
HAL Id: hal-01893968
https://hal.science/hal-01893968

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

The pwpfit Toolbox for Polynomial and Piece-wise
Polynomial Data Fitting

Torbjørn Cunis

To cite this version:
Torbjørn Cunis. The pwpfit Toolbox for Polynomial and Piece-wise Polynomial Data Fitting.
18th IFAC Symposium on System Identification, Jul 2018, Stockholm, Sweden. pp.682 - 687,
�10.1016/j.ifacol.2018.09.204�. �hal-01893968�

https://hal.science/hal-01893968
https://hal.archives-ouvertes.fr

The pwpfit Toolbox for Polynomial and
Piece-wise Polynomial Data Fitting

Torbjørn Cunis ∗,∗∗

∗ Department of Information Processing and Systems, ONERA – The
French Aerospace Lab, Centre Midi-Pyrénées, 31055 Toulouse, France

(e-mail: torbjoern.cunis@onera.fr)
∗∗ Drones Research Group, French Civil Aviation School,

31055 Toulouse, France (e-mail: torbjoern.cunis@recherche.enac.fr)

Abstract: Several techniques have been proposed for piece-wise regression as extension to
standard polynomial data fitting, either selecting the joints a priori or adding computational
load for optimal joints. The pwpfit 1 toolbox provides piece-wise polynomial fitting without
pre-selection of joints using linear-least square (LSQ) optimization only. Additional constraints
are realised as constraint matrices for the LSQ problem. We give an application example for the
multi-variable aerodynamic coefficients of the general transport model in pre-stall and post-stall.

Keywords: Grey Box Modeling; Toolboxes; Mechanical and Aerospace; Multivariable System
Identification; Nonlinear System Identification; Hybrid System Identification.

1. INTRODUCTION

Polynomial data fitting names a branch of approaches
dedicated to the problem of optimal coefficients for a
polynomial function f , such that f approximates the
measured data points, usually called “observations”. A
common solution consists of minimising the sum of squared
residuals of f with respect to the observations using linear
least-square (LSQ) techniques (Kariya and Kurata, 2004).
Several methods exist to solve LSQ problems (Golub, 1982;
Lawson and Hanson, 1995). Compared to modern tools,
polynomials benefit from fast and simple evaluation.
However, a single polynomial function might not be suit-
able to describe the observed characteristics. Early ap-
proaches included regression of a few polynomial functions
piece-wise over the observations; in order to find suitable
switching surfaces (joints) for the piece-wise functions,
these approaches used maximum-likelihood or Newton-
Gauss methods (Robison, 1964; Gallant and Fuller, 1973),
hierarchical clustering (McGee and Carleton, 1970), or
regressions trees (Chaudhuri et al., 1994). Later, multivari-
ate splines were introduced fitting sequences of polynomial
functions over fine grids, which are rectangular (Klein and
Morelli, 2006) or triangular (de Visser et al., 2009) parti-
tions of the observations. Here, the knots of the grids, i.e.
the joints of the piece-wise functions, are chosen prior, and
are not a subject of, the fit. Both piece-wise regression and
multivariate splines ensure the fitted piece-wise functions
to be continuous or even smooth at their joints.
While splines today present a powerful yet complex tool
for accurate and smooth interpolation, they lack of an
underlying physical model justifying the partition. 2 The
problem of finding appropriate joints remains open.
1 Published under LGPL-2.1: https://github.com/pwpfit.
2 MATLAB’s smoothing spline option for the built-in curve fitting
function, for example, uses by default the observation points itself.

In this paper, we introduce the pwpfit 1 toolbox for MAT-
LAB, which uses standard LSQ techniques while leaving
the joint as parameter of optimization. The interface of the
toolbox, on the other hand, resembles that of MATLAB’s
well-known fit function. 3 Following a study of the theo-
retical and implementation details, we discuss exemplary
the fitting of piece-wise aerodynamic coefficients for the
model of a typical airliner.

2. PRELIMINARIES

A monomial of degree n is a single product of powers where
the exponents add up to the total degree n, without any
scalar coefficient. We introduce the vector notation for a
monomial x = (x1, . . . , xm) in degrees n = (n1, . . . , nm),

xn = xn1
1 . . . xnm

m , (1)
with the total degree n = ‖n‖1 = n1 + · · ·+ nm.

2.1 Monomials & Polynomials

Definition 1. Pn(x) is the vector of monomials xν in
variables x = (x1, . . . , xm) with degrees ν ∈ Nm and total
degrees ‖ν‖1 ≤ n; and the number of elements in Pn(x)

is denoted by r[n], i.e. Pn ∈ R [x]
r[n].

While the order of monomials in Pn(x) is arbitrary, we
choose to have xµ before xν if and only if ‖µ‖1 < ‖ν‖1
or µ is reverse-lexicographically before ν if ‖µ‖1 = ‖ν‖1.
Defining the auxiliary vector pN of monomials xν with
‖ν‖1 = N , recursively over the number of variables m as

pN (x) =

{
xN
1 if m = 1;[
xN
1 xN−1

1 p1(x̃)
T · · · pN (x̃)

T
]T else

(2)
3 https://mathworks.com/help/curvefit/fit.html

https://github.com/pwpfit
https://mathworks.com/help/curvefit/fit.html

with x̃ = (x2, . . . , xm) for m > 1, we can write

Pn(x) =
[
1 p1(x)

T · · · pn(x)
T
]T

. (3)

By this notation, a polynomial f is expressed as scalar
product of its monomials and coefficients,

f(x) = 〈Pn(x) , q〉 (4)
with the vector of coefficients qT =

[
b1 · · · br[n]

]
.

2.2 Polynomial fitting

The observations (xi, zi) are conveniently given as se-
quences over i ∈ [1, k]:
Problem 2. Consider the k observations

zi = γ(xi) + εi, (5)
where (xi, zi, εi)1≤i≤k ⊂ Rm × R × R and γ(·) and (εi)i
are an unknown function and measurement error, respec-
tively; find coefficients for f = 〈Pn(x) , q〉 minimizing the
goodness of fit (GoF)

GoF(f) def
=

k∑
i=1

|f(xi)− zi|2 (6)

for an n > 0.

Re-writing the goodness of fit using matrix calculus, we re-
duce the cost functional to a cost function and polynomial
data fitting to a linear least-square problem.
Definition 3. A linear least-square (LSQ) problem is given
as the optimization problem

lsq(C,d) = arg min
q

‖Cq − d‖22 (7)

with q ∈ Rr, C ∈ Rk×r, and d ∈ Rk.

We have the residuals in vector notation as

e =

Pn(x1,1, . . . , x1,m)
T

...
Pn(xk,1, . . . , xk,m)

T

︸ ︷︷ ︸

def
= K

q −

z1...
zk

︸ ︷︷ ︸

def
= κ

(8)

and the goodness of fit
GoF(q) = ‖e‖22 . (9)

The coefficients of the optimal fit 〈Pn(x) , q0〉 now are
subject to the linear-least square problem

q0 = arg min
q

‖Kq − κ‖22 . (10)

3. PIECE-WISE FITTING

Problem 4. Take the observations of Problem 2; find co-
efficients q1, q2 such that

f : x 7−→
{
〈Pn(x) , q1〉 if ϕ(x) ≤ x0;
〈Pn(x) , q2〉 else

with ϕ : Rm → R and x0 ∈ R minimizes the goodness of
fit of (6). 4

We note the sub-polynomials of f by f1,2 : X1,2 → R,x 7→
〈Pn(x) , q1,2〉 and call X1∪X2 the entire domain of f . The
joint of f is given as Ωϕ

def
= X1 ∩ X2 = {x |ϕ(x) = x0 }.

4 While solutions for multiple pieces can be derived, we focus on a
single joint here.

The cost functional for f can be evaluated piece-wise to
GoF(f) =

∑
xi∈X1

|f1(xi)− zi|2+
∑

xi∈X2

|f2(xi)− zi|2, (11)

where X1 = {x1, . . . ,xi′}, X2 = {xi′+1, . . . ,xk} are initial
guesses of the subdomains.
We then have the residuals as e1,2 = K1,2 q1,2 −κ1,2 with

K1 =

Pn(x1)
T

...
Pn(xi′)

T

 , κ1 =

z1...
zi′

 ; (12)

K2 =

Pn(xi′+1)
T

...
Pn(xk)

T

 , κ2 =

zi′+1

...
zk

 ; (13)

and
GoF(f) = ‖e1‖22 + ‖e2‖22 =

∥∥[eT1 eT2
]∥∥2

2
. (14)

Again, we reduce piece-wise fitting to the linear least-
square problem[

q1

q2

]
= arg min

q′

∥∥∥∥[K1 0
0 K2

]
q′ −

[
κ1

κ2

]∥∥∥∥2
2

(15)

with the objective matrix K
def
= diag(K1,K2).

Continuity of the piece-wise defined f over its entire
domain holds if

∀x ∈ Ωϕ. 〈Pn(x) , q1〉 = 〈Pn(x) , q2〉. (16)

For single-variable functions, we have continuity for the
identity function ϕ = id and x0 is zero of

〈Pn(x) , q1 − q2〉.

In the multivariate case, computing ϕ is generally hard.

4. CONSTRAINTS

To impose constraints on the coefficients (and thus the
polynomials), we recall the constrained linear least-square
problem (Haskell and Hanson, 1981)

lsq(C,d,A,0) = arg min
q∈ΩA

‖Cq − d‖22 . (17)

with ΩA = {q |Aq = 0}.
Lemma 5. Let f1,2 = 〈Pn(x) , q1,2〉 be polynomials; we
have f1(x) = f2(x) for all x ∈ Rr[n] if and only if q1 = q2.

In case of multiple variables or outputs, one may have
x0 for the single-variable, single-output case and ensure
continuity in x0 for all other variables and outputs.
Proposition 6. (Constraint of continuity). Let

ϕ(x) = aTx ≤ x0 (18)
be a linear matrix inequality (LMI) with aT = [a1 · · · am]
and a1 6= 0; a piece-wise polynomial function f with
continuity in Ωφ is subject to the constrained LSQ problem
with continuity constraint matrix C.

Proof. We can simplify (18) to ϕ(x) = x1 ≤ x0 w.l.o.g.:
Lemma 7. Let ϕ : x 7→ aTx with a1 6= 0; there is a linear,
invertible π such that

(ϕ ◦ π) : y 7−→ y1 (19)
with y = (y1, . . . , ym).

For ϕ(x) 6= x1, we thus fit polynomials g1,2 to (πxi, zi)i
such that g1,2 join in (ϕ ◦ π)(y) = x0 and find f1,2 as

f1 =
(
g1 ◦ π−1

)
; f2 =

(
g2 ◦ π−1

)
. (20)

We now have continuity if
∀x ∈ Ωx0 . 〈Pn(x) , q1〉 = 〈Pn(x) , q2〉 (21)

with Ωx0
= {x |x1 = x0 }; hence

∀x̃ ∈ Rm−1. 〈Pn(x0, x̃) , q1〉 = 〈Pn(x0, x̃) , q2〉. (22)
Separation of the assigned variable x1 ≡ x0 as ΛT

0 yields
〈Pn(x0, x̃) , q1,2〉 = 〈ΛT

0 Pn(x̃) , q1,2〉
= 〈Pn(x̃) ,Λ0q1,2〉 (23)

with

Λ0 =

1 x0 xn

0

diagp1(1m−1) . . . xn−1
0 diagp1(1m−1)

. . .
diagpn(1m−1)

 , (24)

where 1m−1 ∈ {1}m−1. By Lemma 5, we have that
〈Pn(x̃) ,Λ0q1〉 = 〈Pn(x̃) ,Λ0q2〉 (25)

for all x̃ ∈ Rm−1 if and only if Λ0q1 = Λ0q2. Hence, the
constraint of continuity is written as

[Λ0 −Λ0]

[
q1

q2

]
= 0 (26)

and C = [Λ0 −Λ0].

Due to measurement errors or modelling flaws, a poly-
nomial fitting may have relations that shall not be mod-
eled; 5 in this case, it is desirable to constrain the resulting
polynomial to be zero (or constant) for certain parameters
x̃∗ = (xj+1, · · · , xm):
Proposition 8. (Zero constraint). Let x∗ = (x1, . . . , xj)
for j > 0; a polynomial f = 〈Pn(x) , q〉 with

∀x∗ ∈ Rj . 〈Pn(x
∗,0m−j) , q〉 = 0 (27)

with 0m−j ∈ {0}m−j is subject to the zero constraint
matrix Z.

Proof. Separating the assigned parameters x̃∗ = 0m−j as
VT

0 and applying Lemma 5, we have that
〈Pn(x

∗) ,V0q〉 = 0 (28)
for all x∗ ∈ Rj if and only if V0q = 0.
Using V′ = diag

(
v1, . . . , vr[n]

)
where vi = 1 if the i-th

element of Pn(1j ,0m−j) is non-zero, vi = 0 otherwise,
V0 is obtained by removing the all-zero rows of V′, thus
ensuring full rank.
For piece-wise polynomial fitting with zero constraint, take

Z =

[
V0 0
0 V0

]
. (29)

If both zero constraint and constraint of continuity are
given, we need to ensure full rank of the complete con-
straint matrix:[

C
Z

]
q′ =

[
Λ0 −Λ0

V0 0
0 V0

] [
q1

q2

]
= 0.

5 E.g., for a symmetric aircraft aligned to the flow, there is no side-
force—regardless its angle of attack.

5. IMPLEMENTATION

The pwpfit toolbox is implemented in MATLAB using the
Optimization toolbox 6 for linear least-square solving and
Symbolic math toolbox 7 for representation of the vector of
monomials.
As MATLAB is rather slow on arrays of variable length,
we use a statically allocated array to generate the vector
of monomials Pn in m variables. Applying a recursive
sub-routine (Alg. 1) to write the auxiliary pN (x) at the
l-th(and following) positions of P, the vector of monomials
is then computed as symbolic expression P of parameters
X:=x according to (3).

The length of P, i.e. the number of monomials in Pn(x),
is given as sum of multicombinations

r[n] =

n∑
N=1

(
m+N − 1

N − 1

)
=

(
m+ n

n

)
. (30)

Algorithm 1. Recursive algorithm for pN (x).
1: function [P,l] = monomial(P,l,X,m,n,X0=1)
2: if m == 1 then
3: P(l) = X0*Xˆn;
4: l = l+1;
5: else
6: for j = 0:n
7: X0 = X0*X(1)ˆ(n-j));
8: [P,l] = ...
9: monomial(P,l,X(2:end),m-1,j,X0);

10: end
11: end
12: end

Alg. 2 illustrates the computation of the left-hand side of
the continuity constraint matrix, Λ0, for ϕ(x) = x1 ≤ x0,
using the auxiliary vectors pN (x0,1m−1) in degrees N ∈
[0, n] with 1m−1 ∼ one.

Algorithm 2. Code-snippet for Λ0 ∼ Aeq in x0.
1: one = num2cell(ones(1,m-1));
2: j = 0;
3: for N=0:n

% let pN:=pN (·); rN:= r[N]
4: pNx0 = double(pN(x0,one{:}));
5: Aeq(1:rN,j+(1:rN)) = diag(pNx0);
6: j = j + rN;
7: end

Given a vector y0 whose i-th component is zero if and
only if the fitted polynomials are zero in the parameter xi,
Alg. 3 yields the zero separation matrix V0. Here, we make
direct use of MATLAB’s logical indexing for matrices in
order to remove the all-zero rows of the square matrix V′.
6 https://mathworks.com/help/optim
7 https://mathworks.com/help/symbolic

https://mathworks.com/help/optim
https://mathworks.com/help/symbolic

-15 0 30 45 60 75 90
−0.1

0

0.1

0.2

α0

angle of attack (°)

co
effi

ci
en

t
x
f
-a

xi
s

(·)

Fig. 1. Observed coefficients ĈX(α̂) () and comparison of 3rd-order polynomial (,) and piece-wise ()
identifications. (Cunis et al., 2018)

Algorithm 3. Code-snippet for V0 ∼ Azero.
% let p:=Pn(·); r:= r[n]

1: Azero = eye(r);
2: Y = num2cell(y0);
3: pY = double(p(Y{:}));
4: Azero(pY==0,:) = [];

The constrained linear least-square problem is solved by
the lsqlin function of the Optimization toolbox. As
lsqlin requires a linear inequality constraint,

Aq ≤ b,

we assign A = [1 · · · 1] and b = 104.
If no continuity constraints are given, the joint x0 of a
single-variable function with ϕ = id is found using a
non-linear function solver. 8 The resulting coefficients and
their joint are returned as pwfitobject, which provides
interfaces for plotting and exporting the obtained piece-
wise function and the polynomial sub-functions.
The auxiliary functions prepareHyperSurfaceData and
LMI2single are provided to prepare tabular data for
fitting 9 and to simplify an LMI constraint of continuity
(Lemma 7), respectively.

6. AERODYNAMIC IDENTIFICATION

The aerodynamic coefficients of an aircraft are subject to,
amongst others, its angle of attack, side-slip angle, the
deflection of ailerons, elevator, and rudder, as well as the
body rates. Measurements for various inputs, e.g. of the
NASA Generic Transport Model (GTM, Jordan et al.,
2006), are usually performed in the wind-tunnel:
Example 9. (GTM 10). The observations of the aerody-
namic coefficients of the GTM are given by the unknown
function Γ(·) to

Ĉ = Γ
(
α̂, β̂, ξ̂, η̂, ζ̂

)
+ ε (31)

for the observed inputs α̂ ∈ A, β̂ ∈ B, ξ̂ ∈ Ξ, η̂ ∈ H,
and ζ̂ ∈ Z with Ĉ =

(
ĈX, ĈY, ĈZ, Ĉl, Ĉm, Ĉn

)
and ε an

unknown measurement error.
8 https://mathworks.com/help/optim/ug/fsolve.html
9 Extending MATLAB’s functions prepareCurveData and
prepareSurfaceData.
10https://software.nasa.gov/software/LAR-17625-1

For polynomial and piece-wise polynomial fitting, obser-
vations in (31) have to be transformed to tabular data

(Ci)1≤i≤k = Γ(A×B × Ξ×H × Z) + (εi)1≤i≤k (32)
with Ci = (CX,i, CY,i, CZ,i, Cl,i, Cm,i, Cn,i) and

k = |A×B × Ξ×H × Z| . (33)

Here, simple polynomials models seem unsuitable to repre-
sent the full-envelope aerodynamics (Fig. 1; see also Cunis
et al., 2018). At the stall angle of attack, the laminar
flow around the wings of the pre-stall region changes to
turbulent flow and remains so in post-stall. This significant
change of the flow dynamics motivates a piece-wise fitting
of the pre-stall and post-stall dynamics: 11

C�(α, β, ξ, η, ζ) =

{
Cpre

� (α, β, ξ, η, ζ) if α ≤ α0

Cpost
� (α, β, ξ, η, ζ) else

where C� ∈ {CX, CY, CZ, Cl, Cm, Cn} are 6-dimensional
polynomials. Initially, α0 = 16.11° is found by fitting CXα

with respect to the angle of attack only, resulting in
Cpre

Xα (α0) = Cpost
Xα (α0) ,

which is the boundary angle of attack. The boundary
condition α ≡ α0 then resembles a 5-dimensional hyper-
plane.
We now have continuity of the coefficient functions over
their entire domain if

Cpre
� (α0, · · ·) ≡ Cpost

� (α0, · · ·) .
At last, we require the lateral coefficients (CY, Cl, Cn)
to vanish in the symmetric setting, i.e. zero side-slip, no
aileron nor rudder deflection (β = ξ = ζ = 0).
The obtained, piece-wise polynomial models for the CX
and CY coefficients are exemplary shown in Fig. 2 for
angle of attack and side-slip angle with neutral surface
deflections (ξ = η = ζ = 0). Besides, the residuals

eX = CX

(
α̂, β̂

)
− ĈX

eY = CY

(
α̂, β̂

)
− ĈY

are given for
(
α̂, β̂

)
∈ A×B.

A six-degrees-of-freedom trim analysis of the GTM with
piece-wise polynomial, aerodynamic coefficients has been
presented in (Cunis et al., 2017).

11A script for MATLAB can be found in the demo folder.

https://mathworks.com/help/optim/ug/fsolve.html
https://software.nasa.gov/ software/LAR-17625-1

-15 0 30 45 60 75 90−45

0

45

α0

0

0.5

angle of attack (°) side-slip angle (°)

co
effi

ci
en

t
x

-a
xi

s
(·)

(a) Piece-wise model CX(α, β).

-15 0 30 45 60 75 90−45

0

45

α0

0

0.2

angle of attack (°) side-slip angle (°)

re
sid

ua
ls

x
-a

xi
s

(·)

(b) Residuals of CX(α, β).

-15 0 30 45 60 75 90−45

0

45

α0
0

−1

0

1

angle of attack (°) side-slip angle (°)

co
effi

ci
en

t
y
-a

xi
s

(·)

(c) Piece-wise model CY(α, β).

-15 0 30 45 60 75 90−45

0

45

α0
0

−1

0

1

angle of attack (°) side-slip angle (°)

re
sid

ua
ls

y
-a

xi
s

(·)

(d) Residuals of CY(α, β).

Fig. 2. Piece-wise model of the CX and CY coefficients of the Generic Transport Model in angle of attack α and side-slip
angle β, and their residuals; for surface deflections ξ = η = ζ = 0. Both models are continuous in the joint α ≡ α0

and the lateral CY model vanishes in β ≡ 0.

7. NOTE ON COMPUTATION TIME

When fitting polynomials of high dimension to large data
sets, the computation of a single polynomial in all variables
usually takes a considerably long time. In Tab. 1 we com-
pare the computation time for objective matrix, constraint
matrices, and the solution of the resulting LSQ problem
for all six coefficients of Example 9.
Here, the objective matrix K takes by far the most time;
by (15), the size of K resolves to

2k × r[n] (34)
and both k (33) and r[n] (30) grow exponentially with the
number of variables m. The size of C and Z, too, grow
with m but are independent of k. 12

Rather than single, high-dimensional polynomials, it may
be more appropriate to sequentially fit sums of polynomial
terms lower dimensions, for sub-sets of the variables:

C� = C�α(α) + C�β(α, β) + C�ξ(α, β, ξ)

+ C�η(α, β, η) + C�ζ(α, β, ζ) (35)
with m ≤ 3. In this case, continuity of each term in α0

implies continuity of C� over its entire domain. Tab. 2
shows the reduced computation time for the sequential fit
of CX.
12In addition, the computation of Z by MATLAB’s logical indexing
is obviously very efficient.

Table 1. Time consumption for fit of multi-variate poly-
nomials C�(α, β, ξ, η, ζ): computation time for objective
matrix K, continuity constraint matrix C, zero constraint
matrix Z, and solving the LSQ problem. All values in sec-
onds with accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

K C Z lsq
CX (α, β, ξ, η, ζ) 2058.39 0.84 — 2.60
CY (α, β, ξ, η, ζ) 2100.64 0.59 — 2.62
Cm (α, β, ξ, η, ζ) 2100.22 0.59 — 2.62
CY (α, β, ξ, η, ζ) 2102.25 0.60 <0.01 1.71
Cl (α, β, ξ, η, ζ) 2109.07 0.63 <0.01 1.65
Cn (α, β, ξ, η, ζ) 2102.38 0.59 0.01 1.54

Table 2. Time consumption for sequential fit of polynomial
sum CX = CXα + CXβ + CXξ + CXη + CXζ : computation
time for objective matrix K, continuity constraint matrix
C, and solving the LSQ problem. All values in seconds with

accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

K C lsq
CXα (α) 0.16 — 0.04
CXβ (α, β) 4.89 0.16 0.15
CXξ (α, β, ξ) 39.06 0.25 0.10
CXη (α, β, η) 31.34 0.20 0.11
CXζ (α, β, ζ) 36.49 0.20 0.04
CX (α, β, ξ, η, ζ) 111.94 0.81 0.44

−15 0 15 30 45 60 75 90
−0.1

0

0.1

0.2

angle of attack (°)

co
effi

ci
en

t
x
f
-a

xi
s

(·)

Fig. 3. Piece-wise fits of erroneous coefficients (σX = 0.01).

8. SENSITIVITY ANALYSIS

In order to study the sensitivity of piece-wise fitting, we
take the GTM coefficients data of Example 9 as “true”
values (ε ≡ 0) and add a white noise νX :

C†
X = ΓX(α̂) + νX (36)

and νX is normally distributed with deviation σX
def
= 0.01.

We then compute a batch of piece-wise fits(
C

{j}
X (α)

)
j

for 10 000 noise samples; a family of obtained curves is
shown in Fig. 3.

The joints α
{j}
0 have a sample mean α0 = 16.11° and

deviation σα = 0.51°. The error of fit with respect to the
“true” values has a sample standard deviation

σ
(
C{j}(α̂)− ΓX(α̂)

)
< σX

for all observations α̂. That is, piece-wise polynomial
fitting is able to reduce the error with respect to the
erroneous signal.

9. CONCLUSION

With the rise of multivariate splines, prior research to
piece-wise polynomial regression has been abandoned.
However, by pre-selection of the knots, spline fitting does
not take into the underlying model; in fact, it thus over-
estimates the observations. On the other hand, the estima-
tion of the “true” switching points of a piece-wise physical
system usually adds computational difficulty and load.
In this paper, we have presented an approach of piece-wise
polynomial fitting using the LSQ optimization technique
in order to fit both polynomial models and the joint point.
The pwpfit toolbox for MATLAB provides functions for
polynomial and piece-wise polynomial data fitting under
continuity and zero constraints. We demonstrated our
approach by fitting piece-wise polynomial models of the
aerodynamic coefficients of an airliner model; here, we
argued that simple polynomial models are unsuitable for
the full-envelope dynamics while the dynamical changes
at the stall point prompt the application of piece-wise
regression. By simulation of the sensitivity to random
noise samples, we proved that piece-wise polynomial fitting
improves the estimation of an erroneous signal.

REFERENCES
Chaudhuri, P., Huang, M.C., Loh, W.Y., and Yao, R.

(1994). Piecewise-Polynomial Regression Trees. Sta-
tistica Sinica, 4(1), 143–167.

Cunis, T., Burlion, L., and Condomines, J.P. (2018).
Piece-wise Identification and Analysis of the Aerody-
namic Coefficients, Trim Conditions, and Safe Sets of
the Generic Transport Model. In AIAA Guidance, Nav-
igation, and Control Conference. Kissimmee, US-FL.

Cunis, T., Condomines, J.P., and Burlion, L. (2017). Full-
envelope, Six-Degrees-of-Freedom Trim Analysis of Un-
manned Aerial Systems based on Piece-wise Polyno-
mial Aerodynamic Coefficients. In 4th Workshop on
Research, Education, and Development of Unmanned
Aerial Systems. Linköping, SE.

de Visser, C.C., Chu, Q.P., and Mulder, J.A. (2009). A new
approach to linear regression with multivariate splines.
Automatica, 45(12), 2903–2909.

Gallant, A.R. and Fuller, W.A. (1973). Fitting segmented
polynomial regression models whose join points have
to be estimated. Journal of the American Statistical
Association, 68(341), 144–147.

Golub, G.H. (1982). Numerical Methods for Solving
Least Squares Problems. Technical report, U.S. Army
Research Office.

Haskell, K.H. and Hanson, R.J. (1981). An Algorithm
for Linear Least Squares Problems with Equality and
Nonnegativity Constraints. Mathematical Programming,
21, 98–118.

Jordan, T.L., Foster, J.V., Bailey, R.M., and Belcastro,
C.M. (2006). AirSTAR: A UAV Platform for Flight
Dynamics and Control System Testing. In AIAA Aero-
dynamics Measurement Technology and Ground Testing
Conference. San Francisco, US-CA.

Kariya, T. and Kurata, H. (2004). Generalized Least
Squares. Wiley Series in Probability and Statistics. John
Wiley & Sons, Chichester, GB.

Klein, V. and Morelli, E.A. (2006). Aircraft System
Identification: Theory and Practice. American Institute
of Aeronautics and Astronautics, Reston, US-VA.

Lawson, C.L. and Hanson, R.J. (1995). Solving Least
Squares Problems. Society for Industrial and Applied
Mathematics.

McGee, V.E. and Carleton, W.T. (1970). Piecewise Re-
gression. Journal of the American Statistical Associa-
tion, 65(331), 1109–1124.

Robison, D.E. (1964). Estimates for the Points of Inter-
section of Two Polynomial Regressions. Journal of the
American Statistical Association, 59(305), 214–224.

Appendix A. PROOFS

Proof. [Lemma 5] By reduction to:
〈Pn(x) , q1 − q2〉 ≡ 0 ⇐⇒ q1 − q2 = 0

where 〈Pn(x) , q1 − q2〉 is the zero polynomial.

Proof. [Lemma 7] By construction:

π−1 =

a1 a2 · · · am

1
. . .

1

 ;

π−1 is invertible as
∣∣π−1

∣∣ = a1 and ϕ(x) = y1 ⇔ x = πy.

	Introduction
	Preliminaries
	Monomials & Polynomials
	Polynomial fitting

	Piece-wise fitting
	Constraints
	Implementation
	Aerodynamics
	Note on computation time
	Sensitivity analysis
	Conclusion
	Proofs

