Reduced order surrogate modeling technique for linear dynamic systems

Abstract : The availability of reduced order models can greatly decrease the computational costs needed for modeling, identification and design of real-world structural systems. However, since these systems are usually employed with some uncertain parameters, the approximant must provide a good accuracy for a range of stochastic parameters variations. The derivation of such reduced order models are addressed in this paper. The proposed method consists of a polynomial chaos expansion (PCE)-based state-space model together with a PCE-based modal dominancy analysis to reduce the model order. To solve the issue of spatial aliasing during mode tracking step, a new correlation metric is utilized. The performance of the presented method is validated through four illustrative benchmarks: a simple mass-spring system with four Degrees Of Freedom (DOF), a 2-DOF system exhibiting a mode veering phenomenon, a 6-DOF system with large parameter space and a cantilever Timoshenko beam resembling large-scale systems.
Type de document :
Article dans une revue
Mechanical Systems and Signal Processing, Elsevier, 2018, 111, pp.172 - 193. 〈10.1016/j.ymssp.2018.02.020〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01893260
Contributeur : Maliki Moustapha <>
Soumis le : jeudi 11 octobre 2018 - 11:31:06
Dernière modification le : dimanche 21 octobre 2018 - 11:18:01

Fichier

RSUQ-2018-002.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vahid Yaghoubi, Sadegh Rahrovani, Hassan Nahvi, Stefano Marelli. Reduced order surrogate modeling technique for linear dynamic systems. Mechanical Systems and Signal Processing, Elsevier, 2018, 111, pp.172 - 193. 〈10.1016/j.ymssp.2018.02.020〉. 〈hal-01893260〉

Partager

Métriques

Consultations de la notice

11

Téléchargements de fichiers

8