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Abstract. We focus in this paper on a multiscale modeling approach of the materials’ reversible 
behavior involving couplings of the chemo-magneto-thermo-mechanical type. It is shown that it is 
possible to take into account a large variety of these coupled environments by a unified approach 
using the springs of the scale change and the build of an appropriate Gibbs free energy function. 
The approach is well suited to situations where some fields can be considered homogeneous at a 
relevant scale and where free deformation can be defined.  

Introduction 

Our time is characterized by an increasingly intensive use of actuators in extremely large fields of 
applications, from the largest to the smallest scales. The miniaturization of these systems adds new 
design constraints and requires the development of materials with controlled properties and robust 
models. One of the solutions being considered is the use of material exhibiting at least one strong 
multiphysic coupling (one of the physic being mechanics). This includes magnetostrictive materials 
[1], classical (SMA) or magnetic shape memory alloys (MSMA) [2], piezoelectric materials, multi-
ferroic composite media, etc. One of the modeling challenges is to better describe the complex 
interactions observed experimentally (nonlinearity, non-monotony, irreversibly, dynamic and 
multiaxial effects etc ...), and to derive constitutive models with sufficient domains of validity for 
the considered applications. A multiscale model of a representative volume element (RVE) of such 
materials is proposed. It is relevant for multiaxial stress, thermal and magnetic loadings in a pseudo-
reversible framework (heat exchange can be considered for instance). The objective of the paper is 
to recall the main hypotheses and principles required to develop this modeling. The reader will be 
able to find some practical examples and applications of this modeling approach in the different 
references added all along the text.  

Gibbs free energy at the magnetic domain family scale  

In the following, g denotes a grain. It is supposed to be composed of several phases ! (typically 
austenite, martensite). ! denotes a variant meaning that a phase ! can develop different variants 
depending on its symmetry; !  denotes a magnetic domain family inside the variant  ! and 
represents the lower scale. The scale organization is illustrated in Fig. 1, from the RVE to the 
domain scale, and corresponds to scales where some physical fields can be considered as 
homogeneous leading to some simplifications in the energy description. Indeed the selection of a 
phase, a variant or a domain family is based on the principle of minimum energy. A first step 
consists to build an energy function at the domain scale where anisotropic crystallographic 
phenomena are significant and some fields can be simplified. 

 



 

 
 

Figure 1: Detail of scales involved in the modeling approach 
 

The first principle given at the local scale (J/m3) express that the total energy density composed 
of kinetic energy density and internal energy density can only change by the action of external work 
and heat power. The internal energy density at the domain scale is written as: !!. At constant 
velocity, kinetic energy is constant. There is a direct relationship between the variation of internal 
energy density and power sources: 

 
 !"! = !ℎ! + !!!!! + !!:!!! + !! .!!!     (1) 

 
This expression is composed of: 
- !ℎ!:  chemical energy variation= bound energy variation from one phase to another; 
- !!:!!!: mechanical energy variation (mechanical power), function of deformation variation 

!!! and local stress !!. 
- !!!!! = !!!: heat quantity variation (thermal power), function of entropy variation !!! 

(second law of thermodynamics) and local temperature !!; this expression applies in a 
reversible framework. 

- !! .!!!: magnetic energy variation (magnetic power), function of induction variation !!! 
and magnetic field !!. 

 
The introduction of free (Helmholtz) energy !! = !! − !!!! (Legendre transformation of heat 

quantity) allows the energy variation to be defined as function of temperature variation instead of 
entropy variation. The magnetic free enthalpy !! = !! − !! .!! (Legendre transformation of 
magnetic quantity) allows the energy variation to be defined as function of magnetic field variation 
instead of induction variation. The Gibbs free energy (or free enthalpy) !! = !! − !!: !! 
(Legendre transformation of mechanical quantity) allows finally the energy variation to be defined 
as function of stress variation instead of deformation variation. Variation of Gibbs free energy is 
given by: 

 !"! = !ℎ! − !!!!! − !!:!!! − !! .!!!     (2) 
 

Since a domain ! is a part of a variant inside a phase, variation of chemical energy is null 
leading to [3]: 

 !"! = −!!!!! − !!:!!! − !! .!!!      (3) 
 

Entropy density, strain and magnetic induction finally derive from the Gibbs free energy 
function following: 

!! = −  !"!
!!!

  !! = −  !"!
!!!

   !! = −  !"!
!!!

    (4) 
 

A second order Taylor expansion of entropy leads to derive the classical expression [4]: 
!! = !!! − !!!!! 1− !!!

!!
+ !" !!!

!!
      (5) 
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where !!! is the reference entropy at the reference temperature !!!, !! is the mass density and !!! the 
specific heat capacity. The chemical part of the Gibbs free energy is defined as: 
 

!!! = ℎ! − !!!! = ℎ! − !!!!! − !!!!! !! − !!! + !!!" !!!
!!

   (6) 
 

Small perturbation hypothesis allows the total deformation !! to be considered as a sum of different 
contributions, allowing some specific couplings between mechanics and another physic to be 
defined. In the case of the target materials, classical elastic !!!  and thermal !!!  deformation are 
considered first. Free deformation !!! associated with magnetostriction on the one hand and 
transformation deformation on the other hand is the third deformation source leading to: 
 

!! =  !!! + !!! + !!! = !!!!:!! + !!
! (!! − !!

!)1+ !!!    (7) 
 

!! is the 4th order local stiffness tensor, !! is the volumetric dilatation coefficient and 1 the second 
order identity tensor. At this step, it is interesting to observe that the free deformation can be 
considered as stress independent at the local scale, allowing a simple derivation of the mechanical 
part of Gibbs free energy. Complementary hypotheses can help to simplify the last term. 

 

!!! = − !
!!!:!!

!!:!! − !!
! (!! − !!

!)!"(!!)− !!!:!!!!!
!    (8) 

 

The magnetic induction is resulting from the local magnetic field and local magnetization of the 
material !! following:  

!! = !!(!! + !!)        (9) 
 

where !! is the vacuum magnetic permeability. The magnetic contribution to the internal energy 
variation can be expressed as: 

 

 !"! = !!!! .!!! + !!!! .!!!       (10) 
 

At the local scale (magnetic domain) the magnetization variations can be very high (much higher 
than magnetic field) so that the second term is often neglected [5] and the Helmholtz magnetic free 
energy is expressed as function of magnetization. A Taylor expansion is used (3rd order 
development), taking into account the fact that the magnetic behavior is an odd function. The 
Helmholtz magnetic free energy is consequently an even function of magnetization [3]. 

 

!!! =  !! .!!!.!! +!!!!:!!! : !!!! +!! .!!!!:!!! :!!!! .!!  (11) 
 

Using a second order !!!, 4th order !!!  and 6th order !!!  tensors as material dependent whose 
expressions are strongly correlated to material symmetries. The associated expression of Gibbs 
magnetic free energy (after Legendre transformation) is given by: 

 

!!! =  !! .!!!.!! +!!!!:!!! : !!!! +!! .!!!!:!!! :!!!! .!! − !!!! .!! 
 (12) 

The sum of !!!, !!! and !!! gives the total Gibbs free energy of medium that must be minimum with 
respect to temperature, stress and magnetic field at the equilibrium. 

Usual simplifications of Gibbs free energy  

At this step, it is interesting to observe that the magnetization at the domain scale has a constant 
norm equal to the saturation magnetization !! [6]. The magnetization vector can be defined using 
the direction cosines !!!  in the local frame (usually crystal frame) as:  

 

!! = !!!!! . !! = !!(!!!. !! + !!!. !! + !!!. !!)      (13) 
 

leading to the so-called dyadic expression of the second order orientation tensor !: 



 

!!!! = !!!
!!!!!! !!!!!! !!!!!!
!!!!!! !!!!!! !!!!!!
!!!!!! !!!!!! !!!!!!

= !!!!     (14) 

 

Using the cubic symmetry and the identity !!!!!! + !!!!!! + !!!!!! = 1, the magnetic part of Gibbs 
free energy simplifies into [3,6]: 
 

!!! =  !! + !!(!!!!!!!!!!!! + !!!!!!!!!!!! + !!!!!!!!!!!!)+ !!(!!!!!!!!!!!!!!!!!!)− !!!! .!! 
  (15) 

where !!, !! and !! are the so-called magnetocrystalline constants (defining the 
magnetocrystalline energy density) and the last term is usually called Zeemann energy density (if 
!! is considered homogeneous [6]). In case of uniaxial anisotropy of axis ! (so that !! .! =
!!!!!), a quadratic magnetocrystalline energy is usually enough to express the magnetic part of 
Gibbs free energy: 

 

!!! =  !!(1− !!!!!!)− !!!! .!!      (16) 
 

The magnetic part of Gibbs free energy is often used to express the magneto-elastic coupling 
energy term !!!" considered as linearly dependent to stress and as a quadratic function of 
magnetization, without excluding some complementary higher order terms [3]. 
 

!!!" = −!!!!:!!: !! = − !!!:!!!!!
! = −!!!:!!    (17) 

 

!! is the piezomagnetic 4th order tensor defined by 3 constants in the cubic crystallographic 
framework. Looking at equation (8), it is possible to identify !!!!:!! as the so-called 
magnetostriction 2nd order tensor !!! reducing to 2 independent constants in case of incompressible 
deformation [6,7]: 
 

!!! = !
!

!!""(!!!!!! − !
!) !!!!!!!!!! !!!!!!!!!!

!!!!!!!!!! !!""(!!!!!! − !
!) !!!!!!!!!!

!!!!!!!!!! !!!!!!!!!! !!""(!!!!!! − !
!)

   (18) 

 

where !!"" and !!!! are the magnetostriction constants that correspond to the deformation of a 
perfect single crystal along <100> and <111> axis respectively at the magnetic saturation. 

 
Simplifications can concern the loading itself and some homogeneity hypotheses that can be 
applied: 

- homogeneous stress at the grain scale: !! = !! = !! 
- homogeneous temperature over the volume: !! = !! = !! = ! 
- homogeneous magnetic field at the grain scale: !! = !! = !! 

Only stress and magnetic field have usually to be localized (to be defined as function of loading at 
the upper scale). 

Constitutive law, localization and homogenization procedures 

Gibbs energy is defined at the domain scale, inside a variant, inside a phase, inside a grain, inside 
the representative volume element. A stochastic approach is relevant for a description “at 
equilibrium”. The internal variables of the problem are the volume fraction of domain families 
denoted as !! and the orientation of the magnetization inside each domain family (giving the 
direction cosines !!! ). The total number of internal variables strongly depends on the number of 
phases (n), variants (m) and number of domain families (p) inside each variant. Following [8] we 
use a probabilistic Boltzmann like function to calculate the volume fraction and implement an 



 

energy minimization for the determination of the magnetization direction. Equation (19) gives the 
simplest expression of volume fraction !!  ,  where !! is an adjusting parameter. 
 

!! = !"#(!!!!!)
!"#(!!!!!)!!!

        (19) 
 

This equation is complemented by the minimization operation reported in equation (20).  
 

!!! = !"#(!!)         (20) 
 

This formulation is well suited for a single variant and monophasic ferromagnetic material [8-13] 
(ferromagnetic ferrite or austenite). A more complex formulation has been proposed recently. The 
new volume fraction is using up to three different parameters (!!,!!,!!) driving three different 
kinetics (domain, variant and phase kinetics). 
 

!! =
!"#(!!!!!)!!
!!"(!!!!!)!!!

 !"#(!!!!!)!
!"#(!!!!!)!!

 !"#(!!!!!)
!"#(!!!!!)!

    (21) 
 

Moreover the volume fraction of a variant ! and a phase ! are simply given by:  
 

!! = !!! = !"#(!!!!!)!!
!"#(!!!!!)!!!

 !"#(!!!!!)!
!"#(!!!!!)!!

     (22) 
 

and 
 

!! = !!! = !"#(!!!!!)!!
!"#(!!!!!)!!!

        (23) 
 

It can be noticed that, for (!! = !! = !!), equation (19) is recovered. 
 
Different materials can be considered: ferromagnetic materials without phase transformation 
(electric steels, iron, nickel – equation (19)), paramagnetic materials with phase transformation and 
a single variant (austenite/ferrite allotropic transformation – equation (23) [14]), or with multiple 
variants (SMA – equation (22) [15]), ferromagnetic materials with phase transformation and 
multivariants (MSMA – equation (21) [16]), or magneto-caloric materials where the phase 
transformation temperature coincides with the Curie temperature (equation (21) [17]). 
 
Some localization rules are required to define the stress and magnetic fields at the grain scale (they 
are supposed homogeneous over the variants and magnetic domains) [8]. An Eshelby approach is 
applied for the determination of both fields. The stress at the grain scale !! is function of the 
macroscopic stress !, a stress concentration tensor !!, an accommodation stiffness tensor !!!"" and 
the contrast between macroscopic !! and microscopic !!! free strain tensor: 
 

!! = !!: ! + !!!"": (!! − !!!)        (24) 
 

This relation is complemented by classical averaging operations: 
 

! =< !! >  !! =<! !!: !!! >      (25) 
 

The magnetic field at the grain scale !! is function of the macroscopic magnetic field !, an average 
secant susceptibility ! = !/!  and the contrast between macroscopic to microscopic 
magnetization: 
 

!!  = ! + !
!!!! (! −!!)       (26) 

 

This relation is complemented by classical averaging operations: 
 

! =< !! >  ! =< !! >      (27) 



 

Conclusion 

The principles of multiscale modeling with thermodynamic foundations were presented. The 
stochastic constitutive law is well adapted to the existence of fine microstructures for which it is 
possible to consider some fields as homogeneous. It is very well adapted to the description of many 
couplings involving a mechanical free deformation. The localization procedures from the RVE to 
the grain scale makes it possible to better account for demagnetizing fields and residual stresses 
effects [13]. Such a modeling requires physical parameters usually coming from literature and 
adjusting parameters identified using a differential scanning calorimetry measurement for the phase 
kinetic [16], a mechanical measurement for variant kinetic [15], and an anhysteretic magnetic 
measurement for the magnetic domain kinetic [8]. Validation is usually obtained from coupled 
experiments (involving the concomitant variation of several fields). 
This approach must usually be complemented by a numerical modeling, leading a minima to the 
resolution of the heat equation [18]. Indeed chemical enthalpy variation acts as a heat source in the 
heat equation, making each phase transformation problem a strongly coupled themomechanical 
situation. Another important issue is the introduction of irreversible phenomena associated with 
germination and friction effects. 
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