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PoseFusion: Dense RGB-D SLAM in Dynamic
Human Environments

Tianwei Zhang and Yoshihiko Nakamura

Abstract RGB-D Simultaneous Localization and Mapping (SLAM) in indoor en-
vironments is a hot topic in computer vision and robotics communities, and the
dynamic environment is a remaining problem. Dynamic environments, which are
often caused by dynamic humans in indoor environments, usually lead to the camera
pose tracking method failure, feature association error or loop closure failure. In this
paper, we propose a robust dense RGB-D SLAM method which efficiently detects
humans and fast reconstructs the static backgrounds in the dynamic human envi-
ronments. By using the deep learning-based human body detection method, we first
quickly recognize the human body joints in the current RGB frame, even when the
body is occluded. We then apply graph-based segmentation on the 3D point clouds,
which separates the detected moving humans from the static environments. Finally,
the left static environment is aligned with a state-of-the-art frame-to-model scheme.
Experimental results on common RGB-D SLAM benchmark show that the proposed
method achieves outstanding performance in dynamic environments. Moreover, it is
even comparable to the performance of the related state-of-the-art methods in static
environments.

1 Introduction

The task of Simultaneous Localization and Mapping (SLAM) is to estimate the vi-
sual sensor’s pose and reconstructed the three-dimensional (3D) static backgrounds
at the same time. Except for some special applications, most of the SLAM ap-
proaches assume that the robot works in static environments. The dynamic environ-
ment is a challenging problem for visual SLAM since that the foreground dynamic
objects occlude static background features and then result in failing or wrong fea-
tures corresponding. Humans are often considered as moving obstacles in indoor en-
vironments. Particularly, they may occlude visual features during the human-robot
interactions.

Generally, a SLAM framework can be divided into a front-end and a back-end
part. The task of the front-end is to extract environment features, which are used for
image or point clouds alignment. The back-end part takes care of maintaining the
graph structure, saving keyframe information, loop finding and dealing with camera
pose drift. In [1], Saputra et al. survey the dynamic SLAM methods by the year
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2016. They classify the existed dynamic SLAM methods to three types based on
different application and outputs: Robust Visual SLAM, Dynamic Object Segmen-
tation, and Joint Motion Segmentation and Reconstruction. Follow this taxonomy,
we propose a novel dense RGB-D SLAM method for dynamic humans environ-
ments based on human motion segmentation and static environment reconstruction.

Our method works in multiple humans dynamic environment, it efficiently de-
tects humans and fast reconstructs the static environments. We detect moving ob-
jects by integrating the OpenPose [2] into our front-end algorithm, which is an ad-
vanced deep learning based human detection method for a 2D color image. Dynamic
point clouds are then removed by using the Min-Cut Segmentation [3]. Finally, we
input the static environment point clouds to a state-of-the-art dense RGB-D SLAM
framework, ElasticFusion [4] for static environment reconstruction. As a combina-
tion of OpenPose and ElasticFusion, our method is named as PoseFusion, which
indicate that this SLAM framework applies human pose detection and frame-to-
module schemes. Our method is tested on the well known Freiburg RGB-D SLAM
dataset dynamic serials [5], and it achieved the smallest camera trajectory error com-
pared to other state-of-the-art dynamic SLAM methods.

2 Related Works

2.1 Dynamic SLAM Methods

In dynamic SLAM survey [1], Saputra et al. divide the exited dynamic SLAM and
visual odometry by their fundamental techniques, such as background/foreground
initialization, deep learning, optical flow, ego-motion constraints, geometry con-
straints, and feature based. In this section, we only introduce recent works for RGB-
D dense reconstruction, which are similar to our setting.

1. EF [4] and Kintinous [6] are extended from KinectFusion [7], which is an early
dense RGB-D reconstruction framework. [7], [4], [6] perform great in static en-
vironments. They adopt a module maintaining scheme. Different from the others,
EF is a state-of-the-art method designed for static environments within slightly
dynamic scenes. It can handle small-scale environment changing since it bene-
fits from the deformation graph based non-rigid module fusion. When a slightly
changed scene occurs, EF can fuse it into the saved key-frame modules and ig-
nore small scene changing.

2. Co-Fusion [8] (CF) is a state-of-the-art approach for tracking and reconstructing
multiple moving objects using EF framework. However, CF has to first recon-
struct the map in a static environment, and then they enable the dynamic object
detection and tracking abilities within that reconstructed map.

3. Jaimez et al. [9] proposed an odometry method named The joint visual odome-
try and scene flow (SF). SF localizes the moving camera in dynamic scenes by
segmenting intensity point clouds into a number of clusters (called super-voxels),
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Fig. 1 PoseFusion Flowchart: Firstly input RGB images to OpenPose [2] to detect human joints.
Then we project joint points to the PCD and followed by foreground removal. Finally, static back-
grounds are feed into reconstruction.

and then, the clusters are divide into moving foregrounds and static backgrounds.
Finally, the static background point clouds are feed into camera pose tracking.

4. Scona et al. proposed the staticFusion in [10], which extends the result of SF to
environment reconstruction by combining the background segmenting and EF’s
dense environment reconstruction. JF achieved robust and fast dynamic segmen-
tation and static reconstruction.

These above three SLAM methods are advanced in light dynamic environments.
Same to CF and JF, the proposed method is also based on EF. Our idea is similar to
SF, that is to decouple the motion of camera from the motion of moving humans.
The difference is that SF tries to separate the foreground from the background by
comparing the moving speeds of all segments, while we separate moving human
segments by using OpenPose.

2.2 The Human Detection Methods
OpenPose [2] estimates the body joints as feature points of human beings such as
wrists and shoulders in real time from a single RGB image. It is to estimate each
joint position by deriving Part Confidence Maps using trained Convolutional Neu-
ral Networks. Moreover, [2] can estimate the vector fields between connected two
joints, which make it robust to the occlusions no mater form self body nor multiple
humans’ bodies. OpenPose provide us the probable positions of human body joints
in the 2D RGB image, thus we are able to quickly label the position of humans in
3D Point Clouds Data (PCD).

3 Multiple Humans Detection in Dynamic Environment

The Flowchart of proposed PoseFusion is illustrated in Fig. 1. PoseFusion take the
RGB and Depth image pair as input. The RGB image is first used for body joints
estimation using OpenPose, which tells the likelihood of the human joint positions
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on the input image. When the input image f is given, the feature map is extracted
via CNN network and then output data:

[hhh×www] f (1)

in which hhh is the detected human bodies, at a maximum 15, which means Open-
Pose can detect at maximum 15 humans within one frame. The www is the list of esti-
mated joints, it presents a probability map on the RGB image plane which indicates
the existence likelihood of at maximum 18 human joint. In matrix 1, each element
has three components: u,v, p. They are the image pixel coordinates (u,v) and the
existence likelihood (p ∈ (0,1]) of the human body joint.

The estimated joint points are converted from 2D to 3D using the pinhole camera
model and then, they are used for labeling humans’ positions in the PCD. This
processing is the red arrow in Fig.1, and note that the green points in the point
clouds stand for the projected joint positions. Then, the PCD with these green joints
are inputted to Min-Cut point foreground segmentation.

Min-Cut [3] is a Graph-Cut [11] based method for segmenting objects in point
clouds. Graph-cut treats every single point as a vertex and vertices are connected
with their neighbors by edges. Given some vertices as foreground priors, it cuts the
foreground object out of the background points by computing the weights of the
edges. T apply Min-Cut, we use the human joints from Equation. 1 as foreground
prior, we assign two edge weights in min-cut: the edge smooth cost C and back-
ground penalty P.

C = e−(
len
σ
)2

(2)

in which len is the length of the edge, obviously, the father away the vertices are,
the more is the probability the edge will be cut. The σ is a user defined parameter.

The background penalty is to weight the points connected with the foreground
points. In which, for a joint point J(Jx,Jy,Jz), we set an input parameter rad as the
maximum horizontal (X-Y plane) radius of foreground objects. Then, for a neighbor
point (x,y,z) of J, its background penalty is:

P =

√
(x− Jx)2 +(y− Jy)2

r
(3)

As the pose points are labeled on the human body, we set the foreground rad
as 20 cm, σ as 0.25 which draws a good segmentation performance. After Min-
Cut, the background segments are converted to static depth images, which are the
inputs for the following static environment reconstruction, together with the original
RGB image. Finally, a clean static environment reconstruction is achieved through
frame-to-module map fusions.
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Fig. 2 Experiment Setting: RGB-D PCD frames are played as a video. The first row shows the
reconstructed maps, the second row shows the respectively RGB input and foreground-background
segmentations. As the frame grows, the first row reconstruction is gradually completed, the RGB
viewpoint moves as the camera moves, the point clouds segmentation is also changing. There is no
foreground cluster in the 4th image, the second row, since the guy walks out of the scene.

4 Experiments Setup and Results

Our method is evaluated with the Freiburg SLAM benchmark, which contains a dy-
namic SLAM series (fr3 series). This benchmark is wildly used for dynamic scenes
comparison. The experiment is shown in Fig.2, which take fr3/walk xyz (in which
the camera moved by a man walks in x, y, and z translations) as an example. Each
fr3 dataset contains several hundred color (RGB) and Depth (D) image pairs, which
can be transformed into RGB-D PCD frames. For instance, there are 827 RGB-D
frames in fr3/walk xyz, these RGB-D PCD frames can be played as a video.

In Fig.2, the first row shows the reconstructed maps, and the second row shows
the respective input RGB images and their foreground-background segmentation
results. As the frame number grows, the first row reconstruction is gradually com-
pleted, the RGB viewpoint moves as the camera moves, the point clouds segmenta-
tion is also changing. In the fourth image of the second row, there is no foreground
cluster since the people walk out of the camera view. These experiment setting intu-
itively indicate the dynamic ability of SLAM methods. One can compare the moving
object detection and removal abilities throw checking when and how many moving
object ghost shadows are integrated into the reconstructed scenes in the first row.
One comparison with EF and PF is given in Fig.4.

We compare our PoseFusion (PF) method with three state-of-the-art dynamic
SLAM methods: Scene Flow (SF) method from [9], ElasticFusion (EF) [4] and Co-

Table 1 Translate ATE RMSE (cm)

Dynamic DataSet [5] SF EF CF PF

fr3/sit static 8.67 3.18 2.93 3.18
fr3/sit xyz 7.65 0.90 1.49 0.90
fr3/sit halfsphere 50.21 30.18 27.58 2.31
fr3/walk static 81.07 25.13 18.77 6.87
fr3/walk xyz 65.31 67.78 37.11 3.21
fr3/walk halfsphere 79.97 47.90 21.23 4.65
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(a) ATE of PF (b) ATE of EF

(c) RPE of PF (d) RPE of EF

Fig. 3 Evaluation of the Proposed PoseFusion compare to ElasticFusion, both are the result of
fr3/walk xyz. (a) and (c) are absolute trajectory error (ATE) and the relative pose error (RPE) of
PF, while (b), (d) are ATE and RPE of EF. PF achieves very small trajectory error, average 3.21 cm
(short red line segments in (a)), while EF gets big ATE, long red line segments in (b). (c) and (d)
indicate PF achieves about ten times smaller RPE than EF.

Table 2 Translate RPE RMSE (cm/s)

Dynamic DataSet [5] SF EF CF PF

fr3/sit static 2.71 1.12 0.81 1.19
fr3/sit xyz 9.61 3.90 4.93 3.97
fr3/sit halfsphere 41.10 29.19 23.80 5.19
fr3/walk static 27.77 20.33 18.79 3.77
fr3/walk xyz 35.32 21.78 37.11 2.11
fr3/walk halfsphere 69.74 77.91 31.32 4.50

Fusion (CF) [8]. All of them are implemented from their open source repositories.
StaticFusion (JF) [10] is the most recent method and its code is not opened yet.

To evaluate these four SLAM methods, we compare their absolute trajectory er-
ror (ATE) and relative pose error (RPE). ATE is well-suited for measuring the per-
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(a) ElasticFusion Reconstruction (b) PoseFusion Reconstruction

Fig. 4 EF and PF Scene Reconstruction of fr3/walk xyz. (a) is the result of EF, 67.78 cm absolute
trajectory error makes an obvious wrong reconstruction. The wall, the table, and the desktops are
not aligned and multiple people shadow corrupt the final map. While (b) is reconstructed by PF,
which is well aligned with only 3.21 cm error. The dynamic performance of proposed is as good as
the EF’s static performance. Note that, the left chair’s ghost shadow in PF reconstruction is not a
wrong alignment, it is because the people moved that chair to that place for several seconds, which
can be observed in our supplement video.

formance of visual SLAM systems. In contrast, the RPE is well-suited for measuring
the drift of a visual odometry system, for example, the drift per second. The ATE
directly measures the difference between points of the ground truth and the esti-
mated trajectory. The RPE computes the error in the relative motion between pairs
of timestamps.

Table 1 and Table 2 show the root-mean-square error (RMSE) of translate ATE
(cm) and RPE (cm/s). All of these six datasets are dynamic scenes, but the first
three: fr3/sit static; sit xyz and sit halfsphere are low dynamic scenes, while the
other three are high dynamic scenes. From these two Tables, one can obviously
find that our PF method achieved the smallest estimation errors in highly dynamic
situations. In the light dynamic scenes, EF achieved the best performances, since it
is designed for static environments.

Fig. 3 and Fig. 4 show the comparison between PF and EF run on the fr3/walk xyz
dataset. Inside the former figure set, (a) and (c) are ATE and RPE of PF, while (b),
(d) are ATE and RPE of EF. PF achieves very small trajectory error, average 3.21
cm (difference of the same time-stamp are shown as the short red line segments in
(a)), while EF gets big ATE, which can be seen as the long red line segments in (b).
(c) and (d) indicate that PF achieves around ten times smaller RPE than EF.

Fig. 4 intuitively indicate the performances of EF and PF. Big trajectory error
of EF results in obvious wrong map reconstruction. The wall, the table, and the
desktops are not aligned, as well as people shadows corrupt the final map of (a).
While (b) is reconstructed by PF, which is well aligned. The dynamic performance
of PF is as good as the EF’s static performance. Note that, the left chair’s ghost
shadows in PF reconstruction is not wrong alignments, they are reconstructed since
that the people moved that chair to that places for several seconds, which can be
observed in our supplement video.
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5 Conclusions
In this paper, we propose a novel dense RGB reconstruction approach for the dy-
namic human environments. We combine the advanced deep learning based human
body detection method and static dense SLAM approach to deal with the dynamic
environment problem using dense RGB-D data. We compare the proposed method
with EF[4], CF[8], and SF[9]. Our approach significantly decreases the alignment
error and archive 3.21 cm average ATE in TUM benchmark, while EF results in a
67.78 cm ATE. Moreover, We not only propose one approach for a particular dy-
namic environment setting but also provide a framework for solving SLAM “Type
II Error”, which means the front-end part doesn’t “reject” the wrong features of
the moving objects so that the moving shadows are integrated to key-frames on
the back-end, thus breakdown loop closing. According to the proposed, one can
integrate advanced learning-based object recognition methods to handle dynamic
environments. For instance, involving vehicle recognition methods for high way
scenes, and including semantic labeling methods for service robots in house and
office scenes.
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