Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification
Valentin Resseguier, Baylor Fox-Kemper, Etienne Mémin, Bertrand Chapron

To cite this version:
Valentin Resseguier, Baylor Fox-Kemper, Etienne Mémin, Bertrand Chapron. Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification. AGU 2017 - American Geophysical Union, Dec 2017, New Orleans, United States. pp.1-47. hal-01891163

HAL Id: hal-01891163
https://hal.archives-ouvertes.fr/hal-01891163
Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dynamics under location uncertainty: model derivation, modified transport and uncertainty quantification

Valentin Resseguier, Baylor Fox-Kemper
Etienne Memin, Bertrand Chapron
Motivations

- Rigorously identified subgrid dynamics effects
- Injecting likely small-scale dynamics
- Predict extreme events
- Quantification of modeling errors
- Studying different likely scenarios and attractors

Motivations:
- Ensemble forecasts and data assimilation
- Climate projections
Contents

I. Location uncertainty
II. SQG under moderate uncertainty
Part I

Location uncertainty
Adding random velocity

\[v = w + \sigma \dot{B} \]
Adding random velocity

\[v = \omega + \sigma \dot{B} \]
Adding random velocity

\[\mathbf{v} = \mathbf{w} + \sigma \dot{\mathbf{B}} \]

- Resolved large scales
- White-in-time small scales
Adding random velocity

Resolved large scales

White-in-time small scales

\[\nu = w + \sigma \dot{B} \]
Adding random velocity

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor: $a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} dt$

\[\nu = w + \sigma \dot{B} \]

Resolved large scales
White-in-time small scales

References:
Mikulevicius and Rozovskii, 2004
Flandoli, 2011

Memin, 2014
Resseguier et al. 2017 a, b, c
Chapron et al. 2017
Cai et al. 2017

Holm, 2015
Holm and Tyranowski, 2016
Arnaudon et al., 2017

Cotter and al 2017
Crisan et al., 2017
Gay-Balmaz and Holm 2017
Advection of tracer Θ

Large scales:
w

Small scales:
$\sigma \dot{B}$

Variance tensor:
$a = a(x, x) = \frac{E\{\sigma dB (\sigma dB)^T\}}{dt}$

$$\frac{D\Theta}{Dt} = 0$$
Advection of tracer Θ

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:

$$a = a(x, x) = \frac{\mathbb{E}\{\sigma dB (\sigma dB)^T\}}{dt}$$
Advection of tracer Θ

\[
\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{\mathbf{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)
\]
Advection of tracer Θ

$$\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)$$

Large scales:
- \mathbf{w}
- $\sigma \dot{B}$

Small scales:
- Variance tensor:
 $$a = a(x, x) = \mathbb{E} \{ \sigma dB (\sigma dB)^T \}$$

$$\frac{\partial \Theta}{\partial t} + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)$$
Advection of tracer Θ

Large scales:

w

Small scales:

$\sigma \dot{B}$

Variance tensor:

$a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} / dt$

\[
\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)
\]
Advection of tracer Θ

Large scales:
w
Small scales:
$\sigma \dot{B}$

Variance tensor:

$$\sigma = a(x, x) = E\{\sigma dB (\sigma dB)^T\}$$

$$\frac{\partial \Theta}{\partial t} + \omega^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \left(\frac{1}{2} a \nabla \Theta \right)$$

Drift correction
Large scales:
\(w \)

Small scales:
\(\sigma \dot{B} \)

Variance tensor:
\[
a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} \frac{dt}{dt}
\]
Advection of tracer Θ

Large scales: w
Small scales: $\sigma \dot{B}$

Variance tensor:
$$a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}$$

$$\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right)$$
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \mathbf{\dot{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right) \]

- Large scales: w
- Small scales: $\sigma \mathbf{\dot{B}}$
- Variance tensor: $a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} dt$

Drift correction

Multiplicative random forcing
Advection of tracer Θ

\[\partial_t \Theta + \mathbf{w}^* \cdot \nabla \Theta + \sigma \dot{\mathbf{B}} \cdot \nabla \Theta = \mathbf{\nabla} \cdot \left(\frac{1}{2} a \mathbf{\nabla} \Theta \right) \]

- **Advection**
- **Diffusion**
- **Drift correction**
- **Multiplicative random forcing**
- **Balanced energy exchanges**

Large scales: \mathbf{w}
Small scales: $\sigma \dot{\mathbf{B}}$

Variance tensor:

\[a = a(x, x) = \mathbb{E} \{ \sigma dB (\sigma dB)^T \} \]
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = E\{\sigma dB (\sigma dB)^T\} dt
\]

Conservations (mass, linear momentum, …)

\[\frac{D}{Dt} \]

Navier-Stokes
Derived random models

Large scales: w
Small scales: $\sigma \dot{B}$
Variance tensor:

\[a = a(x, x) = \frac{1}{dt} E\{ \sigma dB \sigma dB^T \} \]

Conservations
(mass, linear momentum, …)

\[\frac{D}{Dt} \]

Navier-Stokes

Simplifications
Derived random models

Large scales:
\[w \]
Small scales:
\[\sigma \dot{B} \]
Variance tensor:
\[a = a(x, x) = \frac{\mathbb{E}\{\sigma dB (\sigma dB)^T\}}{dt} \]

Conservations (mass, linear momentum, …)

\[\frac{D}{Dt} \]

Navier-Stokes

Simplifications
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)

Variance tensor:
\[
a = a(x, x) = E\left\{ \sigma dB (\sigma dB)^T \right\} dt
\]

Conservations (mass, linear momentum, ...)

\[
\frac{D}{Dt}
\]

Reduced Order Model

Derived random models

Boussinesq

Navier-Stokes

Conservations (mass, linear momentum, ...)

Reduced Order Model

Data

Simplifications
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} / dt
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

Reduced Order Model

Lorenz 63

Boussinesq

Navier-Stokes

Simplifications
Derived random models

Large scales: \(w \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\}/dt
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

\[
\text{Data} \rightarrow \text{Reduced Order Model} \rightarrow \text{Lorenz 63} \rightarrow \text{Boussinesq} \rightarrow \text{Navier-Stokes}
\]

Simplifications
Derived random models

Conservations (mass, linear momentum, ...)

Large scales: w
Small scales: $\sigma\dot{B}$

Variance tensor:
$a = a(x, x) = \mathbb{E}\{\sigma dB(\sigma dB)^T\} / dt$

Data ⟷ Reduced Order Model

Reduced random models

Lorenz 63

$\frac{a}{2UL}$

Uncertainty

Boussinesq

Navier-Stokes

$\frac{D}{Dt}$

Simplifications
Derived random models

Large scales: \(\mathbf{w} \)
Small scales: \(\sigma \dot{B} \)
Variance tensor:
\[
a = a(x, x) = \frac{1}{dt} \mathbb{E}\left\{\sigma dB (\sigma dB)^T\right\}
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt} \rightarrow \text{Navier-Stokes}
\]

\[
\text{Reduced Order Model} \rightarrow \text{Lorenz 63}
\]

\[
\frac{a/2}{UL} \rightarrow \text{QG MU}
\]

\[
\text{QG} \rightarrow \text{Uncertainty}
\]

Simplifications
Derived random models

Large scales: \(\mathbf{w} \)
Small scales: \(\sigma \dot{\mathbf{B}} \)

Variance tensor:
\[
\mathbf{a} = \mathbf{a}(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} dt
\]

Conservations (mass, linear momentum, …)

\[
\frac{D}{Dt}
\]

Data

Reduced Order Model

Lorenz 63

\[
\frac{\dot{a}}{UL}
\]

SQG MU

QG MU

Boussinesq

Navier-Stokes

Uncertainty

Simplifications
Derived random models

Large scales:
\(\mathbf{w} \)
Small scales:
\(\sigma \dot{\mathbf{B}} \)

Variance tensor:
\[a = a(x, x) = \mathbb{E}\{\sigma dB (\sigma dB)^T\} dt \]

Conservations (mass, linear momentum, …)

\[\frac{D}{Dt} \]

\[\frac{a/2}{UL} \]

Uncertainty

SQG MU

SQG SU

QG MU

Lorenz 63

Boussinesq

Navier-Stokes

Derived random models
Derived random models

Large scales: \mathbf{w}
Small scales: $\sigma \mathbf{B}$

Variance tensor:
\[a = a(x, x) = \mathbb{E}\{\sigma dB \ (\sigma dB)^T \} / dt \]

\[\dot{b}^2 \]

Conservations (mass, linear momentum, …)

\[\frac{D}{Dt} \]

Reduced Order Model

Lorenz 63

\[\frac{a}{2L} \]

Uncertainty

SQG MU

SQG SU

Boussinesq

Navier-Stokes

Derived random models
Part II
SQG under Moderate Uncertainty

SQG MU

Code available online
\[
\frac{Db}{Dt} = -\alpha_{HV} \Delta^4 b \quad \text{Hyper-viscosity}
\]

\[u = \left(\text{cst.} \nabla^\perp \Delta^{-\frac{1}{2}} \right) b\]

Reference flow:
- deterministic
- SQG
- 1024 x 1024

\(t = 17\ \text{day}\)
\[\frac{D b}{D t} = -\alpha_{HV} \Delta^4 b \quad \text{Hyperviscosity} \]

\[u = \left(\text{cst.} \nabla \perp \Delta^{-\frac{1}{2}} \right) b \]

Reference flow:
- deterministic
- SQG
- 1024 x 1024

\[t = 17 \text{ day} \]
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128

$t = 17$ days
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization : Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x128

Spectrum
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128

$t = 17$ days

$x (m) \times 10^5$

$y (m)$

$\hat{b}(\kappa)$

$\kappa (\text{rad.m})$
One realization: Stochastic destabilization

![Deterministic 128 x 128](image1)

![Deterministic 1024 x 1024](image2)

![Location Uncertainty 128 x 128](image3)
One realization: Stochastic destabilization

Deterministic 128 x 128

Deterministic 1024 x 1024

Location Uncertainty 128 x 128
One realization: Stochastic destabilization

- Deterministic 128 x 128
- Deterministic 1024 x 1024
- Location Uncertainty 128 x 128

$t = 17$ days
Ensemble: random coherent structures
Ensemble: random coherent structures
Ensemble: uncertainty quantification

Spectrum of the errors and its estimation

- Bias LU
- Estim. error LU
- Bias RanIC
- Estim. error RanIC
Ensemble : uncertainty quantification

Spectrum of the errors and its estimation

<table>
<thead>
<tr>
<th>Graph</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias LU</td>
<td>Bias error</td>
</tr>
<tr>
<td>Estim. error LU</td>
<td>Estimation of the error</td>
</tr>
<tr>
<td>Estim. error RanIC</td>
<td>Estimation of the error using the RanIC method</td>
</tr>
</tbody>
</table>

Legend:
- Bias RanIC
- Bias LU
- Estim. error RanIC
- Estim. error LU
Conclusion

Models under location uncertainty blindly describe unresolved triades

• Conserve energy

• Model derivation

• Instabilities triggered, possibly followed by extreme events

• Uncertainty quantification to address filter divergence
Related works and outlooks

• Bifurcations (SQG) and attractor (Lorenz 63) exploration

• Stabilization / destabilization of Reduced Order Model

• Comparisons with data-driven σ and Stochastic Lie Derivative approaches (Holm and coauthors)

• Parametrization and tests based on higher-order statistics (curvature, energy flux through scales, bispectrum, …)

• Mimic barotropization

• Girsanov theorem for MLE and Bayesian estimations with satellite images

• Learning σ on SWOT data

• Filtering / smoothing with (reduced) models under location uncertainty