Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification
Valentin Resseguier, Baylor Fox-Kemper, Etienne Mémin, Bertrand Chapron

To cite this version:
Valentin Resseguier, Baylor Fox-Kemper, Etienne Mémin, Bertrand Chapron. Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification. AGU 2017 - American Geophysical Union, Dec 2017, New Orleans, United States. pp.1-47. hal-01891163

HAL Id: hal-01891163
https://hal.archives-ouvertes.fr/hal-01891163
Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification

Valentin Resseguier, Baylor Fox-Kemper
Etienne Memin, Bertrand Chapron
Motivations

• Rigorously identified subgrid dynamics effects

• Injecting likely small-scale dynamics

• Predict extreme events

• Quantification of modeling errors Ensemble forecasts and data assimilation

• Studying different likely scenarios and attractors Climate projections
Contents

I. Location uncertainty

II. SQG under moderate uncertainty
Part I
Location uncertainty
Adding random velocity

\[\nu = w + \sigma \dot{B} \]
Adding random velocity

\[\nu = \mathbf{w} + \sigma \mathbf{B} \]
Adding random velocity

\[v = w + \sigma \dot{B} \]

Resolved large scales

White-in-time small scales
Adding random velocity

\[\mathbf{v} = \mathbf{w} + \sigma \dot{\mathbf{B}} \]

Resolved large scales

White-in-time small scales
Adding random velocity

Large scales: \(w \)
Small scales: \(\sigma B \)
Variance tensor:

\[
a = a(x, x) = \mathbb{E}\{\sigma dB \sigma dB^T\}/dt
\]

\[
\nu = w + \sigma B
\]

Resolved large scales

White-in-time small scales

References:

- Mikulevicius and Rozovskii, 2004
- Flandoli, 2011
- Memin, 2014
- Resseguier et al. 2017 a, b, c
- Chapron et al. 2017
- Cai et al. 2017
- Holm, 2015
- Holm and Tyranowski, 2016
- Arnaudon et al. 2017
- Cotter and al 2017
- Crisan et al., 2017
- Gay-Balmaz and Holm 2017

Advection of tracer Θ

$$\frac{D\Theta}{Dt} = 0$$
Advection of tracer Θ

Large scales: w
Small scales: $\sigma \dot{B}$
Variance tensor:

$$a = a(x, x) = \frac{\mathbb{E}\{\sigma dB \, \sigma dB^T\}}{dt}$$
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right) \]
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^\ast \cdot \nabla \Theta + \sigma \dot{\mathbf{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} \mathbf{a} \nabla \Theta \right) \]
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{\mathbf{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right) \]

Large scales: \mathbf{w}
Small scales: $\sigma \dot{\mathbf{B}}$

Variance tensor:
\[a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} \]
Advection of tracer Θ

Large scales:
w
Small scales:
$\sigma \dot{B}$
Variance tensor:
$a = a(x, x) = \frac{E \{ \sigma dB (\sigma dB)^T \}}{dt}$

$$\frac{\partial \Theta}{\partial t} + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)$$

Drift correction
Advection of tracer Θ

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:

$\begin{align*}
a &= a(x, x) = \\
\mathbb{E}\{\sigma dB (\sigma dB)^T\} \\
dt
\end{align*}$

$\frac{\partial_t \Theta}{\partial t} + w^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)$

Drift correction

Multiplicative random forcing

Diffusion
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \mathbf{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} \alpha \nabla \Theta \right) \]

- Large scales: \mathbf{w}
- Small scales: $\sigma \mathbf{B}$
- Variance tensor: $\alpha = \alpha(x, x) = \mathbb{E}\{\sigma dB \sigma dB^T\}/dt$

Drift correction

Multiplicative random forcing

Diffusion
Advection of tracer Θ

Large scales:
w
Small scales:
$\sigma \dot{B}$

Variance tensor:
$a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}/dt$

\[
\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} \alpha \nabla \Theta \right)
\]

Drift correction
Multiplicative random forcing
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{\mathbf{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right) \]

- Large scales: \mathbf{w}
- Small scales: $\sigma \dot{\mathbf{B}}$
- Variance tensor: $a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} \frac{dt}{dt}$

Drift correction
Multiplicative random forcing
Balanced energy exchanges
Derived random models

Large scales:
\(w \)
Small scales:
\(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \mathbb{E}\left\{ \sigma dB (\sigma dB)^T \right\} \frac{dt}{dt}
\]

Conservations (mass, linear momentum, …)

\(\frac{D}{Dt} \)

Navier-Stokes
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \mathbb{E}\left\{ \sigma dB (\sigma dB)^T \right\} dt
\]

Conservations (mass, linear momentum, ...)
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)

Variance tensor:
\[
a = a(x, x) = \frac{1}{d} \mathbb{E} \left\{ \sigma dB (\sigma dB)^T \right\}
\]

Conservations (mass, linear momentum, ...)

\[
\frac{D}{Dt}
\]

Navier-Stokes

Simplifications

Data

Reduced Order Model
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} \frac{dt}{dt}
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

Boussinesq

Navier-Stokes
Derived random models

Conservations
(mass, linear momentum, …)

Large scales:
\(w \)
Small scales:
\(\sigma B \)
Variance tensor:
\(a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}/dt \)

Data
Reduced Order Model
Lorenz 63

Simplifications

\[\frac{D}{Dt} \]

Boussinesq

Navier-Stokes

Variance tensor:
\[\dot{\mathbf{B}} = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}/dt \]
Derived random models

Large scales:
\[w \]
Small scales:
\[\sigma \dot{B} \]

Variance tensor:
\[
\alpha = \alpha(x, x) = \mathbb{E}\left\{ \sigma dB (\sigma dB)^T \right\} dt
\]

Conservations
(mass, linear momentum, …)

\[\frac{D}{Dt} \]

Data
Reduced Order Model

Lorenz 63

Boussinesq

Navier-Stokes

Simplifications
Derived random models

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:
$$ a = a(x, x) = \frac{1}{dt} \mathbb{E}\{\sigma dB (\sigma dB)^T\} $$

Conservations (mass, linear momentum, …)

Data

Reduced Order Model

Lorenz 63

Boussinesq

Navier-Stokes

Uncertainty

$$ \frac{a}{2UL} $$

Simplifications
Derived random models

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:

\[a = a(x, x) = \frac{\mathbb{E}\{\sigma dB (\sigma dB)^T\}}{dt} \]

Conservations (mass, linear momentum, ...)

\[\frac{D}{Dt} \]

Reduced Order Model

Lorenz 63

Boussinesq

Navier-Stokes

QG

QG MU

Uncertainty

\[\frac{a/2}{UL} \]

Simplifications
Derived random models

Large scales: \(\mathbf{w} \)
Small scales: \(\mathbf{\sigma B} \)

Variance tensor:
\[
\mathbf{a} = a(x, x) = \mathbb{E}\{\mathbf{\sigma dB} (\mathbf{\sigma dB})^T\} / dt
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

Data

Reduced Order Model

Lorenz 63

\(\frac{a/2}{UL} \)

SQG MU

QG MU

QG

Uncertainty

Boussinesq

Navier-Stokes

Simplifications
Derived random models

Large scales: \(\mathbf{w} \)
Small scales: \(\sigma \mathbf{B} \)
Variance tensor:
\[
a = a(x, x) = \frac{E\{\sigma dB (\sigma dB)^T\}}{dt}
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

Simplifications

Uncertainty:
\[
\frac{a/2}{UL}
\]

Derived random models:

Lorenz 63

\[
\dot{B} = a(x, x) = E\{\sigma dB (\sigma dB)^T\}
\]

SQG MU

SQG SU

Boussinesq

Navier-Stokes
Derived random models

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:

$\sigma = \sigma(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}/dt$

Conservations (mass, linear momentum, …)

$\frac{D}{Dt}$

Reduced Order Model

Data

Lorenz 63

Uncertainty

Simplifications

SQG MU

SQG SU

Boussinesq

Navier-Stokes
Part II
SQG under Moderate Uncertainty

SQG MU

Code available online
$\frac{Db}{Dt} = -\alpha_{HV} \Delta^4 b$

$\mathbf{u} = \left(\text{cst.} \nabla^\perp \Delta^{-\frac{1}{2}} \right) b$

Reference flow:

deterministic

SQG

1024 x 1024

$t = 17$ day
\[\frac{D b}{D t} = -\alpha_{HV} \Delta^4 b \quad \text{Hyper-viscosity} \]

\[u = \left(\text{cst.} \nabla \frac{1}{\Delta} \right) b \]

Reference flow:

deterministic

SQG

1024 x 1024
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128

Spectrum
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128

$t = 17$ days
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
Ensemble: random coherent structures
Ensemble: random coherent structures
Ensemble : uncertainty quantification

Spectrum of the errors and its estimation

- Bias RanIC
- Bias LU
- Estim. error RanIC
- Estim. error LU
Ensemble : uncertainty quantification

Bias LU

- $x(m)$
- $y(m)$

Estim. error LU

- $x(m)$
- $y(m)$

Estim. error RanIC

- $x(m)$
- $y(m)$

Spectrum of the errors and its estimation

- $E(\kappa)$ (rad m$^{-1}$)
- κ (rad m$^{-1}$)

Legend:

- Bias RanIC
- Bias LU
- Estim. error RanIC
- Estim. error LU
Conclusion

Models under location uncertainty blindly describe unresolved triades

• Conserve energy

• Model derivation

• Instabilities triggered, possibly followed by extreme events

• Uncertainty quantification to address filter divergence
Related works and outlooks

- Bifurcations (SQG) and attractor (Lorenz 63) exploration
- Stabilization / destabilization of Reduced Order Model
- Comparisons with data-driven $\mathbf{\sigma}$ and Stochastic Lie Derivative approaches (Holm and coauthors)
- Parametrization and tests based on higher-order statistics (curvature, energy flux through scales, bispectrum, …)
- Mimic barotropization
- Girsanov theorem for MLE and Bayesian estimations with satellite images
- Learning $\mathbf{\sigma}$ on SWOT data
- Filtering / smoothing with (reduced) models under location uncertainty