, With the notation of Theorem D.3, suppose in addition that dim M = 3 (and, therefore, ? is a surface). Then, up to composing with further blowings-up, we can suppose that the resolution of singularities ? = ?| References, Theorem D.5 (Hsiang-Pati coordinates)

A. Agrachev, A. Barilari, and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry. Monograph

J. Artes, F. Dumortier, and J. Llibre, Qualitative theory of planar differential systems, 2006.

D. Barilari, Y. Chitour, F. Jean, D. Prandi, and M. Sigalotti, On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01757343

P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry, vol.7, pp.279-342, 1972.

S. M. Bates and C. G. Moreira, De nouvelles perspectives sur le théorème de Morse-Sard, C. R. Acad. Sci. Paris Sér. I Math, vol.332, issue.1, pp.13-17, 2001.

A. Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian Geometry, Birkhäuser, pp.1-78, 1996.

A. Belotto-da-silva, E. Bierstone, V. Grandjean, and P. Milman, Resolution of singularities of the cotangent sheaf of a singular variety, Adv. Math, vol.307, pp.780-832, 2017.

A. Belotto-da-silva and L. Rifford, The sub-Riemannian Sard conjecture on Martinet surfaces, Duke Math. J, vol.167, issue.8, pp.1433-1471, 2018.

B. Briot, Recherches sur les propriétés des fonctions definies par des équations differentielles

E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. No, vol.67, pp.5-42, 1988.

E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math, vol.128, issue.2, pp.207-302, 1997.

J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol.36, issue.3

H. Federer, Geometric measure theory. Die Grundlehren des mathematischen Wissenschaften, Band, vol.153, 1969.

E. Hakavuori and E. Le-donne, Non-minimality of corners in subriemannian geometry, Invent. Math, vol.206, issue.3, pp.693-704, 2016.

R. Hartshorne, Algebraic geometry, 1977.

H. Hironaka, Introduction to real-analytic sets and real-analytic maps, 1973.

W. C. Hsiang and V. Pati, L 2-cohomology of normal algebraic surfaces, I. Invent. Math, vol.81, pp.395-412, 1985.

L. Hsu, Calculus of variations via Griffiths formalism, J. Diff. Geom, vol.36, issue.3, pp.551-591, 1991.

Y. and S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol.86, 2008.

E. Le-donne, G. P. Leonardi, R. Monti, and D. Vittone, Extremal curves in nilpotent Lie groups, Geom. Funct. Anal, vol.23, issue.4, pp.1371-1401, 2013.

E. Le-donne, G. P. Leonardi, R. Monti, and D. Vittone, Corners in non-equiregular subRiemannian manifolds, ESAIM Control Optim. Calc. Var, vol.21, issue.3, pp.625-634, 2015.

E. Le-donne, R. Montgomery, A. Ottazzi, P. Pansu, and D. Vittone, Sard property for the endpoint map on some Carnot groups, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.33, issue.6, pp.1639-1666, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01131591

G. P. Leonardi and R. Monti, End-point equations and regularity of sub-Riemannian geodesics, Geom. Funct. Anal, vol.18, issue.2, pp.552-582, 2008.

S. ?ojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci, 1965.

R. Montgomery, Abnormal minimizers, SIAM J. Control Optim, vol.32, issue.6, pp.1605-1620, 1994.

R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, vol.91, 2002.

R. Monti, Regularity results for sub-Riemannian geodesics, Calc. Var. Partial Differential Equations, vol.49, issue.1-2, pp.549-582, 2014.

R. Monti, The regularity problem for sub-Riemannian geodesics, Geometric control and sub-Riemannian geometry, vol.5, pp.313-332, 2014.

R. Monti, A. Pigati, and D. Vittone, Existence of tangent lines to Carnot-Carathéodory geodesics, Calc. Var. Partial Differential Equations, vol.57, issue.3, p.pp, 2018.

R. Monti, A. Pigati, and D. Vittone, On tangent cones to length minimizers in CarnotCarathéodory spaces, SIAM J. Control Optim, vol.56, issue.5, pp.3351-3369, 2018.

R. Narasimhan, Introduction to the theory of analytic spaces, Lect. Notes in Math, vol.25, 1966.

K. Nomizu and H. Ozeki, The existence of complete Riemannian metrics, Proc. Amer. Math. Soc, vol.12, pp.889-891, 1960.

W. Paw?ucki, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math, vol.32, pp.555-560, 1984.

L. Rifford, Sub-Riemannian Geometry and Optimal Transport, Springer Briefs in Mathematics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131787

L. Rifford, Singulières minimisantes en géométrie sous-Riemannienne, Exp. No. 1113, vol.2015, pp.277-301, 2016.

P. Speissegger, Quasianalytic Ilyashenko Algebras, Canad. J. Math, vol.70, pp.218-240, 2018.

H. J. Sussmann, A regularity theorem for minimizers of real-analytic subriemannian metrics, Proceedings of the IEEE conference on decision and control, pp.4801-4806, 2015.

A. Tognoli, Some results in the theory of real analytic spaces, Espaces Analytiques, pp.149-157, 1969.

K. Tan and X. Yang, Subriemannian geodesics of Carnot groups of step 3, ESAIM Control Optim. Calc. Var, vol.19, issue.1, pp.274-287, 2013.

D. Vittone, The regularity problem for sub-Riemannian geodesics. Geometric measure theory and real analysis, CRM Series, vol.17, pp.193-226, 2014.

C. T. Wall, Regular stratification, Lectures Notes in Math, vol.468, pp.332-344, 1975.

R. O. Wells, Differential analysis on complex manifolds, Graduate Texts in Mathematics, vol.65, 1980.

R. J. Wilson, Introduction to graph theory, 1996.

J. W?odarczyk, Resolution of singularities of analytic spaces, Proceedings of Gökova Geometry-Topology Conference, pp.31-63, 2008.

I. Zelenko and M. Zhitomirskii, Rigid paths of generic 2-distributions on 3-manifolds, Duke Math. J, vol.79, issue.2, pp.281-307, 1995.