Δ‖2H𝑛

1 + 3‖ ̃︀𝑋𝑗‖∞‖Δ‖1
≤ 3𝜆‖Δ‖1

2
, (120)

which is an analogue of (107). Starting from this point, we can proceed in a similar way as in the proof of
Theorem 5.2. Namely, let ̃︀Bsup := ‖ ̃︀𝑋‖∞ and 𝑢 := ̃︀Bsup‖Δ‖1, then (120) and (117) imply

𝑢

1 + 3𝑢
≤ 48𝜌s𝜆̃︀Bsup.

Hence, whenever
48𝜌s𝜆̃︀Bsup ≤ 1/4, (121)

we have 𝑢 ≤ 1 and 𝑢/(1 + 3𝑢) ≥ 𝑢/4, which implies 𝑢 ≤ 192𝜌s𝜆̃︀Bsup and ‖Δ‖1 ≤ 192𝜌s𝜆.
This is the first inequality in (45). To obtain the second inequality, we combine (120) and (116).
Thus, for (45) it remains to show that (121) holds under the upper bound in (44). We have ‖ ̃︀𝑋‖𝜓2 ≤
‖H1/2‖2‖H−1/2 ̃︀𝑋‖𝜓2 ≤ 𝐾2

√κ2, where we used Assumptions D2 and C*. This leads to ̃︀Bsup .
𝐾2

√︀
κ2 log(𝑒𝑑𝑛/𝛿) with probability 1− 𝛿, which guarantees (121) under the upper bound in (44).

2𝑜. We now adapt the proof of the second claim of Theorem 5.1. Recall that in our case ℰ :=
{‖ ̃︀𝑋‖∞ . 𝐾2

√︀
κ2 log (𝑒𝑑/𝛿)}, and P(ℰ) ≥ 1 − 𝛿 by the results of 1𝑜. As before, we put Hℰ :=

∇2𝐿ℰ(𝜃*) 4 H, but this time we note that 𝐿ℰ(𝜃) satisfies Case (b) of Proposition B.3 with 𝑆 ≤
‖ ̃︀𝑋‖∞‖Δ‖1 < 1, cf. 1𝑜. Thus, by the upper bound in (63) we have

𝐿ℰ(̂︀𝜃)− 𝐿ℰ(𝜃*) . ‖∇𝐿ℰ(𝜃*)‖∞‖Δ‖1 + ‖Δ‖2H.

Thence we proceed as in the proof of the second claim of Theorem 5.1. �

D Logistic regression with Gaussian design

Change of variables. Consider a canonical GLM (17) with cumulant 𝑎(𝜂). Here, ℓ′′(𝑦, 𝜂) = 𝑎′′(𝜂)
does not depend on 𝑦, hence ̃︀𝑋(𝜃) = [𝑎′′(𝑋⊤𝜃)]1/2𝑋 is fully defined by the distribution of 𝑋 and the
value of 𝜃. Hence, the validity of Assumptions C, D2, D2* only depends on the distribution of 𝑋 , the
expression for 𝑎′′(𝜂), and, possibly, the value of 𝜃* (or 𝜃 in the unit Dikin ellipsoid of 𝜃* in the case of
Assumption D2*). Note, however, that the distribution of 𝑌 does influence Assumption D1 since the loss
gradient ℓ′(𝑌,𝑋⊤𝜃)𝑋 = (𝑎′(𝑋⊤𝜃) − 𝑌 )𝑋 contains 𝑌 . Now, consider the case of zero-mean design,
which only makes sence when 𝜂 is unrestricted, i.e., R(+) = R (note that this excludes the exponential
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responce model). In this case, it is natural to pass from 𝑋 and 𝜃 to the decorrelated design 𝑍 := Σ−1/2𝑋
and parameter 𝜗 := Σ−1/2𝜃. Indeed, 𝑋⊤𝜃 = 𝑍⊤𝜗, and the corresponding vector ̃︀𝑍(𝜗),

̃︀𝑍(𝜗) := [𝑎′′(𝑍⊤𝜗)]1/2𝑍,

writes ̃︀𝑍(𝜗) = Σ−1/2 ̃︀𝑋(𝜃), so that its 2nd-moment matrix Ψ(𝜗) := E[ ̃︀𝑍(𝜗) ̃︀𝑍(𝜗)⊤] is given by Ψ(𝜗) =
Σ−1/2H(𝜃)Σ−1/2. Verifying Assumption C thus reduces to bounding the lowest eigenvalue of Ψ(𝜗*)
at 𝜗* := Σ1/2𝜃*, while Assumptions D2 and D2* reduce to checking ‖Ψ(𝜗)−1/2 ̃︀𝑍(𝜗)‖𝜓2 . 𝐾2 in the
neighborhood of 𝜗*. Similarly, Assumption D1 can be reformulated in terms of the variables 𝑍, 𝜗, 𝑌 .

Here we consider the case of logistic regression with zero-mean Gaussian design (with arbitrary
covariance), verifying the assumptions presented in Section 2.2.

Proposition D.1. In logistic regression with 𝑋 ∼ 𝒩 (0,Σ), the following holds:

1. Assumption C holds with
𝜌 . 1 + ‖𝜃*‖3Σ.

2. Assumption D2 holds with 𝐾2 . (1 + log(1 + ‖𝜃*‖Σ))
√︀
1 + ‖𝜃*‖Σ.

Moreover, Assumption D2* with radius 𝑟 of the Dikin ellipsoid holds with

𝐾̄2(𝑟) . (1 + log(1 + ‖𝜃*‖Σ + 𝑟
√
𝜌))
√︁
1 + ‖𝜃*‖Σ + 𝑟

√
𝜌.

That is, 𝐾̄2(1/
√
𝜌) admits the same bound as 𝐾2 up to a constant factor.

3. If the model is well-specified, Assumption D1 holds with

𝐾1 .
√
𝜌 . (1 + ‖𝜃*‖Σ)3/2.

Moreover, for subexponential norm ‖ · ‖𝜓1 , see [Ver12, Sec. 5.2.4], one has

‖G(𝜃*)
−1/2ℓ′(𝑌,𝑋⊤𝜃*)𝑋‖𝜓1 . log(1 + ‖𝜃*‖Σ)2

√︀
1 + ‖𝜃*‖Σ;

equivalently,
(︀
E[⟨G(𝜃*)

− 1
2 ℓ′(𝑌,𝑋⊤𝜃*)𝑋,𝑢⟩𝑝

)︀ 1
𝑝 . 𝐾𝑝 for all 𝑢 ∈ 𝒮𝑑−1 with

𝐾 = log(1 + ‖𝜃*‖Σ)2
√︀

1 + ‖𝜃*‖Σ.

Proof. Note that 𝑍 ∼ 𝒩 (0, I𝑑), and since this law is rotation-invariant, we can w.l.o.g. assume that the
first coordinate vector is parallel to 𝜗. Using the symmetries of 𝒩 (0, 1), we can make sure that Ψ(𝜗) =
Σ−1/2H(𝜃)Σ−1/2 writes

Ψ(𝜗) =

[︂
𝜅 0⊤𝑑−1

0𝑑−1 𝜅⊥I𝑑−1,

]︂
, (122)

where 0𝑑−1 is the zero column, and 𝜅, 𝜅⊥ are given in terms of the standard Gaussian density 𝜑(·) and

𝑡 := ‖𝜗*‖2 = ‖𝜃*‖Σ
by

𝜅 :=

∫︁ ∞

−∞
𝑎′′(𝑡𝑢)𝑢2𝜑(𝑢)d𝑢, 𝜅⊥ :=

∫︁

R

𝑎′′(𝑡𝑢)𝜑(𝑢)d𝑢.

In fact, the form (122) for Ψ(𝜗) will be preserved with any elliptical distribution of 𝑋 , with some-
what more complicated expressions for 𝜅 and 𝜅⊥. Our next step is to lower-bound 𝜅 and 𝜅⊥, which
automatically yields an upper bound for 𝜌 in Assumption C:

𝜌 ≤ 1

min(𝜅, 𝜅⊥)
. (123)
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1𝑜. We bound 𝜅 and 𝜅⊥ for logistic regression. Here one has 𝑎(𝜂) = log(1 + 𝑒𝜂),

𝑎′(𝜂) = 𝜎(𝜂), 𝑎′′(𝜂) = 𝜎(𝜂)(1− 𝜎(𝜂)),

where 𝜎(𝜂) := 1/(1 + 𝑒−𝜂) is the sigmoid. Clearly, we can bound 𝑎′′(𝜂), ∀𝜂 ∈ R :

1

2(1 + 𝑒|𝜂|)
≤ 𝑎′′(𝜂) ≤ 1

1 + 𝑒|𝜂|
,

which yields
1
4𝑒

−|𝜂| ≤ 𝑎′′(𝜂) ≤ 𝑒−|𝜂|. (124)

Hence, letting 𝑎 ≈ 𝑏 denote the intersection of 𝑎 . 𝑏 and 𝑎 & 𝑏, we have

𝜅⊥ ≈
∫︁ ∞

0
𝑒−𝑡𝑢𝜑(𝑢)d𝑢 ≈

∫︁ ∞

0
𝑒−𝑡𝑢−𝑢

2/2d𝑢 = 𝑒𝑡
2/2𝐺(𝑡),

where

𝐺(𝑡) =

∫︁ +∞

𝑡
𝑒−𝑣

2/2d𝑣

is the partial Gaussian integral. Now, [AS65, Eq. 7.1.13] gives sharp bounds for 𝐺(𝑡):

2𝑒−𝑡
2/2

𝑡+
√
𝑡2 + 4

≤ 𝐺(𝑡) ≤ 2𝑒−𝑡
2/2

𝑡+
√︀
𝑡2 + 8/𝜋

, 𝑡 ≥ 0. (125)

In particular, these bounds imply 𝐺(𝑡) ≈ 𝑒−𝑡
2/2/(𝑡+ 1), whence,

𝜅⊥ ≈ 1/(𝑡+ 1). (126)

We can similarly bound 𝜅:

𝜅 ≈
∫︁ ∞

0
𝑒−𝑡𝑢𝑢2𝜑(𝑢)d𝑢 ≈ 𝑒𝑡

2/2

∫︁ ∞

0
𝑒−(𝑢+𝑡)2/2𝑢2d𝑢 = (𝑡2 + 1)𝐺(𝑡)− 𝑡𝑒−𝑡

2/2.

Using the lower bound in (125), this gives

𝜅 ≥ 4

(𝑡+
√
𝑡2 + 4)(𝑡2 + 2 +

√
𝑡4 + 4𝑡2)

&
1

1 + 𝑡3
. (127)

Plugging (126) and (127) into (123), we arrive at 𝜌 . 1 + ‖𝜃*‖3Σ, as claimed. The dependency on 𝑡
cannot be improved since the lower bound in (125) is sharp.

2𝑜. On the other hand, we can estimate 𝐾2 from Assumption D2 (and similarly 𝐾̄2(𝑟) from Assump-
tion D2*). Indeed, note that

𝐾2 = ‖Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)‖𝜓2 = sup

𝑢∈𝒮𝑑−1

‖⟨𝑢,Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)⟩‖𝜓2 .

Let us consider separately the marginals for 𝑢 = 𝜗*/𝑡 and for 𝑢 from the othogonal complement of the
span of 𝜗. When 𝑢 = 𝜗*/𝑡, we have

|⟨𝑢,Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)⟩| =

√︂
𝑎′′(𝑡𝑍1)

𝜅
|𝑍1| . (1 + 𝑡3/2)𝑒−

𝑡|𝑍1|
2 |𝑍1|,

where 𝑍1 ∼ 𝒩 (0, 1), and we used (124) and (127). Thus, when 𝑡 . 1, we have

‖⟨𝑢,Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)⟩‖𝜓2 . ‖𝑍1‖𝜓2 . 1.
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Let, on the contrary, 𝑡 & 1. Note that in the case where |𝑍1| ≥ 3 log(1+𝑡)
𝑡 , we have (1+ 𝑡3/2)𝑒−𝑡|𝑍1|/2 . 1,

whence |⟨𝑢,Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)⟩| . |𝑍1|. On the other hand, when |𝑍1| ≤ 3 log(1+𝑡)

𝑡 , we have

(1 + 𝑡3/2)𝑒−𝑡|𝑍1|/2|𝑍1| . (1 + 𝑡1/2) log(1 + 𝑡).

Hence, when 𝑢 is parallel to 𝜗*, we have

‖⟨𝑢,Ψ(𝜗*)
−1/2 ̃︀𝑍(𝜃*)⟩‖𝜓2 . (1 + log(1 + 𝑡))

√
1 + 𝑡.

Finally, when 𝑢 is orthogonal to 𝜗*, we can use the trivial estimate

‖⟨𝑢,Ψ(𝜗*)
− 1

2 ̃︀𝑍(𝜃*)⟩‖𝜓2 =

⃦⃦
⃦⃦
√︁

𝑎′′(𝑡𝑍1)
𝜅⊥

⟨𝑢, 𝑍⟩
⃦⃦
⃦⃦
𝜓2

.
√
1 + 𝑡‖⟨𝑢, 𝑍⟩‖𝜓2 .

√
1 + 𝑡.

In fact, this bound is tight, which can be verified by Item 2 of Lemma A.1 (note that 𝑍1 and ⟨𝑍, 𝑢⟩ are
independent). Thus, overall we have

𝐾2 . (1 + log(1 + ‖𝜃*‖Σ))
√︀
1 + ‖𝜃*‖Σ. (128)

Moreover, for 𝐾̄2(𝑟) from Assumption D2*, we clearly have

𝐾̄2(𝑟) . sup
𝜃∈Θ𝑟(𝜃*)

(1 + log(1 + ‖𝜃‖Σ))
√︀
1 + ‖𝜃‖Σ

. (1 + log(1 + ‖𝜃*‖Σ + 𝑟
√
𝜌))
√︁
1 + ‖𝜃*‖Σ + 𝑟

√
𝜌.

This still gives (128) when 𝑟 . 1/
√
𝜌, motivating our condition in Theorem 4.2.

3𝑜. Finally, let us verify Assumption D1, assuming well-specified model. In this case, G(𝜃*) =
H(𝜃*), and the trivial bound using |𝑌 − 𝜎(𝑋⊤𝜃*)| ≤ 1 is

𝐾1 .
√
𝜌 . 1 + 𝑡3/2.

This is a rather discouraging result. However, we can show a weaker (subexponential) version of
Assumption D1 with a milder dependency on 𝑡, replacing the ‖ · ‖𝜓2 norm with the ‖ · ‖𝜓1-norm as
defined in [Ver12, Section 5.2.4]:

‖ℓ′(𝑌,𝑋⊤𝜃*)𝑍‖𝜓1 . log(1 + 𝑡)2
√
1 + 𝑡. (129)

An equivalent definition of the subexponential norm is as follows: a random variable 𝜉 ∈ R satis-
fies ‖𝜉‖𝜓1 ≤ 𝐾 when its moments grow as (E[|𝜉|𝑝])1/𝑝 . 𝐾𝑝, i.e., same as the moments of the
exponential distribution; then, the 𝜓1-norm of a random vector is defined as the maximum norm of its
one-dimensional marginals. Recall that for subgaussian variables the scaling is 𝐾

√
𝑝 (cf. Lemma A.1).

For (129), note that in the well-specified case for 𝑦 ∈ {0, 1} we have

P{𝑌 = 𝑦} = 𝜎(𝑋⊤𝜃*)
𝑦(1− 𝜎(𝑋⊤𝜃*))

1−𝑦,

thus we bound the moments of the marginals of ℓ′(𝑌,𝑋⊤𝜃*)𝑍 = (𝑌 − 𝜎(𝑍⊤𝜗*)𝑍:

E𝑍,𝑌 [(𝑌 − 𝜎(𝑍⊤𝜗*))⟨𝑍, 𝑢⟩]𝑝 ≤ 2E𝑍

[︁
𝜎(𝑍⊤𝜗*)(1− 𝜎(𝑍⊤𝜗*))⟨𝑍, 𝑢⟩𝑝

]︁

. 2E𝑍

[︁
𝑒−|𝑍⊤𝜗*|⟨𝑍, 𝑢⟩𝑝

]︁
, 𝑝 ≥ 1,

where we used (124). For 𝑢 parallel to 𝜗*, we should prove that

(1 + 𝑡)3/2
(︂∫︁ +∞

0
𝑒−𝑡𝑢𝑢𝑝𝑒−𝑢

2/2d𝑢
)︂1/𝑝

. 𝑝 log2(1 + 𝑡)
√
1 + 𝑡. (130)
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We proceed similarly to 2𝑜, using that (1+𝑡)3𝑝/2𝑒−𝑡𝑢 ≤ 1 for 𝑢 ≥ 3𝑝 log(1 + 𝑡)/(2𝑡). Thus, when 𝑡 & 1,

(1 + 𝑡)3𝑝/2
∫︁ +∞

0
𝑒−𝑡𝑢𝑢𝑝𝑒−𝑢

2/2d𝑢

≤(1 + 𝑡)3𝑝/2
∫︁ 3𝑝 log(1+𝑡)

2𝑡

0
𝑢𝑝d𝑢+

∫︁ +∞

3𝑝 log(1+𝑡)
2𝑡

𝑢𝑝𝑒−𝑢
2/2d𝑢

.(1 + 𝑡)3𝑝/2
1

𝑝+ 1

(︂
3𝑝 log(1 + 𝑡)

2𝑡

)︂𝑝+1

+ 𝑝𝑝/2 . (2𝑝)𝑝(1 + 𝑡)𝑝/2 log(1 + 𝑡)𝑝+1,

which implies (130). The remaining cases (𝑢 parallel to 𝜗* with 𝑡 . 1; 𝑢 ⊥ 𝜗*) are straightforward, by
using that ‖ · ‖𝜓1 ≤ 𝐶‖ · ‖𝜓2 for some constant 𝐶, see [Ver12]. �
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