Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR

Abstract : We present CROC (Coreference Resolution for Oral Corpus), the first machine learning system for coreference resolution in French. One specific aspect of the system is that it has been trained on data that come exclusively from transcribed speech, namely ANCOR (ANaphora and Corefer-ence in ORal corpus), the first large-scale French corpus with anaphorical relation annotations. In its current state, the CROC system requires pre-annotated mentions. We detail the features used for the learning algorithms , and we present a set of experiments with these features. The scores we obtain are close to those of state-of-the-art systems for written English.
Type de document :
Chapitre d'ouvrage
Computational Linguistics and Intelligent Text Processing., n° 9623-9624, 2018, Lecture Notes in Computer Science
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01889593
Contributeur : Jean-Yves Antoine <>
Soumis le : dimanche 7 octobre 2018 - 09:45:48
Dernière modification le : jeudi 7 février 2019 - 16:54:11
Document(s) archivé(s) le : mardi 8 janvier 2019 - 12:34:02

Fichier

18_Cicling.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01889593, version 1

Citation

Adèle Désoyer, Frédéric Landragin, Isabelle Tellier, Anaïs Lefeuvre-Halftermeyer, Jean-Yves Antoine, et al.. Coreference Resolution for French Oral Data: Machine Learning Experiments with ANCOR. Computational Linguistics and Intelligent Text Processing., n° 9623-9624, 2018, Lecture Notes in Computer Science. 〈hal-01889593〉

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

10