E. Heitz, H. C. Flemming, and W. Sand, Microbially Influenced Corrosion of Materials, 1996.

L. B. Beech and J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals, Curr. Opini. Biotechnol, vol.15, pp.181-186, 2004.

M. Madigan, J. M. Martinko, P. V. Dunlap, and D. P. Clark, Broek Biology of Microorganisms, 2012.

R. Javaherdashti, R. K. Singh-raman, C. Pan-ter, and E. V. Pereloma, Microbiologically Assisted Stress Corrosion Cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria, I. Biodeteriorat. Biodegradat, vol.58, pp.27-35, 2006.

H. H. Uhlig and R. W. Revie, An Introduction to Corrosion Science Engineering, 2008.

R. Javaherdashti, Microbiologically influenced corrosion, 2008.

G. Wranglen, Active sulfides and the pitting corrosion of carbon steels, International Conference on Localized Corrosion, pp.462-476, 1971.

G. Wranglen, Pitting and sulphide inclusions in steel, Corros. Sei, vol.4, pp.331-349, 1974.

R. Avei, B. H. Davis, M. L. Wolfenden, L. B. Beech, K. Lucas et al., Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media, Corros. Sei, vol.76, pp.267-274, 2013.

[. and M. V. Biezma, The role of hydrogen in microbiologically influenced corrosion and Stress Corrosion Cracking, Int. j. Hydrogen Energ, vol.26, pp.515-520, 2001.

V. Novokshchenov, Brittle fractures of prestressed bridge steel exposed to chloride-bearing environments caused by corrosion-generated hydrogen, Corrosion, vol.6, pp.477-485, 1994.

R. Javaherdashti, R. K. Singh-raman, C. Panter, and E. V. Pereloma, Role of microbiological environment in chloride Stress Corrosion Cracking of steels, Mater. Sei. Tech, vol.21, issue.9, pp.1094-1098, 2005.

D. Bond and D. R. Lovley, Electricity production by Geobacter sulfu1Teducens attached to electrodes, Appl. Environ. Microbiol, vol.69, pp.1548-1555, 2003.

M. Mehanna, R. Basseguy, M. Delia, A. Berge, and !. , Geobacter sulfu1Teducens can protect 304 L stainless steel against pitting in conditions of low electron acceptor concentrations, Electrochem. Commun, vol.12, pp.724-728, 2010.

B. J. Little and J. S. Lee, Microbiologically Influenced Corrosion, 2007.

R. W. Bosch and W. F. Bogaerts, Instantaneous corrosion rate measurement with small-amplitude potential intermodulation techniques, Corrosion, vol.52, pp.204-212, 1996.

R. W. Bosch, J. Hubrecht, W. F. Bogaerts, and B. C. Syrett, Electrochemical Frequency Modulation: a new electrochemical technique for online corrosion monitoring, Corrosion, vol.57, pp.60-70, 2001.

L. Han and S. Song, A measurement system based on Electrochemical Frequency Modulation technique for monitoring the early corrosion of mild steel in seawater, Corros. Sei, vol.50, issue.2008, pp.1551-1557

E. F. Ku? and . Mansfeld, An evaluation of the Electrochemical Frequency Modulation (EFM) technique, Corros. Sei, vol.48, pp.965-979, 2006.

P. Beese, H. Venzlaff, J. Srinivasan, J. Garrelfs, M. Stratmann et al., Monitoring of anaerobic Microbially Influenced Corrosion via Electrochemical Frequency Modulation, Electrochim. Acta, vol.105, pp.239-247, 2013.

V. V. Zinkevich and L. B. Beech, Screening of Sulfate-Redueing Bacteria in colonoscopy samples from healthy and colitic human gut mucosa, FEMS Microbiol. Ecology, vol.34, pp.147-155, 2000.

, Deutsche Sammlung von Mokrooganismen und Zellkulturen DSMZ GmbH, Microorganisms, 826, Geobacter medium, 2007.

G. S. Frankel, Electrochemical techniques in corrosion: status, limitations, and needs, j. ASTM In, vol.5, issue.2, pp.1921-1929, 2008.

A. Rauf and W. F. Bogaerts, Employing Electrochemical Frequency Modulation for pitting corrosion, Corros. Sei, vol.52, pp.2773-2785, 2010.

A. Rauf and E. Mahedi, Comparison between electrochemical noise and Electrochemical Frequency Modulation measurements during pitting corrosion, J. New Mater. Electrochem. Syst, vol.15, pp.107-112, 2012.

F. M. Aiabbas, R. Bhola, .. R. Spear, D. L. Oison, and B. Mishra, Electrochemical characterization of microbiologically influenced corrosion on Iinepipe steel exposed to facultative anaerobic Desulfovibrio sp, Int. J. Electrochem. Sei, vol.8, pp.859-871, 2013.

C. Cote, , 2013.

L. , , 2013.

H. A. Videla, L. K. Herrera, and R. G. Edyvean, An updated overview of SRB influenced corrosion and protection of carbon steel, Corrosion, 2005.

S. Pineau, R. Sabot, L. Quillet, M. Jeannin, C. Caplat et al., Formation of the Fe(II-III) hydroxysulphate green rust during marine corrosion of steel assoeiated to molecular detection of dissimilatory sulphite-reductase, Corros. Sei, vol.50, pp.1099-1111, 2008.

M. Stipanicev, , 2013.

, By the ASM committee on Carbon and Alloy Steels, Properties and Selection: Irons and Steels, vol.1, pp.253-259, 1978.