M. P. Mayer, L. Breton, and L. , Hsp90: Breaking the symmetry, Mol Cell, vol.58, pp.8-20, 2015.

A. Röhl, J. Rohrberg, and J. Buchner, The chaperone Hsp90: Changing partners for demanding clients, Trends Biochem Sci, vol.38, pp.253-262, 2013.

F. H. Schopf, M. M. Biebl, and J. Buchner, The HSP90 chaperone machinery, Nat Rev Mol Cell Biol, vol.18, pp.345-360, 2017.
DOI : 10.1038/nrm.2017.20

J. L. Johnson, Evolution and function of diverse Hsp90 homologs and cochaperone proteins, Biochim Biophys Acta, vol.1823, pp.607-613, 2012.

K. A. Borkovich, F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist, hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures, Mol Cell Biol, vol.9, pp.3919-3930, 1989.

L. H. Pearl, Review: The HSP90 molecular chaperone-an enigmatic ATPase, Biopolymers, vol.105, pp.594-607, 2016.

P. Sahasrabudhe, J. Rohrberg, M. M. Biebl, D. A. Rutz, and J. Buchner, The plasticity of the Hsp90 co-chaperone system, Mol Cell, vol.67, pp.947-961, 2017.

M. Taipale, A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways, Cell, vol.158, pp.434-448, 2014.

C. Prodromou, Identification and structural characterization of the ATP/ ADP-binding site in the Hsp90 molecular chaperone, Cell, vol.90, pp.65-75, 1997.

O. Hainzl, M. C. Lapina, J. Buchner, and K. Richter, The charged linker region is an important regulator of Hsp90 function, J Biol Chem, vol.284, pp.22559-22567, 2009.

S. Tsutsumi, Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain, Nat Struct Mol Biol, vol.16, pp.1141-1147, 2009.

O. Genest, Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast, Mol Cell, vol.49, pp.464-473, 2013.

T. O. Street, Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity, J Mol Biol, vol.415, pp.3-15, 2012.

C. Graf, M. Stankiewicz, G. Kramer, and M. P. Mayer, Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine, EMBO J, vol.28, pp.602-613, 2009.

K. A. Krukenberg, F. Förster, L. M. Rice, A. Sali, and D. A. Agard, Multiple conformations of E. coli Hsp90 in solution: Insights into the conformational dynamics of Hsp90, Structure, vol.16, pp.755-765, 2008.

A. K. Shiau, S. F. Harris, D. R. Southworth, and D. A. Agard, Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements, Cell, vol.127, pp.329-340, 2006.

M. Ali, Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex, Nature, vol.440, pp.1013-1017, 2006.

T. O. Street, L. A. Lavery, and D. A. Agard, Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone, Mol Cell, vol.42, pp.96-105, 2011.

U. Jakob, H. Lilie, I. Meyer, and J. Buchner, Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo, J Biol Chem, vol.270, pp.7288-7294, 1995.

B. D. Johnson, Hsp90 chaperone activity requires the full-length protein and interaction among its multiple domains, J Biol Chem, vol.275, pp.32499-32507, 2000.

H. Wiech, J. Buchner, R. Zimmermann, and J. U. , Hsp90 chaperones protein folding in vitro, Nature, vol.358, pp.169-170, 1992.

G. A. Flom, M. Lemieszek, E. A. Fortunato, and J. L. Johnson, Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins, Mol Biol Cell, vol.19, pp.5249-5258, 2008.

Y. Morishima, P. Murphy, D. P. Li, E. R. Sanchez, and W. B. Pratt, Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket, J Biol Chem, vol.275, pp.18054-18060, 2000.

M. Reidy, Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines, PLoS Genet, vol.10, p.1004720, 2014.

H. C. Chang, D. F. Nathan, and S. Lindquist, In vivo analysis of the Hsp90 cochaperone Sti1 (p60), Mol Cell Biol, vol.17, pp.318-325, 1997.

G. Flom, R. H. Behal, L. Rosen, D. G. Cole, and J. L. Johnson, Definition of the minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions, Biochem J, vol.404, pp.159-167, 2007.

O. Genest, J. R. Hoskins, J. L. Camberg, S. M. Doyle, and S. Wickner, Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling, Proc Natl Acad Sci, vol.108, pp.8206-8211, 2011.

O. Genest, J. R. Hoskins, A. N. Kravats, S. M. Doyle, and S. Wickner, Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling, J Mol Biol, vol.427, pp.3877-3889, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432234

H. Nakamoto, Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins, J Biol Chem, vol.289, pp.6110-6119, 2014.

A. N. Kravats, Interaction of E. coli Hsp90 with DnaK involves the DnaJ binding region of DnaK, J Mol Biol, vol.429, pp.858-872, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697476

A. Röhl, Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules, Nat Commun, vol.6, p.6655, 2015.

H. Wegele, S. K. Wandinger, A. B. Schmid, J. Reinstein, and J. Buchner, Substrate transfer from the chaperone Hsp70 to Hsp90, J Mol Biol, vol.356, pp.802-811, 2006.

N. Sung, ) 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix, Acta Crystallogr D Struct Biol, vol.72, pp.904-911, 2016.

S. P. Bohen and K. R. Yamamoto, Isolation of Hsp90 mutants by screening for decreased steroid receptor function, Proc Natl Acad Sci, vol.90, pp.11424-11428, 1993.

D. F. Nathan and S. Lindquist, Mutational analysis of Hsp90 function: Interactions with a steroid receptor and a protein kinase, Mol Cell Biol, vol.15, pp.3917-3925, 1995.

D. Picard, Chaperoning steroid hormone action, Trends Endocrinol Metab, vol.17, pp.229-235, 2006.

B. K. Zierer, Importance of cycle timing for the function of the molecular chaperone Hsp90, Nat Struct Mol Biol, vol.23, pp.1020-1028, 2016.

S. Baindur-hudson, A. L. Edkins, and G. L. Blatch, Hsp70/Hsp90 organising protein (hop): Beyond interactions with chaperones and prion proteins, Subcell Biochem, vol.78, pp.69-90, 2015.

B. D. Johnson, R. J. Schumacher, E. D. Ross, and D. O. Toft, Hop modulates Hsp70/ Hsp90 interactions in protein folding, J Biol Chem, vol.273, pp.3679-3686, 1998.

C. Prodromou, Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones, EMBO J, vol.18, pp.754-762, 1999.

K. Richter, P. Muschler, O. Hainzl, J. Reinstein, and J. Buchner, Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle, J Biol Chem, vol.278, pp.10328-10333, 2003.

S. Alvira, Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop, Nat Commun, vol.5, p.5484, 2014.

M. P. Hernández, W. P. Sullivan, and D. O. Toft, The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex, J Biol Chem, vol.277, pp.38294-38304, 2002.

E. Kirschke, D. Goswami, D. Southworth, P. R. Griffin, and D. A. Agard, Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles, Cell, vol.157, pp.1685-1697, 2014.

N. Morgner, Hsp70 forms antiparallel dimers stabilized by posttranslational modifications to position clients for transfer to Hsp90, Cell Rep, vol.11, pp.759-769, 2015.

A. Ahmad, Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface, Proc Natl Acad Sci, vol.108, pp.18966-18971, 2011.

C. S. Gassler, Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone, Proc Natl Acad Sci, vol.95, pp.15229-15234, 1998.

R. Kityk, J. Kopp, I. Sinning, and M. P. Mayer, Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones, Mol Cell, vol.48, pp.863-874, 2012.

R. Qi, Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP, Nat Struct Mol Biol, vol.20, pp.900-907, 2013.

W. Suh, Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ, Proc Natl Acad Sci, vol.95, pp.15223-15228, 1998.

P. Meyer, Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery, EMBO J, vol.23, pp.1402-1410, 2004.

K. A. Verba, Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase, Science, vol.352, pp.1542-1547, 2016.

A. D. Zuehlke, An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans, Nat Commun, vol.8, p.15328, 2017.

F. Sherman, Getting started with yeast, Methods Enzymol, vol.350, pp.3-41, 2002.

G. Flom, J. Weekes, J. J. Williams, and J. L. Johnson, Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae, Genetics, vol.172, pp.41-51, 2006.

J. L. Johnson, A. Halas, and G. Flom, Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1, Mol Cell Biol, vol.27, pp.768-776, 2007.

M. Reidy and D. C. Masison, Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104, Mol Cell Biol, vol.30, pp.3542-3552, 2010.

Y. Song and D. C. Masison, Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1), J Biol Chem, vol.280, pp.34178-34185, 2005.

M. Miot, Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation, Proc Natl Acad Sci, vol.108, pp.6915-6920, 2011.

M. Reidy, R. Sharma, B. L. Roberts, and D. C. Masison, Human J-protein DnaJB6b cures a subset of Saccharomyces cerevisiae prions and selectively blocks assembly of structurally related amyloids, J Biol Chem, vol.291, pp.4035-4047, 2016.

E. B. Bertelsen, L. Chang, J. E. Gestwicki, and E. Zuiderweg, Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate, Proc Natl Acad Sci, vol.106, pp.8471-8476, 2009.

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: A unified platform for automated protein structure and function prediction, Nat Protoc, vol.5, pp.725-738, 2010.

D. Kozakov, The ClusPro web server for protein-protein docking, Nat Protoc, vol.12, pp.255-278, 2017.

S. F. Harris, A. K. Shiau, and D. A. Agard, The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site, Structure, vol.12, pp.1087-1097, 2004.