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Abstract
This article investigates the effectiveness of two moment-based methods along with a 
monodispersed model (Mono) in representing the droplet size distribution and characteristics 
of steam flows with spontaneous condensation in supersonic nozzles. The moment-based 
methods are a conventional method of moments (MOM) along with its enhanced version using 
Gaussian quadrature, namely the quadrature method of moments (QMOM). The predictions of
the droplet size distribution by these models are evaluated against the full spectrum resolved 
by an Eulerian-Lagrangian (E-L) method which tracks the evolution of the liquid phase in a 
Lagrangian frame of reference. On the other hand, an Eulerian reference frame is chosen to 
cast all the equations governing the phase transition and fluid motion for the MOM, QMOM and 
Mono. This choice of reference frame is essential especially to draw a meaningful comparison 
regarding complex flows in wet-steam turbines. The reason is that the most important 
advantage of the moment-based methods is that the moment-transport equations can be 
conveniently solved in an Eulerian frame avoiding burdensome challenges in working with a 
Lagrangian framework for complicated flows. The non-realizability problem and associated 
restrictions on temporal and spatial discretization schemes are discussed. The main focus is 
on the accuracy of the QMOM and MOM in representing the water droplet size distribution. 
The comparisons between models are made for two supersonic low-pressure nozzle 
experiments reported in the literature. Results show that the QMOM, particularly inside the 
nucleation zone, predicts moments closer to those of the E-L method. Therefore, for the test 
case in which the nucleation is significant over a large proportion of the domain, the QMOM 
clearly provides results in better agreements with the E-L method in comparison with the MOM.
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INTRODUCTION

The realization of undesirable effects of wetness 
formation on the performance of steam turbines almost 
goes back to the era when these machines were utilized 
for the first time in the power industry [1]. Nonetheless, it 
is still challenging to implement numerical models which 
accurately take into account of the details of the liquid 
formation process. The weaknesses of the numerical 
models along with deficiencies in theories governing the 
phase transition make steam turbine manufacturers still 
rely on empirical methods. One of the details in the 
formation of wetness is the size of water droplets which 
greatly influences the flow field, subsequent nucleation 
processes, efficiency and erosion in the stages 
downstream of the primary nucleation sites [2] [3]. The 
presence of water droplets in different sizes (radii) 

causes the modeling methodology of wet-steam flows to 
fall under the category of polydispersed two-phase flows. 
In addition, the range of droplet radii is inherently 
continuous and wide in steam turbines. Thus, it is 
computationally very demanding and complicated to retain 
this type of information for droplets originating from 
different locations in the wet-steam turbines. 
For a long time, the common practice was to employ the 
Eulerian-Lagrangian (E-L) method to preserve the droplet 
size distribution [4] [5] [6]. In this method, the Eulerian 
frame is used to numerically solve the motion equations 
related to the steam and the Lagrangian frame is 
employed to track the generation, and growth/decay of the 
water droplets along the streamlines and store the size 
distributions in a discrete fashion. The E-L method 
becomes very infeasible for modeling complex flows such 
as those in full-scale wet-steam turbines with multiple 
stages. The reason is that estimating the streamlines (or 
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path lines for unsteady flows) for Lagrangian integration 
and then calculating the changes and reallocation of 
properties to the domain cells become extremely 
complicated in wet-steam turbines [7]. Consequently, the 
current commercial and in-house codes usually only 
apply the fully-Eulerian monodispersed methods (Mono) 
[8] [9] [10]. However, the Mono cannot retain information 
on the droplet size distribution. In contrast to the E-L 
method, the liquid phase is represented in the form of 
droplets with a single averaged radius. 
Recently, the application of the method of moments 
(MOM) to wet-steam flows has received more attention 
[11] [12] [13]. The MOM is based on tracking the 
moments of droplet size distribution to predict wet-steam 
flows in turbines and it can be performed by applying an 
Eulerian reference frame as well as a Lagrangian one. 
The MOM can be enhanced to allow more complicated 
droplet growth equations through approximating discrete 
radii and weights by 𝑛-point Gaussian quadrature. The 
enhanced approach is named the quadrature method of 
moments (QMOM) which, much like the E-L respects the 
polydispersed nature of the wet-steam flows. 
Furthermore, it seems to be promising in modelling full-
scale cases, as it conveniently lends itself to an Eulerian 
frame [7].  

The application of the QMOM in modeling steam 
condensing flows is still in its infancy and, to the 
knowledge of the authors, it has not yet been employed 
for simulating full-scale wet-steam turbines. Furthermore, 
it is noticed that all the comparative studies between the 
moment-based and E-L methods were performed using 
a Lagrangian reference frame for both methods [14] [12]. 
However, the accuracy of the QMOM and MOM should 
be tested using an Eulerian framework, as the main 
advantage of these methods over the E-L method is that 
they can be cast in an Eulerian frame while preserving 
the information about the droplets size distribution. This 
article (in sections 1 and 2) briefly describes the main 
constituents of numerical models of non-equilibrium wet-
steam flows. Then, (in section 3) the essence of the E-L 
method, MOM, QMOM and Mono are presented. In 
section 4, firstly the two considered nozzle test cases are 
introduced and their flow characteristics are discussed. 
Secondly, the non-realizability problem and the 
corresponding restriction on applying high-order 
convection schemes to the moment fluxes are explained. 
Then, all four methods are compared in the nozzle test 
cases. It is shown that the MOM and QMOM predict 
similar size distribution if the nucleation is not the 
dominant process in the domain, as opposed to the post-
nucleation droplet growth process. In general, results 
provided by the QMOM, particularly in the nucleation 
zones, are closer to those of the E-L method than results 
obtained by the MOM. In terms of global parameters such 
as the pressure and mean droplet diameter, all the 
methods, except for the Mono, predict similar 
distributions.   

1. PHASE CHANGE PROCESS  

Almost all non-equilibrium models mimic the phase 
change based on the prediction of the new phase 
evolution in forms of two consecutive stages. These 
stages are defined by the nucleation and droplet growth 
processes. Initially, the condensation is favored by the 
nucleation process providing the first clusters of the liquid 
phase. Then, the phase transition is governed by the 
growth of supercritical droplets which ideally removes the 
supercooling and reestablishes the equilibrium. The term 
“supercritical” refers to the droplets larger than the critical 
radius 𝑟∗, which is calculated according to the theory 
developed by Gibbs. The critical radius is related to the 
surface tension 𝜎 and the supersaturation 𝑆, being the 
ratio of the vapor pressure to the saturation pressure 𝑆 =
𝑝𝑣/𝑝𝑠, as follows: 

𝑟∗ =
2𝜎

𝜌𝑑𝑅𝑇𝑣ln (𝑆)
  (1) 

where 𝜌𝑑 is the liquid density, 𝑅 is the specific gas constant 
and 𝑇𝑣  is the vapor temperature. The steady nucleation 
rate of the critical droplets per unit of volume is given by 
the expression of Becker and Döring [15] and Zeldovich 
[16] for the classical nucleation theory which is denoted 
by 𝐽𝐵𝐷, 

𝐽𝐵𝐷 =
𝜌𝑣

2  

𝜌𝑑

[
2𝜎

𝜋𝑚3
]

1
2

exp (−
4𝜋𝑟∗2𝜎

3𝑘𝐵𝑇𝑣

) (2) 

where 𝜌𝑣 is the vapor density, 𝑚 is the molecular weight 
and 𝑘𝐵  is Boltzmann’s constant. This expression is 
modified by the correction factor of Kantrowitz [17] and 
Courtney [18] to allow the non-isothermal effects and 
partial pressure of clusters larger than a monomer, 
respectively. It has been shown that these corrections 
along with Gyarmathy’s droplet growth equation [19] 
modified by Young [20], can provide reasonably accurate 
results for low-pressure wet-steam flows. Therefore, for a 
homogenous fluid, the final form of nucleation rate 𝐽 reads  

𝐽 =
1

(1 + 𝜃)

1

𝑆
𝐽𝐵𝐷 (3) 

in which 1/(1 + 𝜃) and 1/𝑆 are the non-isothermal and 
partial pressure corrections, respectively. 

The employed droplet growth equation is that of 
Gyarmathy revised by Young, which can also be tuned 
with an empirical factor to match the low-pressure nozzle 
measurements. The droplet growth equation is merely an 
equation for heat transfer between the droplet and the 
surrounding vapor generalized for a wide range of 
Knudsen number 𝐾𝑛 from the free molecular to continuum 
regimes. This equation is written as,  
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𝑑𝑟

𝑑𝑡
=  

𝜆𝑣(1 −
𝑟∗

𝑟
)(𝑇𝑠 − 𝑇𝑣)

𝜌𝑑𝐿𝑟 (1 + 3.78
𝐾𝑛
𝑃𝑟𝑣

(1 − 𝜓))

 (4) 

in which 𝜆𝑣 is the thermal conductivity of the vapor, 𝑟 is 
the droplet radius, 𝑇𝑠  is the saturation temperature, 𝐿 is 
the specific enthalpy of evaporation, 𝑃𝑟𝑣 is the vapor 
Prandtl number and  finally 𝜓 is the empirical tuning 
factor proposed by Young.  Equations 1-3 are used to 
formulate the source terms for the liquid phase, which are 
integrated in time to update the number and size of water 
droplets. 
 

2. FLOW EQUATIONS 

Neglecting the relative acceleration between the phases 
for a uniform pressure field, the transport equations for 
the mixture of droplets and vapor take the form of a single 
phase fluid. The assumption of no velocity slip between 
the droplets and vapor is justified in most cases 
especially for the extremely small droplets (much smaller 
than one micro meter) which originate from the 
homogenous nucleation and have a negligible inertial 
relaxation time. Thus, the flow equations of the mixture 
for an inviscid one-dimensional case in a domain with the 
cross-sectional area 𝐴 can be written as 

𝜕

𝜕𝑡
[

𝜌𝑚𝐴
𝜌𝑚𝑢𝐴

𝜌𝑚𝐸𝑚𝐴
] +  

𝜕

𝜕𝑥
[

𝜌𝑚𝑢𝐴

(𝜌𝑚𝑢2 + 𝑝𝑣)𝐴
𝜌𝑚𝑢𝐻𝑚𝐴

] = [

0

𝑝𝑣

𝑑𝐴

𝑑𝑥
0

]  (5) 

where the subscript 𝑚 refers to the mixture variables, 𝑢 is 
the velocity, 𝐸 is the total internal energy and 𝐻 is the total 
enthalpy. If the wetness fraction 𝑌 is known by neglecting 
the volume occupied by the liquid water droplets, the 
mixture variables are related to the vapor and liquid 
variables as below 

𝜌𝑚 =  
𝜌𝑣

1 − 𝑌
 (6) 

𝐸𝑚 =  𝑌𝐸𝑑 + (1 − 𝑌)𝐸𝑣  (7) 

𝐻𝑚 =  𝑌𝐻𝑑 + (1 − 𝑌)𝐻𝑣 . (8) 

As the behavior of steam in the most practical 
conditions of steam turbines differs from the ideal gas 
assumption, the steam pressure and its thermodynamic 
properties are calculated using the Vukalovich equation 
of state [21]. The saturation pressure as a function of 
temperature is given according to an empirical equation 
reported in [22]. To keep the thermodynamic 
inconsistency between the liquid and the vapor 

properties to the minimum, the liquid enthalpy is calculated 
at the saturation temperature employing the Clausius-
Clapeyron relation. In addition, the liquid water density and 
its planar surface tensions are given by the equations 
given in [23] and [20], respectively.  

The discretized form of equation (5) is solved using 
AUSM (Advection Upstream Splitting Method) flux splitter 
scheme [24]. The main idea of the AUSM is that the 
convective flux, 𝐹⃗𝐼+1/2, on the left and right sides of a cell 
face is decomposed into two parts, namely the convective 
and pressure parts. The convective part is calculated 
based on the primitive variables (𝜌, 𝑢, 𝐸 and 𝐻) of either 
the left or the right side of the cell face, depending on the 
sign of a so-called advection Mach number 𝑀𝐼+1/2 at the 
cell face. The pressure part is calculated as the sum of a 
negative pressure and a positive pressure which are 
functions of the Mach numbers and pressures of the left 
and right sides of the cell face, respectively. Therefore, the 
convective flux can be formulated as, 

 

𝐹⃗𝐼+1/2  = (𝑀𝐼+1/2) [

𝜌𝑚𝑐
𝜌𝑚𝑐𝑢

𝜌𝑚𝑐𝐻𝑚

]

𝐿/𝑅

+ [
0

𝑝𝑣𝐿
− + 𝑝𝑣𝑅

+

0

] (9) 

where 𝑐 is the frozen speed of sound in the mixture and 
subscripts 𝐿 and 𝑅 refer to variables of the left and right 
sides of the cell face, respectively. To calculate the 
primitive variables on the left and right sides of the cell 
faces, the conservative variables are interpolated from the 
cell centers applying the MUSCL approach. Then, the 
primitive variables are calculated for the left and right sides 
using the interpolated conservative variables. For 
example, the density at the left and right sides of the east 
face for the 𝐼𝑡ℎ cell is given as, 

𝜌𝐿 = 𝜌𝐼 +
1

4
[(1 + 𝑘)(𝜌𝐼+1 − 𝜌𝐼)

+ (1 − 𝑘)(𝜌𝐼 − 𝜌𝐼−1)] 
(10) 

𝜌𝑅 = 𝜌𝐼+1 −
1

4
[(1 − 𝑘)(𝜌𝐼+2 − 𝜌𝐼+1)

+ (1 + 𝑘)(𝜌𝐼+1 − 𝜌𝐼)] 
(11) 

where 𝑘 is set to 1/3 to provide the third-order upwind 
spatial discretization. In this work, when the third-order 
accurate discretization is applied, the MUSCL scheme is 
stabilized with the third-order limiter function of Koren [25] 
to remove non-physical oscillations. 
 

3. INTEGRATION OF LIQUID PHASE  

To close the conservation equations set, the wetness can 
be computed using different techniques. As mentioned 
earlier, the evolution of the liquid phase is integrated in the 
Lagrangian frame for the E-L method and in the Eulerian 
frame for the other three methods. 
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3.1 LAGRANGIAN FRAMEWORK 
The employed method is similar to the one presented in 
[6] where a wetness integration module, which is 
completely separated from the flow solver, calculates the 
evolution of the wetness along the streamline. This 
module only needs to receive the pressure distribution 
over the streamline and returns the wetness fraction 
distribution over the streamline. The continuous 
spectrum of droplet sizes is collapsed into a finite number 
of droplet bins thorough the streamline. However, the 
entire spectrum can also be represented by a 
monodispersed droplet which is calculated through an 
averaging method [26]. The formation of new droplets by 
nucleation is tracked along the streamline. If at any 
position the nucleation rate exceeds a threshold, say 
108 per unit of mass, a new group of droplets is 
introduced into the domain. Owing to the fact that 
physically an infinite number of droplet groups can be 
formed, a finite number of bins are used to combine 
groups falling within a same radius interval. The total 
wetness is the sum of the wetness fractions of all bins, 

𝑌 = ∑ 𝑌𝑖 = ∑
4

3
𝜋𝜌𝑑𝑁𝑖

𝐾

𝑖=1

𝐾

𝑖=1

𝑟𝑖
3 (12) 

 
where 𝐾 is the total number of bins, 𝑁𝑖 is the number 
density of the droplets in the 𝑖𝑡ℎ bin, and 𝑟𝑖  is the average 
radius for the 𝑖𝑡ℎ bin. The contributions to the wetness 
fraction of each bin through the nucleation and growth 
processes are formulated as 

 
𝐷𝑌𝑖

𝐷𝑡
 =

4

3
𝐽𝜋𝑟∗3 + 4𝜋𝑟𝑖

2
𝑑𝑟𝑖

𝑑𝑡
 (13) 

 
where the first term on the left-hand side represents the 
material derivative of wetness, and the first term on the 
right-hand side of equation (13) is applied if the critical 
radius falls within the radius interval associated with the 
𝑖𝑡ℎ bin. The radius of each bin is updated by integrating 
the droplet growth the equation (4) using a third-order 
Runge–Kutta scheme while keeping the vapor properties 
constant. It should be noted that in [6] the equation (4) 
was directly integrated resulting in an implicit equation for 
the new droplet radius after the growth process. Then, 
this implicit equation was solved iteratively using the 
Newton-Raphson method. However, as this equation 
contains a logarithmic term, it is observed that its solution 
is very sensitive to the initial guess and prone to yield 
imaginary numbers. Therefore, here it is preferred to 
perform the growth integration numerically using the 
Runge–Kutta scheme. 

To estimate the temperature after each integration 
increment, a relation between the changes of mixture 
enthalpy ℎ𝑚 and the pressure must be defined. This 
relation is derived by considering the fluid particle as an 
isolated thermodynamic system [6]:   

𝐷ℎ𝑚

𝐷𝑡
 =

1

𝜌𝑚

𝐷𝑝

𝐷𝑡
. (14) 

3.2 METHOD OF MOMENTS 
The method of moments for modeling the wet-steam flows 
was first suggested in [27]. This method is based on the 
introduction of a phase space and the droplet number 
density function (NDF) denoted by 𝑓. The phase space 
consists of three external dimensions, which are aligned 
with the Cartesian coordinate system (𝑥, 𝑦, 𝑧) and one (or 
more) internal dimension 𝑟. The number of droplets per 
unit mass of the mixture whose sizes range 
between 𝑟 and 𝑟 + 𝑑𝑟 is equal to ∫ 𝑓𝑑𝑟. Therefore, the total 
number of droplets is given by ∫ 𝑓𝑑𝑉, in which 𝑑𝑉 =

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑟. Consequently, by neglecting the droplet 
coalescence and breakage the population balance of the 
dispersed phase is given as, 

𝜕

𝜕𝑡
(𝜌𝑚𝑓) + ∇. (𝜌𝑚𝑓𝑢) +

𝜕

𝜕𝑟
(𝜌𝑚𝑓𝑢𝑟) = 𝜌𝑚𝐽 (15) 

 
where 𝑢𝑟 is the so-called “drift velocity” aligned with the 
internal  dimension 𝑟 in the phase space. In other words, 
this velocity is equivalent to the droplet growth rate  𝑑𝑟/𝑑𝑡. 
Since the equation (15) formulates the continuity principle 
for the liquid phase in terms of the NDF. By introducing 
the 𝑗𝑡ℎ  moment of droplet size distribution where 𝜇𝑗 =

∫ 𝑟𝑗𝑓𝑑𝑟, after some mathematical manipulations (see [7] 
for details), the equation (15) is rewritten to represent the 
moment-transport equations: 

𝜕

𝜕𝑡
 (𝜌𝑚𝜇𝑗) + 𝛻. (𝜌𝑚𝜇𝑗)

= 𝜌𝑚𝐽𝑟𝑗 + 𝑗𝜌𝑚 ∫ 𝑟𝑗−1𝑢𝑟𝑓𝑑𝑟 
(16) 

The above equation needs to be solved only for the first 
four moments to define all of the essential interfacial 
processes between the liquid and vapor phases. The 
reason is that these moments, i.e. from the zeroth moment 
to the third one, contain all of the physical information 
required to define the liquid phase. The zeroth 
moment 𝜇0 = ∫ 𝑓𝑑𝑟 gives the droplet number density, the 
first moment 𝜇1 = ∫ 𝑟𝑓𝑑𝑟  is equal to the sum of all 
droplets radii per unit of mass. Finally, the second and 
third moments are proportional to the total droplet surface 
area and volume per unit of mass, respectively. The only 
problem in solving the moment-transport equations is that, 
as the function 𝑓 is not known, the integral on the right-
hand side of equation (16) cannot be directly solved for an 
arbitrary form of 𝑢𝑟. The conventional moment-based 
methods are forced to apply assumptions or certain forms 
of 𝑢𝑟 which allow an exact closure for the equation (16). 
For instance, it can be shown that the moment-transport 
equations are closed in a recursive manner if the growth 
rate can be formulated as 
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𝑢𝑟 = 𝑎 + 𝑏𝑟 (17) 

where 𝑎 and 𝑏 are only dependent on properties of the 
surrounding vapor and independent of 𝑟. In this work, as 
an example of the conventional moment-based methods, 
the growth rate is calculated for the surface-area-
averaged radius 𝑟20 = (𝜇2/𝜇0)1/2. As a result, according 
to the equation (17) the growth rate equates to a value 
independent of the droplet size, i.e. 𝑏 = 0 and 𝑢𝑟 = 𝑎. 
Thus, the equation (16) is closed as follows:  

𝜕

𝜕𝑡
 (𝜌𝑚𝜇𝑗) + 𝛻. (𝜌𝑚𝜇𝑗) = 𝜌𝑚𝐽𝑟𝑗 + 𝑗𝜌𝑚𝑎𝜇𝑗−1 (18) 

where 𝑎 is the growth rate computed by the equation (4) 
for 𝑟 = 𝑟20. This method and its results will subsequently 
be referred to as MOM. 

Treating the growth process based on an averaged 
droplet size leads to inaccurate growth rates considering 
the wet-steam flows in turbines, in which the radii 
typically span over a very broad range [7]. To avoid the 
mentioned issue, the QMOM was presented by McGraw 
in 1997 [28]. The QMOM approximate the integral on the 
right-hand side of the equation (16), as the summation of 
products of weights, 𝑤𝑖, and radii, 𝑟𝑖, which are obtained 
using the 𝑛-point Gaussian quadrature procedure. Thus, 
the moments take the form as, 

𝜇𝑗 = ∑ 𝑟𝑖
𝑗

𝑛

𝑖=1

𝑤𝑖 . (19) 

Consequently, the equation (16) is closed through 
approximating its right-hand side as, 

𝜌𝑚𝐽𝑟𝑗 + 𝜌𝑚𝑗 ∑ 𝑟𝑖
𝑗−1

𝑛

𝑖=1

(𝑢𝑟)𝑖𝑤𝑖 (20) 

where, (𝑢𝑟)𝑖 is calculated for 𝑟𝑖  using the equation (4). 
To improve the accuracy of the QMOM in representing 

the size distribution, the quadrature degree 𝑛 can be 
increased. A higher quadrature degree means that the 
size distribution is represented in terms of more sets of 
radius and weight. Due to the fact that the number of 
moments and the corresponding transport equations 
which have to be solved is double the quadrature degree, 
i.e. 2𝑛. Therefore, a compromise between the required 
computational power and accuracy should be 
considered. It is suggested in [29] that a quadrature 
degree of 3 can provide the desirable balance between 
the efficiency and accuracy. This implies that the 
equation (16) must also be solved for two more moments 
(fourth and fifth moments). In this work, the results 
obtained by this method are indicated by QMOM.  

After deciding about the degree of quadrature, the 
other crucial step is the moment-inversion algorithm 

which calculates the elements of a so-called Jacobi matrix. 
Then, weights and radii are computed through solving the 
eigenvalue problem of the Jacobi matrix. The overall 
efficiency and stability of the code depends on the 
moment-inversion algorithm performance. A comparison 
between the product-difference and Wheeler’s algorithms 
for finding the abscissas (radii) and weights using 
Gaussian quadrature can be found in [30]. Here, use is 
made of Wheeler’s algorithm owing to its enhanced 
stability compared to the other ones, such as the product-
difference algorithm.  

3.2 MONODISPERSED METHOD 
In terms of computational power, this method is the most 
inexpensive and simplest one compared to the previously 
described methods. The reason is that the transport of the 
liquid phase is tracked by means of only two conserved 
variables. In most cases and also in the current work, 
these two conserved variables are; the total number of 
droplets and volume per unit of mass. In fact, this method 
can be loosely characterized as a moment method in 
which information on only two moments is stored, thereby 
these two moments have to be related to each other 
through an average droplet size. Consequently, the growth 
rate is also calculated only for an average radius, here the 
volume-averaged radius. This method and its results will 
subsequently be referred to as Mono.  

4. RESULTS AND DISCUSSION 

As the current test cases are simplified to quasi-one-

dimensional flows, it is computationally feasible to avoid 

the averaging procedure for the E-L method. This requires 
the number of droplet bins to be equal to the number of 
time steps during the Lagrangian integration of the liquid 
phase. As a consequence, all of the information on the 
droplet size distribution is preserved with an accuracy 
limited only by the integration time step. It should be 
mentioned that, storing this significant amount of data on 
size distribution is neither recommended nor necessary, 
especially for larger cases, as the required memory 
significantly increases. However, here the aim is to resolve 
the full spectrum of the size distribution, as opposed to the 
computational efficiency, to provide reliable benchmark 
calculations. It should be mentioned that in all methods 
except for the E-L method the liquid transport equations 
are solved in an Eulerian frame of reference. This is 
because the main merit of these methods is the 
convenient implementation in an Eulerian frame 
considering the fact that using a Lagrangian frame 
becomes hopelessly impractical for unsteady, there-
dimensional and complex flows in wet-steam turbines. 

To form the comparisons, Nozzle A of Moore’s 
experimental study [31] and the experiment number 252 
from the Moses and Stein nozzle [32] are selected. In the 
former case, the flow was provided through supplying 
superheated steam, with a stagnation pressure of 0.25 bar 
and superheating degree of 17 K at the nozzle inlet. In the 
latter case, the inlet stagnation pressure and superheating 
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degree were set to 0.4005 bar and 25.26 K, respectively. 
For the specified inlet conditions, both nozzles were 
designed to deliver steady supersonic flows in the course 
of spontaneous condensation. The normalized heights of 
the nozzles, with respect to the throat height, are 
depicted in Figure 1 (top). It can be seen that the different 
nozzle shapes and inlet conditions result in quite distinct 
patterns of supersaturation and consequently phase 
transition, see Figure 1 (bottom). The throat height is 
denoted by 𝑠 and is equal to 0.063 m and 0.01 m for 
Nozzle A and Moses and Stein nozzle, respectively. Due 
to the small dimensions of the Moses and Stein nozzle 
relative to the boundary layer thickness for this case the 
effective area is used as suggested in their work. 

Unfortunately, the geometry of the converging part of 
Moore’s nozzle was not reported in his work, however as 
the diverging part was just a straight line, it is clear that 
the nozzle curvature was discontinuous at the throat.   
Therefore, the shape of the converging part of Nozzle A 
is approximated by a straight line as given in [33]. This 
discontinuity of the curvature at the throat strongly 
influences the pressure and also can be seen in form of 
a sudden jump in supersaturation at the throat. On the 
other hand, the transonic and supersonic sections of the 
Moses and Stein nozzle were a continuous part of a 
circular arc which leads to a very smooth increase in 
supersaturation. 

 
FIGURE 1. Normalized dimensions of nozzles (top) and 
distributions of supersaturation across the nozzles (bottom) 
obtained by the E-L method.  

By the same token, the hypothetical expansion rates 
(according to the dry flow expansion) in these two 
nozzles are quite different. In Nozzle A the expansion 
rate peaks at approximately 3500 𝑠−1 in the beginning of 
the nucleation zone and then would fall sharply to a very 
low value less than 2000 𝑠−1. As a result of the low 
expansion rate and also small superheating degree at 
the inlet, for Nozzle A the nucleation zone occurs quite 
close to the throat and it is confined in a small proportion 
of the domain. This behavior can be seen in Figure 1 

(bottom) which compares the distributions of 
supersaturation for these two nozzles in the presence of 
phase transition. On the contrary, the overall expansion 
rate in the Moses and Stein nozzle is quite significant and 
would gradually rise from 10000 𝑠−1 to 13000  𝑠−1 in the 
nucleation zone. Owing to the higher expansion rate and 
greater superheating degree at the inlet, for the Moses and 
Stein nozzle the nucleation zone is stretched more 
downstream of the throat. Thus, in general the nucleation 
process occurs comparatively gradual over a larger 
proportion of the domain until it can be augmented by 
higher supersaturation levels, compared to Nozzle A, see 
Figure 1 (bottom), to eventually reestablish the 
equilibrium. 

4.1 NON-REALIZABILITY PROBLEM 
Regardless of the employed moment-inversion algorithm, 
the correct calculation of radii and weights is 
unconditionally dependent on the realizability of the 
moment set. A realizable moment set corresponds to a 
(non-unique) NDF which is non-negative for all 𝑟 > 0. In 
fact, it is impossible to find any positive (or non-negative) 
NDF to describe a non-realizable moment set. The 
problem is that for a non-realizable moment set, some of 
the radii and weights may fall out of the physically 
acceptable range, or even often take negative values. The 
non-realizability problem arises from high-order advection 
or time-integration schemes [30]. More precisely, when 
conventional high-order spatial and temporal 
discretization schemes, such as the MUSCL, QUICK and 
Runge-Kutta schemes, are used to reconstruct the 
moment fluxes and update the moment set, the 
realizability of the new moment set cannot be guaranteed. 
The reason is that the mixing processes of moments from 
different spatial locations and time levels in the 
conventional high-order schemes treat each moment 
separately and therefore do not respect the interrelations 
between elements of the moment set. In fact, it was shown 
that only a first-order scheme in space along with the 
single-stage integration in time can guarantee the 
realizability of the updated moment set [34]. 

However, owing to the inherently excessive numerical 
diffusion of the first-order scheme, obtaining a grid-
independent solution requires a very fine gird, and 
consequently, more computational power. As a result, 
some solutions to the non-realizability problem focus on 
developing new high-order advection schemes for which 
the realizability of the updated moment set can be 
guaranteed, these schemes are then termed as realizable 
schemes. For example, it is suggested in [35] and [36] to 
interpolate the radii and weights on the cell faces, instead 
of the moments themselves. Then, the moments at the cell 
faces are calculated using these interpolated radii and 
weights. However, the main difference compared to a 
conventional higher-order scheme is that, the radii are 
interpolated using the first-order scheme, while any high-
order schemes are allowed for interpolation of the weights. 
A scheme built in this way is called a “quasi-higher-order 
scheme”, since it does not recover the high-order accuracy 
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in the interpolation of the radii. Another solution to derive 
a realizable high-order scheme is given in [37] by 
avoiding the complexity of the moment space through a 
transformation of moments into a canonical space and 
enforcing the realizability more conveniently in the 
canonical space. This solution offers a second-order 
scheme in both time and space. 

The other type of solutions to the non-realizability 
problem tries to correct a corrupted moment set to 
recover the realizability condition instead of applying a 
realizable advection scheme. However, as it was 
suggested in [38], correcting moment sets should be 
avoided if it is possible to implement a realizable scheme. 
It was shown that moment-correction methods either are 
unsuccessful in recovering the realizability, or if they 
succeed, the corrected moment set can be quite different 
relative to the original one.    

In this work, for both studied cases the MUSCL 
scheme results in non-realizable moment sets especially 
at the nucleation fronts where the very first droplets are 
generated in the domain and the moment gradients are 
very high. Therefore, for the MOM, QMOM and Mono, all 
the transport equations are solved using the first-order 
scheme with the single-stage explicit time integration. On 
the other hand, as for the E-L method the integration of 
the liquid phase is completely decoupled from the motion 
equations, this method is immune to the non-realizability 
problem. Therefore, the third-order MUSCL and Runge-
Kutta schemes are used to enhance the integration in 
space and time, respectively.  

 

FIGURE 2. Comparison of weights from QMOM using grid 
sizes of 1000, 2000 and 3000 elements for Nozzle A; 𝑁𝑔 
denotes the grid size. 

The lack of flexibility in employing high-order advection 
schemes imposes a sever constraint on the flow solver 
for moment-based methods. Therefore, very fine grids 
must be used to compensate for the smoothing nature of 
the first-order scheme. In addition, all polydispersed 
methods using an Eulerian reference frame are notorious 

for a strong dependency on the grid size. Therefore, in the 
present article, very fine grids are used for both test cases 
to eliminate the uncertainties caused by the grid-sensitivity 
of solutions. Since it was shown in [38] that the weights 
and radii are much more sensitive to the grid size 
compared to the pressure and the averaged droplet size, 
these variables from the QMOM are considered for 
evaluating the grid-dependency. The distributions of 
weights and radii along Nozzle A are compared in figures 
2 and 3, respectively, using three different domain 
resolutions, i.e. domains with 1000, 2000 and 3000 
elements. It can be concluded that for the domains with 
more than 2000 elements, results are quite independent 
of the grid size. Therefore, all of the results presented in 
this work are obtained for grids with 3000 elements, which 
are highly dense considering the simplified one-
dimensional test cases. 

FIGURE 3. Comparison of radii from QMOM using grid sizes of 
1000, 2000 and 3000 elements for Nozzle A; 𝑁𝑔 denotes the 
grid size. 

Before discussing the results, it is noteworthy that 
although limited measurements for the pressure 
distributions and mean droplet sizes are available for both 
cases, it is preferred to base the comparisons on the E-L 
method as the benchmark results. In addition to the fact 
that the E-L method is arguably the most accurate among 
the considered methods, other reasons for this choice of 
basis for comparison are, firstly, the significant 
uncertainties over the measurements and also their 
interpretation methodology (especially for the droplet 
sizes) which are from more than several decades ago, 
secondly, the lack of measurements of other important 
variables such as the wetness fraction distribution, and 
thirdly, the inadequacies in theories defining the rates of 
nucleation and droplet growth, which can have combined 
effects in favor or against matching the measurements.    
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4.1 NOZZLE A 
By comparing the pressure and mean diameter 
distributions in figures 4 and 5, respectively, we can see 
that all of the polydispersed models, i.e. the E-L method, 
MOM and QMOM, predict very similar profiles. In 
contrast, the Mono predicts slightly different values for 
the pressure and mean diameter distributions. However, 
considering the simplicity of the flow and phase transition 
process (triggered by a single nucleation event) in this 
test case, these slight differences can become significant 

FIGURE 4. Comparison of pressure distributions in Nozzle A. 

for practical problems. In particular, the Mono fails to 
accurately predict the correct location and properties of 
the Wilson point (for the two studied cases, the Wilson 
point can be interchangeably defined as the location of 
the lowest pressure, highest nucleation rate or highest 
supersaturation) relative to the other method. 

FIGURE 5. Comparison of droplet mean diameter distributions 
in Nozzle A. 

Figure 6 shows the normalized distribution of 
moments over the nucleation zone which provides the 
best measure for comparing the characteristics of the 

size distributions given by the MOM and QMOM. It can be 
seen that, especially for moments of orders more than two, 
the dispersion of moments given by the MOM relative to 
the E-L method is more significant compared to the 
QMOM. The reason of this better agreement between the 
QMOM and the E-L method lies in the fact that the growth 
process is more accurately (and closely to the E-L method) 
modeled by the QMOM which benefits from three different 
radii compared to a single averaged radius 𝑟20 in the MOM. 
Recalling section 3, it should be noted that the fourth and 
fifth moments are neither required nor involved in the 
Interfacial processes using the MOM, and consequently 
do not affect the MOM results at all. However, here it is 
decided to update them during the MOM calculations only 
to draw a more informative comparison regarding the size 
distribution. 

Moreover, since 𝜇4 and 𝜇5 are also available for the 
MOM, using Gaussian quadrature we can compute three 
radii and weights for this method as well. It is remarked 
that Gaussian quadrature approximates the NDF as the 
weighted sum of Dirac delta functions as shown below  

𝑓 ≈ ∑ 𝑤𝑖

𝑛

𝑖=1

𝛿(𝑟 − 𝑟𝑖). (21) 

Thereby, from the known moments the underlying size 
distribution can be inferred in a discrete form by the radii 
and weights. Figure 7 compares the radii and weights from 
the QMOM and MOM. As with Figure 6, it can be seen that 
the disagreement between the two methods is 
considerable in the nucleation zone. Nonetheless, after 
the place where the nucleation is quenched (𝑋/𝑠 ≈ 1.2) 
the radii and weights from both methods become closer 
and stay in parallel with one another. It is reiterated that 
𝜇4 and 𝜇5 do not influence the MOM results and the 
calculation of the radii and weights for the MOM is 
performed only once in the post-processing stage after 
obtaining the converged solution.

FIGURE 6. Distributions of normalized moments, relative to the 
E-L, of MOM (top) and QMOM (bottom) over the nucleation zone 
in Nozzle A. 
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The last comparison investigates the agreement 
between the discrete approximations of size distribution 
by the moment-based methods and the full spectrum 
resolved by the E-L method. Figure 8 illustrates the 
distributions of the normalized weights over the radii 
given for these polydispersed methods at three locations 
being inside, just after and far downstream of the 
nucleation zone. As it is expected, the QMOM clearly 
outperforms the MOM inside the nucleation zone (𝑋/𝑠 =
0.3) and predicts a closer size distribution to that of the 
E-L method. Downstream of the nucleation zone, 
predictions of both the QMOM and MOM are rather 
similar. In general, for wider distributions after the 
nucleation process (𝑋/𝑠 = 1.5 and 7.0) the discrete 
distribution by means of only three points cannot provide 
a tangible picture for comparison. It is worth mentioning 
that this matter does not necessarily indicate a wrong 
prediction of moments over the post-nucleation region, 
as Figure 6 shows that after 𝑋/𝑠 = 1.2 the relative 
moments are very close to unity. Instead, it only indicates 
that one needs more sets of radii and weights to mimic 
the continuous distribution more clearly. After all, it can 
be argued that the QMOM bears slightly closer 
resemblances to the E-L method in Figure 8. 

Interestingly, once the size distribution matures after 
the nucleation is stopped, in the absence of a secondary 
nucleation or evaporation it will retain its shape and only 
drift along the 𝑟 dimension due to the growth process, as 
it can be seen in figures 7 and 8.  

 
FIGURE 7. Comparison of distributions for weights (top) and 
radii (bottom) between QMOM and MOM, in Nozzle A.  

As the equilibrium state reestablishes, after quenching 
the nucleation, the growth rates become almost 
independent of the droplet size, see Figure 9. Thus, the 
differences between the radii and weights from the MOM 
and QMOM remain unchanged. In plain English, the 
equation (4) in the absence of enough supersaturation 
can be nearly defined by a variable only dependent on 
the vapor properties. Hence, as discussed earlier for the 
equation (17), the QMOM reduces to the MOM in the 

post-nucleation region. Whether this behavior of the 
growth rate given by the equation (4) for the quasi-
equilibrium conditions in post-nucleation region is 
physically realistic or not is beyond the scope of the 
present work. For this case, the important observation is 
that the limitation of the nucleation zone (non-equilibrium 
region) to a very small part of the nozzle and the 
dominance of the post-nucleation droplet growth process 
in the domain lead to similar predictions of the radii and 
weights by the QMOM and MOM. Nevertheless, for the 
latter method no radii and weights existed during the 
calculation and the growth rate was computed for the 
averaged radius 𝑟20.  

 
FIGURE 8. Comparison of discrete size distributions using 
Gaussian quadrature for QMOM and MOM with E-L at 𝑋/𝑠 =
0.3 (top), 𝑋/𝑠 = 1.5 (center) and 𝑋/𝑠 = 7.0 (bottom).  

 

FIGURE 9. Distributions of nucleation rates and growth rates of 
droplet sizes present in calculations of QMOM and MOM in 
Nozzle A 
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4.2 EXPERIMENT 252 of MOSES AND STEIN 
As discussed in the beginning of this section, in the 
experiment 252 of Moses and Stein the nucleation 
process, or in general the non-equilibrium state, is more 
significant than the previous one and extends over a 
bigger proportion of the nozzle, see Figure 10 (cf. Figure 
9). Figure 10 shows that the differences among the 
growth rates are larger and apparent over a much wider 
length of the domain compared to Nozzle A. For the 
same reason, Figure 11 shows that the deviation of the 
moments given by the MOM and QMOM from those of 
the E-L method is evident over a larger part of the nozzle 
which corresponds to the nucleation zone. However, in 
general the QMOM is in a closer agreement with the E-L 
method compared to the MOM. In addition, Figure 12 
illustrates more obvious disparities between the weights 
calculated for the QMOM and MOM. It can be seen that, 
in contrast with Nozzle A, even in the post-nucleation 
region the weights given by the MOM and QMOM are 
quite different. The wiggles appearing in the weights of 
both the MOM and QMOM, from the throat until 𝑋/𝑠 ≈ 1, 
are related to the stability concerns over the moment-
inversion problem. The moment-inversion problem for 
calculating the radii (abscissas) and weights is prone to 
become ill-conditioned when the radii are very close to 
each other, which is the case for the experiment 252, see 
the Figure 12 (bottom).  

 
FIGURE 10. Distributions of nucleation rates and growth rates 
of droplet sizes present in calculations of QMOM and MOM in 
Exp. 252 

Unlike the parameters related to the size distributions, 
and as with the previous case, all the polydispersed 
methods provide rather similar predictions for the 
pressure and mean dimeter distributions, see figures 13 
and 14. However, it can be argued that for the pressure 
distributions the deviations between the moment-based 
methods and the E-L method and also between the 
QMOM and the MOM themselves are more noticeable 
compared to the Nozzle A.    

 

4.3 COMPUTATIONAL COST AND STABILITY 
The authors believe that a fair and constructive 
comparison of computational efficiency between methods 
differing in nature and architecture is not possible. In fact, 
this is the case for the E-L method compared to the other 
three which are quite alike. For instance, as in the E-L 
method the motion solution is decoupled from the 
integration of the liquid phase, it is possible to stabilize and 
accelerate the temporal integration by using the third-order 
explicit Runge–Kutta scheme, which allows CFL values 
larger than one. Moreover, the E-L method is naturally 
quite insensitive to the grid resolution, and as it is not 
affected by the non-realizability problem, employing high-
order spatial discretizations are possible. Therefore, the E-
L can provide grid-independent results on much coarser 
grids than required by the moment-based methods and 
consequently decreases the computational costs. 
However, for unsteady two/three dimensional flows, a 
Lagrangian framework might be completely inefficient.

 

FIGURE 11. Distributions of normalized moments, relative to 
the E-L, of MOM (top) and QMOM (bottom) over the nucleation 
zone in Exp. 252.

FIGURE 12. Comparison of distributions for weights (top) and 
radii (bottom) between QMOM and MOM, in Exp. 252. 
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Fortunately, due to very similar structures of the MOM, 
QMOM and Mono, it is possible to draw a meaningful 
comparison in terms of CPU time and stability between 
them. Table 1 compares the CPU time of the MOM and 
the QMOM relative to that of the Mono. According to 
Table 1 the MOM is the most efficient method 
considering that its predictions for pressure and mean 
droplet size are very close to the QMOM and also E-L. 
However, as it is explained earlier, the MOM might incur 
considerable errors for cases with multiple nucleation 
events. As it is expected, Table 1 indicates that the 
QMOM is the most computationally expensive method in 
which the moment-inversion algorithm alone is 
responsible for a significant share of the increase in CPU 
time. 

 
FIGURE 13. Comparison of pressure distributions in Exp. 252. 

What is more, depending on the degree of quadrature 
the QMOM requires data on the higher-order moments 
(here 𝜇4 and 𝜇5) which for wet-steam flows take 
extremely small values. Therefore, it is necessary to 
store and treat the moments, especially during the 
moment-inversion procedure, using the double-precision 
format. This can considerably increase CPU time and 
memory for large cases. However, thanks to massive 
improvements in computational power, nowadays this 
problem does not seem insurmountable any more. In this 
work, calculations for all of the methods and variables are 
performed in double-precision format. 

As discussed for the experiment 252, see Figure 12 
(bottom), the moment-inversion problem becomes ill-
conditioned for nearly monodispersed distributions. This 
issue is peculiar to the nucleation front of cases with 
almost uniform expansion rate in which superstation 
increases very slightly to initiate the nucleation, see 
Figure 1 (bottom). Therefore, in such conditions the size 
distribution at the early stages of the nucleation process 
has almost a zero spread and a location equal to the local 
critical droplet size. A remedy for such cases is to 
nucleate droplets belonging to a distribution with a 

suitable spread and a location equal to the local critical 
size. 

 
5. CONCLUSIONS 

The present article compares the ability of the MOM, 
QMOM and a monodispersed model to predict the droplet 
size distribution and flow behavior in the course of 
spontaneous condensation of steam. An Eulerian-
Lagrangian method is also applied as the basis of the 
comparisons in which the full spectrum of size distribution 
is resolved by tracking the liquid phase in a Lagrangian 
frame. Unlike the previous comparative studies, the 
solutions for the MOM, QMOM is obtained by means of an 
Eulerian framework. Since it is the feasible implementation 
of these methods in an Eulerian reference frame which 
make them attractive for modelling practical wet-steam 
flows.  

 
FIGURE 14. Comparison of droplet mean diameter distributions 
in Exp. 252. 

TABLE 1. Relative CPU time of QMOM and MOM with respect 
to Mono for 100 time steps 

    
Grid size MOM QMOM Share of Wheeler’s 

algorithm in QMOM % 

3000 1.08 1.98 20% 

1000 1.09 1.78 16% 

    The non-realizability problem with the moment-based 
methods and solutions available in the literature are 
discussed. It is remarked that for the moment-transport 
equations, this problem restricts the permissible advection 
schemes to the first-order accurate scheme, and therefore 
gives rise to the sensitivity of solutions to the grid size. 

Two low-pressure supersonic nozzle experiments are 
used for comparison. Given the simplified one-
dimensional flows in these cases, it is concluded that the 
predictions of the pressure and mean diameter by the 
monodispersed model deviate considerably from the 
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polydispersed ones. On the other hand, the three 
polydispersed methods, i.e. the MOM, QMOM and E-L 
method provide similar predictions for global variables 
such as the pressure and mean dimeter. Nevertheless, it 
is observed that the QMOM results in much closer 
agreements with the E-L method for the moments and 
estimation of size distributions especially in the 
nucleation zone.  

It is shown that the Gyarmathy’s droplet growth 
equation (revised by Young) becomes almost 
independent of the droplet radius in the absence of 
enough supersaturation in the post-nucleation region. 
This behavior of the droplet growth equation reduces the 
QMOM to the MOM in a region with negligible 
supersaturation.  Thus, judging based on the given 
weights and radii in the first test case in which the 
nucleation process is confined to a small part of the 
domain and the post-nucleation droplet growth covers a 
much larger length of the nozzle, it seems that the MOM 
and QMOM relate to similar underlying size distributions. 
On the other hand, for the second case in which the 
nucleation process is more significant and extends over 
a large proportion of the nozzle, the weights calculated 
for the MOM and QMOM are quite different even after the 
nucleation is quenched. Therefore, for wet-steam 
turbines in which flows undergo several consecutive 
nucleation processes, accurate predictions by the MOM 
cannot be expected, as the MOM possesses no ability 
(compared to the QMOM with an adjustable ability) to 
accommodate the required details of size distribution 
during the nucleation and growth processes. In the 
future, practical cases with several nucleation events 
must be considered to investigate how the accumulation 
of errors can deviate the MOM results from those of the 
QMOM, and whether a desirable trade-off between the 
computational costs of the QMOM and its performance is 
achievable.   
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NOMENCLATURE 
𝑎  Variable in the equation (17) 
𝐴  Cross-sectional area 
𝑏  Variable in the equation (17) 
𝑐  Frozen speed of sound 
𝐸                      Total internal energy    
𝑓                      Droplet number density function   
𝐹⃗  Convective fluxes 
ℎ, 𝐻  Total and static enthalpy 
𝐽  Nucleation rate 
𝑘  Parameter in MUSCL scheme 
𝑘𝐵  Boltzmann’s constant 
𝐾  Total number of droplet bins 
𝐾𝑛  Knudsen number  

𝐿  Specific enthalpy of evaporation 
𝑚  Molecular weight 
𝑀  Mach number 
𝑛  Degree of quadrature 
𝑁                      Droplet number density of a droplet bin 
𝑝                       Pressure  
𝑃𝑟  Prandtl number 
𝑟  Droplet radius 
𝑅  Specific gas constant 
𝑠  Throat height 
𝑆  Supersaturation 
𝑇  Temperature 
𝑢  Velocity 
𝑉  Volume in the phase space 
𝑤  Weight 
𝑦  Wetness fraction of a droplet bin 
𝑋  Streamwise coordinate 
𝑌  Wetness fraction or nozzle height  

GREEK LETTERS 
𝛾  Specific heats ratio 
𝜃  Non-isothermal correction parameter  
𝜆  Thermal conductivity 
𝜇  Moment of distribution 
𝜌  Density 
𝜎  Surface tension  
𝜓  Empirical factor in equation (4) 

SUPERSCRIPTS AND SUBSCRIPTS 
𝑑  Liquid phase 
𝑔  Refers to the grid size 
𝑖  Radii and weights or droplet bin index 
𝐼  Computational cell index 
𝑗  Moment index 
𝑚  Mixture of vapor and liquid  
𝑟  Refers to 𝑟 dimension in the phase space 
𝑣  Vapor phase 
𝐵𝐷  Becker and Döring equation for 𝐽 
∗  Critical radius  
20  Surface-area-averaged value 
30  Volume-averaged value 
32  Sauter mean value 
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