Can the MIQ-RS questionnaire be used to estimate the performance of a MI-based BCI?

Sébastien Rimbert, Nathalie Gayraud, Maureen Clerc, Stéphanie Fleck, Laurent Bougrain

To cite this version:

Sébastien Rimbert, Nathalie Gayraud, Maureen Clerc, Stéphanie Fleck, Laurent Bougrain. Can the MIQ-RS questionnaire be used to estimate the performance of a MI-based BCI?. 2018 Seventh International BCI Meeting, May 2018, Pacific Grove, United States. hal-01889864
Can the MIQ-RS questionnaire be used to estimate the performance of a MI-based BCI?

S. Rimbert1,2, N. Gayraud3, M. Clerc3, S. Fleck4, L. Bougrain2,1

1INRIA, Villers-lès-Nancy, F-54600, France;
2Université de Lorraine, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54000, France.
3INRIA Sophia Antipolis-Méditerranée and Université Côte d’Azur, France.
4Université de Lorraine-PErSEUs EA 7312, Île du Saulcy Metz, F-57045, France.

*E-mail: sebastien.rimbert@inria.fr

Introduction:
Predicting a subject’s ability to use the interface with good accuracy is one of the major issues in the motor Brain-Computer interface (BCI) domain. A few recent studies show that subjective questionnaires could be used to predict the performance of motor imagery (MI) based BCI. Indeed, the Kinesthetic and Visual Imagery Questionnaire (KVIQ), could allow a better predictability of BCI-illiterate cases [1]. Another more recent questionnaire called the Motor Imagery Questionnaire Revised-Second Edition (MIQ-RS) is a suitable option for examining MI ability [2]. In 2016, Marchesotti et al. found that the representation of subjective behaviour, calculated using the MIQ-RS questionnaire, and the control of the BCI were intimately linked [3]. However, in these studies [1, 3], the performance of the classifier was calculated for a right-hand MI versus a left-hand MI task. In this abstract, we classify between resting state and imagined movement, which is a relevant classification task in BCI research [4]. The aim of this study is to answer the following question for a resting state versus MI classification task: can the MIQ-RS be used to estimate the performance of an MI-based BCI?

Material, Methods and Results:
36 right-handed healthy subjects (12 females; aged 31.3 years ± 14.4) were tested for their perception level of their visual and kinesthetic MI ability via the MIQ-RS questionnaire. EEG signals were recorded with a Biosemi Active Two 32-channel EEG system during a MI task (i.e. a single closing of the right hand) in one session of 40 trials. The EEG signal was bandpassed using a Butterworth filter between 8 and 30 Hz and segmented into 3.5 second trials. A Riemannian-based Tangent Space classification method [5] coupled with a Logistic Regression classifier was used to generate classification results in a 4-fold cross validation scheme. We computed the correlation between the classification results and both the kinesthetic (K) and the visual scores (V). The recovered Pearson correlation coefficient was equal to $\rho = 0.02$, (p-value = 0.87) in the first comparison, and $\rho = -0.12$ (p-value = 0.47) in the second. Moreover, we performed a Principal Component Analysis over the aforementioned three features (Figure 1A) whose analysis produced no indication of any correlation between them. Finally, we observed 3 different profiles according to users’ MIQ-RS values (identified K+ and/or V+ if their score is over 70%, K- and/or V- otherwise). We computed the average accuracy of each class (Figure 1B) and performed Welch’s t-test to verify the statistical significance of the differences between the average classification results. We obtained the following p-values: 0.118 between K+V+ and K-V-; 0.714 between K+V+ and K-V-; and 0.048 between K-V- and K-V+. Finally, we computed the Event-Related Spectral Perturbation (ERSP) between 5-30 Hz within each group using the EEGLab toolbox and we again compared the differences between groups. The obtained p-values were all superior to 0.01.
Discussion:
Our results revealed no correlation between the classification results and the MIQ-RS scores, contrary to those suggested by [1, 3]. While the classification results and ERSPs differ upon grouping the subjects according to their MIQ-RS profiles, we found no statistical significance (at p-value < 0.01).

Significance:
Our results demonstrate that the MIQ-RS questionnaire cannot be used to estimate the performance of a MI-BCI based on distinguishing between resting state and right-hand MI tasks.

References
Figure 1: (A) Principal Component Analysis performed over 36 right-handed healthy subjects for the classification accuracy, the kinesthetic subscale and the visual subscale. The explained variance ratio of each component is 41%, 34% and 25% (B) Kinesthetic scale, visual scale, accuracy and number of subjects according to MIQ-RS profile (K+V+ in red; K-V- in blue; K-V+ in green).