
HAL Id: hal-01889224
https://hal.science/hal-01889224

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependences in Strategy Logic
Patrick Gardy, Patricia Bouyer, Nicolas Markey

To cite this version:
Patrick Gardy, Patricia Bouyer, Nicolas Markey. Dependences in Strategy Logic. STACS 2018
- Symposium on Theoretical Aspects of Computer Science, Feb 2018, Caen, France. pp.35 - 36,
�10.4230/LIPIcs.STACS.2018.34�. �hal-01889224�

https://hal.science/hal-01889224
https://hal.archives-ouvertes.fr

Dependences in Strategy Logic∗

Patrick Gardy1, Patricia Bouyer1, and Nicolas Markey1,2

1 LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay (France)
2 Univ. Rennes, CNRS, Inria, IRISA (France)

Abstract
Strategy Logic (SL) is a very expressive temporal logic for specifying and verifying properties of
multi-agent systems: in SL, one can quantify over strategies, assign them to agents, and express
LTL properties of the resulting plays. Such a powerful framework has two drawbacks: first, model
checking SL has non-elementary complexity; second, the exact semantics of SL is rather intricate,
and may not correspond to what is expected. In this paper, we focus on strategy dependences in SL,
by tracking how existentially-quantified strategies in a formula may (or may not) depend on other
strategies selected in the formula, revisiting the approach of [Mogavero et al., Reasoning about
strategies: On the model-checking problem, 2014]. We explain why elementary dependences, as
defined by Mogavero et al., do not exactly capture the intended concept of behavioral strategies.
We address this discrepancy by introducing timeline dependences, and exhibit a large fragment
of SL for which model checking can be performed in 2 -EXPTIME under this new semantics.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical Logic

Keywords and phrases strategic reasoning; strategy logic; dependences; behavioural strategies.

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.34

1 Introduction

Temporal logics. Since Pnueli’s seminal paper [24] in 1977, temporal logics have been
widely used in theoretical computer science, especially by the formal-verification community.
Temporal logics provide powerful languages for expressing properties of reactive systems,
and enjoy efficient algorithms for satisfiability and model checking [9]. Since the early 2000s,
new temporal logics have appeared to address open and multi-agent systems. While classical
temporal logics (e.g. CTL [8, 25] and LTL [24]) could only deal with one or all the behaviours
of the whole system, ATL [2] expresses properties of (executions generated by) behaviours
of individual components of the system. ATL has been extensively studied since then, both
about its expressiveness and about its verification algorithms [2, 13, 16].

Strategic interactions in ATL. Strategies in ATL are handled in a very limited way, and
there are no real strategic interactions in that logic (which, in return, enjoys a polynomial-time
model-checking algorithm). Over the last 10 years, various extensions have been defined
and studied in order to allow for more interactions [1, 7, 6, 18, 26]. Strategy Logic (SL for
short) [7, 18] is such a powerful approach, in which strategies are first-class objects; formulas
can quantify (universally and existentially) over strategies, store those strategies in variables,
assign them to players, and express properties of the resulting plays. As a simple example,
the existence of a winning strategy for Player A (with objective ϕA) against any strategy of

∗ Supported by ERC project EQualIS (308087).

© Patrick Gardy, Patricia Bouyer, Nicolas Markey;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Dependences in Strategy Logic

Player B would be written as ∃σA. ∀σB . assign(A 7→ σA;B 7→ σB). ϕA. This makes the logic
both expressive and easy to use (at first sight), at the expense of a very high complexity:
SL model checking has non-elementary complexity, and satisfiability is undecidable [18, 15].

Understanding SL. Since it enjoys decidable model checking and high expressiveness,
SL is the logic of choice for showing that some game problems are decidable (e.g. rational
synthesis [12, 14, 10] or assume-admissible synthesis [5]). For instance, the existence of
an admissible strategy for player A (i.e., a strategy that is strictly dominated by no other
strategies [5]) is expressed as

∃σA. ∀σ′A.

[
∨
∃σB . (assign(A 7→ σA, B 7→ σB).ϕA ∧ assign(A 7→ σ′A, B 7→ σB).¬ϕA)

∀σ′B . (assign(A 7→ σA, B 7→ σ′B).ϕA ∨ assign(A 7→ σ′A, B 7→ σ′B).¬ϕA)

]
However, it has been noticed in recent works that the nice expressiveness of SL comes

with unexpected phenomena. One such phenomenon is induced by the separation of strategy
quantification and strategy assignment: are the events between strategy quantifications and
strategy assignments part of the memory of the strategy? While both options may make
sense depending on the applications, only one of them makes model checking decidable [4].

A second phenomenon—which is the main focus of the present paper—concerns strategy
dependences [18]: in a formula such as ∀σA. ∃σB . ξ, the existentially-quantified strategy σB
may depend on the whole strategy σA; in other terms, the action returned by strategy σB after
some finite history ρ may depend on what strategy σA would play on any other history ρ′.
Again, in some contexts, it may be desirable that the value of strategy σB after history ρ can
be computed based solely on what has been observed along ρ (see Fig. 2 for an illustration).
This approach was initiated in [18, 21], conjecturing that large fragments of SL (subsum-
ing ATL *) would have 2 -EXPTIME model-checking algorithms with such limited dependences.

Our contributions. We follow this line of work by performing a more thorough exploration
of strategy dependences in (a fragment of) SL. We mainly follow the framework of [21], based
on a kind of Skolemization of the formula: for instance, a formula of the form (∀xi∃yi)i. ξ is
satisfied if there exists a dependence map θ defining each existentially-quantified strategy yj
based on the universally-quantified strategies (xi)i. In order to recover the classical semantics
of SL, it is only required that the strategy θ((xi)i)(yj) (i.e. the strategy assigned to the
existentially-quantified variable yj by θ((xi)i)) only depends on (xi)i<j .

Based on this definition, other constraints can be imposed on dependence maps, in order
to refine the dependences of existentially-quantified strategies on universally-quantified ones.
Elementary dependences [21] only allows existentially-quantified strategy yj to depend on
the values of (xi)i<j along the current history. This gives rise to two different semantics in
general, but fragments of SL have been defined (SL[1G] in [17], SL[CG] and SL[DG] in [20])
on which the classic and elementary semantics would coincide.

The coincidence actually only holds for SL[1G]. As we explain in this paper, elementary
dependences as defined and used in [17, 20] do not exactly capture the intuition that
strategies should depend on the “behavior [of universal strategies] on the history of interest
only” [20]: indeed, they only allow dependences on universally-quantified strategies that
appear earlier in the formula, while we claim that the behaviour of all universally-quantified
strategies should be considered. We address this discrepancy by introducing another kind of
dependences, which we call timeline dependences, and which extend elementary dependences
by allowing existentially-quantified strategies to additionally depend on all universally-
quantified strategies along strict prefixes of the current history (as illustrated on Fig. 4).

P. Gardy, P. Bouyer, N. Markey 34:3

We study and compare those three dependences (classic, elementary and timeline),
showing that they correspond to three distinct semantics. Because the semantics based on
dependence maps is defined in terms of the existence of a witness map, we show that the
syntactic negation of a formula may not correspond to its semantic negation: there are cases
where both a formula ϕ and its syntactic negation ¬ϕ fail to hold (i.e., none of them has a
witness map). This phenomenon is already present, but had not been formally identified,
in [18, 21]. The main contribution of the present paper is the definition of a large (and, in a
sense, maximal) fragment of SL for which syntactic and semantic negations coincide under
the timeline semantics. As an (important) side result, we show that model checking this
fragment under the timeline semantics is 2 -EXPTIME-complete.

2 Definitions

2.1 Concurrent game structures
Let AP be a set of atomic propositions, V be a set of variables, and Agt be a set of agents. A
concurrent game structure is a tuple G = (Act,Q,∆, lab) where Act is a finite set of actions,
Q is a finite set of states, ∆: Q× ActAgt → Q is the transition function, and lab : Q→ 2AP

is a labelling function. An element of ActAgt will be called a move vector. For any q ∈ Q,
we let succ(q) be the set {q′ ∈ Q | ∃m ∈ ActAgt. q′ = ∆(q,m)}. For the sake of simplicity,
we assume in the sequel that succ(q) 6= ∅ for any q ∈ Q. A game G is said turn-based
whenever for every state q ∈ Q, there is a player own(()q) ∈ Agt (named the owner of q)
such that for any two move vectors m1 and m2 with m1(own(()q)) = m2(own(()q)), it holds
∆(q,m1) = ∆(q,m2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (qi)i∈N of states in Q
such that q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG(q) for the set of plays in G
from q. In this and all similar notations, we might omit to mention G when it is clear from
the context, and q when we consider the union over all q ∈ Q. A (strict) prefix of a play π is a
finite sequence ρ = (qi)0≤i≤L, for some L ∈ N. We write Pref(π) for the set of strict prefixes
of play π. Such finite prefixes are called histories, and we let HistG(q) = Pref(PlayG(q)).
We extend the notion of strict prefixes and the notation Pref to histories in the natural way,
requiring in particular that ρ /∈ Pref(ρ). A (finite) extension of a history ρ is any history ρ′
such that ρ ∈ Pref(ρ′). Let ρ = (qi)i≤L be a history. We define first(ρ) = q0 and last(ρ) = qL.
Let ρ′ = (q′j)j≤L′ be a history from last(ρ). The concatenation of ρ and ρ′ is then defined
as the path ρ · ρ′ = (q′′k)k≤L+L′ such that q′′k = qk when k ≤ L and q′′k = q′k−L when L ≥ k

(notice that we required q′0 = qL).
A strategy from q is a mapping δ : HistG(q) → Act. We write StratG(q) for the set of

strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the translation δ−→ρ
of δ by ρ is the strategy δ−→ρ from last(ρ) defined by δ−→ρ (ρ′) = δ(ρ ·ρ′) for any ρ′ ∈ Hist(last(ρ)).
A valuation from q is a partial function χ : V ∪ Agt ⇀ Strat(q). As usual, for any partial
function f , we write dom(f) for the domain of f .

Let q ∈ Q and χ be a valuation from q. If Agt ⊆ dom(χ), then χ induces a unique
play from q, called its outcome, and defined as out(q, χ) = (qi)i∈N such that q0 = q and for
every i ∈ N, we have qi+1 = ∆(qi,mi) with mi(A) = χ(A)((qj)j≤i) for every A ∈ Agt.

2.2 Strategy Logic with boolean goals
Strategy Logic (SL for short) was introduced in [7], and further extended and studied
in [22, 18], as a rich logical formalism for expressing properties of games. SL manipulates

STACS 2018

34:4 Dependences in Strategy Logic

strategies as first-order elements, assigns them to players, and expresses LTL properties
on the outcomes of the resulting strategic interactions. This results in a very expressive
temporal logic, for which satisfiability is undecidable [22, 19] and model checking is TOWER-
complete [18, 3]. In this paper, we focus on a restricted fragment of SL, called SL[BG][
(where BG stands for boolean goals [18], and the symbol [indicates that we do not allow
nesting of (closed) subformulas; we discuss this latter restriction below).

Syntax. Formulas in SL[BG][are built along the following grammar

SL[BG][3 ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ ξ | ξ ∨ ξ | β
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | p

where x ranges over V , σ ranges over the set VAgt of full assignments, and p ranges over AP.
A goal is a formula of the form β in the grammar above; it expresses an LTL property ψ on the
outcome of the mapping σ. Formulas in SL[BG][are thus made of an initial block of first-order
quantifiers (selecting strategies for variables in V), followed by a boolean combination of goals.

Free variables. With any subformula ζ of some formula ϕ ∈ SL[BG][, we associate its set
of free agents and variables, which we write free(ζ). It contains the agents and variables that
have to be associated with a strategy in order to unequivocally evaluate ζ (as will be seen
from the definition of the semantics of SL[BG][below). The set free(ζ) is defined inductively:

free(p) = ∅ for all p ∈ AP free(Xψ) = Agt ∪ free(ψ)
free(¬α) = free(α) free(ψ1 Uψ2) = Agt ∪ free(ψ1) ∪ free(ψ2)

free(α1 ∨ α2) = free(α1) ∪ free(α2) free(∃x. ϕ) = free(ϕ) \ {x}
free(α1 ∧ α2) = free(α1) ∪ free(α2) free(∀x. ϕ) = free(ϕ) \ {x}

free(assign(σ). ϕ) = (free(ϕ) ∪ σ(Agt ∩ free(ϕ))) \ Agt

Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment on our choice
of considering the flat fragment of SL[BG]: the full fragment, as defined in [18], allows for
nesting closed SL[BG] formulas in place of atomic propositions. The meaning of such nesting
in our setting is ambiguous, because our semantics (in Sections 3 to 5) are defined in terms of
the existence of a witness, which does not easily propagate in formulas. In particular, as we
explain later in the paper, the semantics of the negation of a formula (there is a witness
for ¬ϕ) does not coincide with the negation of the semantics (there is no witness for ϕ); thus
substituting a subformula and substituting its negation may return different results.

Semantics. Fix a state q ∈ Q, and a valuation χ : V∪Agt→ Strat(q). We inductively define
the semantics of a subformula α of a formula of SL[BG][at q under valuation χ, requiring
free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and atomic propositions.

Given a mapping σ : Agt→ V , the semantics of strategy assignments is defined as follows:

G, q |=χ assign(σ). ψ ⇔ G, q |=χ[A∈Agt7→χ(σ(A))] ψ.

Notice that, writing χ′ = χ[A ∈ Agt 7→ χ(σ(A))], we have free(ψ) ⊆ dom(χ′) if free(α) ⊆
dom(χ), so that our inductive definition is sound.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt ⊆ free(ψ) ⊆
dom(χ), the valuation χ induces a unique outcome out(q, χ) = (qi)i∈N from q. For n ∈ N,
we write outn(q, χ) = (qi)i≤n, and define χ−→n as the valuation obtained by shifting all

P. Gardy, P. Bouyer, N. Markey 34:5

q0

q1

q2

p1

p2

ϕ = ∀y.∃z.∀xA.∀xB .
∨{

assign(7→ xA; 7→ y; 7→ z). F p1

assign(7→ xB ; 7→ y; 7→ z). F p2

Figure 1 A game and a SL[BG] formula.

the strategies in the image of χ by outn(q, χ). Under the same conditions, we also define
q−→n = last(outn(q, χ)). We then set

G, q |=χ Xψ1 ⇔ G, q−→1 |=χ−→1
ψ1

G, q |=χ ψ1 Uψ2 ⇔ ∃k ∈ N. G, q−→
k
|=χ−→

k
ψ2 and ∀0 ≤ j < k. G, q−→

j
|=χ−→

j
ψ1.

In the sequel, we use classical shorthands, such as > for p ∨ ¬p (for any p ∈ AP), Fψ for
>Uψ (eventually ψ), and Gψ for ¬F¬ψ (always ψ). It remains to define the semantics of
the strategy quantifiers. This is actually what this paper is all about. We provide here the
original semantics, and discuss alternatives in the following sections:

G, q |=χ ∃x.ϕ ⇔ ∃δ ∈ Strat(q). G, q |=χ[x 7→δ] ϕ.

I Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name the
players after the shape of the state they control. The SL[BG] formula ϕ to the right of Fig. 1
has four quantified variables and two goals. We show that this formula evaluates to true
at q0: fix a strategy δy (to be played by player); because G is turn-based, we identify the
actions of the owner of a state with the resulting target state, so that δy(q0q1) will be either p1
or p2. We then define strategy δz (to be played by) as δz(q0q2) = δy(q0q1). Then clearly,
for any strategy assigned to player , one of the goals of formula ϕ holds true, so that ϕ
itself evaluates to true.

Subclasses of SL[BG]. Because of the high complexity and subtlety of reasoning with SL
and SL[BG], several restrictions of SL[BG] have been considered in the literature [17, 20, 21],
by adding further restrictions to boolean combinations in the grammar defining the syntax:

SL[1G] restricts SL[BG] to a unique goal. SL[1G][is then defined from the grammar of
SL[BG][by setting ξ ::= β in the grammar;
the larger fragment SL[CG] allows for conjunctions of goals. SL[CG][corresponds to
formulas defined with ξ ::= ξ ∧ ξ | β;
similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | β;
finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in SL[AG][
can be combined using the following grammar: ξ ::= β ∧ ξ | β ∨ ξ | β.

In the sequel, we write a generic SL[BG][formula ϕ as (Qixi)1≤i≤l. ξ(βj . ψj)j≤n where:
(Qixi)i≤l is a block of quantifications, with {xi | 1 ≤ i ≤ l} ⊆ V and Qi ∈ {∃,∀}, for
every 1 ≤ i ≤ l;
ξ(g1, ..., gn) is a boolean combination of its arguments;
for all 1 ≤ j ≤ n, βj . ψj is a goal: βj is a full assignment and ψj is an LTL formula.

3 Strategy dependences

We now follow the framework of [18, 21] and define the semantics of SL[BG][in terms of
dependence maps. This approach provides a fine way of controlling how existentially-quantified

STACS 2018

34:6 Dependences in Strategy Logic

strategies depend on other strategies (in a quantifier block). Using dependence maps, we can
limit such dependences.

Dependence maps. Consider an SL[BG][formula ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n, assuming
w.l.o.g. that {xi | 1 ≤ i ≤ l} = V. We let V∀ = {xi | Qi = ∀} ⊆ V be the set of
universally-quantified variables of ϕ. A function θ : StratV

∀
→ StratV is a ϕ-map (or map

when ϕ is clear from the context) if θ(w)(xi)(ρ) = w(xi)(ρ) for any w ∈ StratV
∀
, any xi ∈ V∀,

and any history ρ. In other words, θ(w) extends w to V. This general notion allows any
existentially-quantified variable to depend on all universally-quantified ones (dependence on
existentially-quantified variables is implicit: all existentially-quantified variables are assigned
through a single map, hence they all depend on the others); we add further restrictions
later on. Using maps, we may then define new semantics for SL[BG][: generally speaking,
formula ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n holds true if there exists a ϕ-map θ such that, for any
w : V∀ → Strat, the valuation θ(w) makes ξ(βj . ϕj)j≤n hold true.

Classic maps are dependence maps in which the order of quantification is respected:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀.(

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj)
)
⇒
(
θ(w1)(xi) = θ(w2)(xi)

)
. (C)

In words, if w1 and w2 coincide on V∀ ∩ {xj | j < i}, then θ(w1) and θ(w2) coincide on xi.
Elementary maps [18, 17] have to satisfy a more restrictive condition: for those maps,

the value of an existentially-quantified strategy at any history ρ may only depend on the
value of earlier universally-quantified strategies along ρ. This may be written as:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ′) = w2(xj)(ρ′)
)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (E)

In this case, for any history ρ, if two valuations w1 and w2 of the universally-quantified
variables coincide on the variables quantified before xi all along ρ, then θ(w1)(xi) and
θ(w2)(xi) have to coincide at ρ.

The difference between both kinds of dependences is illustrated on Fig. 2: for classic
maps, the existentially-quantified strategy x2 may depend on the whole strategy x1, while it
may only depend on the value of x1 along the current history for elementary maps. Notice
that a map satisfying (E) also satisfies (C).

Satisfaction relations. Pick a formula ϕ = (Qixi)1≤i≤l. ξ
(
βj . ϕj

)
j≤n in SL[BG][. We define:

G, q |=C ϕ iff ∃θ satisfying (C). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3

Figure 2 Classical (left) vs elementary (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

P. Gardy, P. Bouyer, N. Markey 34:7

q0

A

p1 p2

B

p1 p2

ϕ = ∀x.∃y.
∧{

assign(7→ y). FB

assign(7→ x). F p1 ⇔ assign(7→ y). F p1

Figure 3 A game G and an SL[BG][formula ϕ such that G, q0 6|=E ϕ and G, q0 6|=E ¬ϕ.

As explained above, this actually corresponds to the usual semantics of SL[BG][as given in
Section 2 [18, Theorem 4.6]. When G, q |=C ϕ, a map θ satisfying the conditions above is
called a C-witness of ϕ for G and q. Similarly, we define the elementary semantics [18] as:

G, q |=E ϕ iff ∃θ satisfying (E). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

Again, when such a map exists, it is called an E-witness. Notice that since Property (E)
implies Property (C), we have G, q |=E ϕ⇒ G, q |=C ϕ for any ϕ ∈ SL[BG][. This corresponds
to the intuition that it is harder to satisfy a SL[BG][formula when dependences are more
restricted. The contrapositive statement then raises questions about the negation of formulas.

The syntactic vs. semantic negations. If ϕ = (Qixi)1≤i≤lξ(βjϕj)j≤n is an SL[BG][formula,
its syntactic negation ¬ϕ is the formula (Qixi)i≤l(¬ξ)(βjϕj)j≤n, where Qi = ∃ if Qi = ∀
and Qi = ∀ if Qi = ∃. Looking at the definitions of |=C and |=E , it could be the case
that e.g. G, q |=C ϕ and G, q |=C ¬ϕ: this only requires the existence of two adequate
maps. However, since |=C and |= coincide, and since G, q |= ϕ ⇔ G, q 6|= ¬ϕ in the usual
semantics, we get G, q |=C ϕ⇔ G, q 6|=C ¬ϕ. Also, since G, q |=E ϕ⇒ G, q |=C ϕ, we also get
G, q |=E ϕ⇒ G, q 6|=E ¬ϕ. As we now show, the converse implication holds for SL[1G][, but
may fail to hold for SL[BG][.

I Proposition 1. There exist a (one-player) game G with initial state q0 and a formula
ϕ ∈ SL[BG][such that G, q0 6|=E ϕ and G, q0 6|=E ¬ϕ.

Proof. Consider the formula and the one-player game of Fig. 3. We start by proving that
G, q0 6|=E ϕ. For a contradiction, assume that a witness map θ satisfying (E) exists, and
pick any valuation w for the universal variable x. First, for the first goal in the conjunction
to be fulfilled, the strategy assigned to y must play to B from q0. We abbreviate this as
θ(w)(y)(q0) = B in the sequel. Now, consider two valuations w1 and w2 such that w1(x)(q0) =
w2(x)(q0) = A and w1(x)(q0 · B) = w2(x)(q0 · B), but such that w1(x)(q0 · A) = p1 and
w2(x)(q0·A) = p2. In order to fulfill the second goal under both valuations w1 and w2, we must
have θ(w1)(y)(q0 ·B) = p1 and θ(w2)(y)(q0 ·B) = p2. But this violates Property (E): since
w1(x) and w2(x) coincide on q0 and on q0 ·B, we must have θ(w1)(y)(q0 ·B) = θ(w2)(y)(q0 ·B).

We now prove that G, q0 6|=E ¬ϕ. Indeed, following the previous discussion, we easily
get that G, q0 |=C ϕ, by letting θ(w)(y)(q0) = B and θ(w)(y)(q0 · B) = w(x)(q0 · A) if
w(x)(q0) = A, and θ(w)(y)(q0 ·B) = w(x)(q0 ·B) if w(x)(q0) = B. As explained above, this
entails G, q0 6|=C ¬ϕ, and G, q0 6|=E ¬ϕ. J

I Proposition 2. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds
G, q0 |=E ϕ⇔ G, q0 6|=E ¬ϕ.

Sketch of proof. This result follows from [18, Corollary 4.21], which states that |=C and
|=E coincide on SL[1G]. Because it is central in our approach, we sketch a direct proof here

STACS 2018

34:8 Dependences in Strategy Logic

using similar ingredients: it consists in encoding the problem whether G, q0 |=E ϕ into a
two-player turn-based game with a parity-winning objective.

The construction is as follows: the interaction between existential and universal quantific-
ations of the formula is integrated into the game structure, replacing each state of G with a
tree-shaped subgame where Player P∃ selects existentially-quantified actions and Player P∀
selects universally-quantified ones. The unique goal of the formula is then incorporated
into the game via a deterministic parity automaton, yielding a two-player turn-based parity
game. We then show that G, q0 |=E ϕ if, and only if, Player P∃ has a winning strategy in
the resulting turn-based parity game, while G, q0 |=E ¬ϕ if, and only if, Player P∀ has a
winning strategy. Those equivalences hold for the elementary semantics because memoryless
strategies are sufficient in parity games. Proposition 2 then follows by determinacy of those
games [11, 23]. J

Note that the construction of the parity game gives an effective algorithm for the model-
checking problem of SL[1G][, which runs in time doubly-exponential in the size of the formula,
and polynomial in the size of the game structure; we recover the result of [18] for that problem.

Comparison of |=C and |=E. A consequence of Prop. 2 is that |=C and |=E coincide
on SL[1G][(Corollary 4.21 of [18]). However, when considering larger fragments, the satis-
faction relations are distinct (see the proof of Prop. 1 for a candidate formula in SL[CG][):

I Proposition 3. The relations |=C and |=E differ on SL[CG][, as well as on SL[DG][.

I Remark. Proposition 3 contradicts the claim in [20] that |=E and |=C coincide on SL[CG]
(and SL[DG]). Indeed, in [20], the satisfaction relation for SL[DG] and SL[CG] is encoded into
a two-player game in pretty much the same way as we did in the proof of Prop. 2. While this
indeed rules out dependences outside the current history, it also gives information to Player P∃
about the values (over prefixes of the current history) of strategies that are universally-
quantified later in the quantification block. This proof technique works with SL[1G][because
the single goal can be encoded as a parity objective, for which memoryless strategies exist,
so that the extra information is not crucial. In the next section, we investigate the role of
this extra information for larger fragments of SL[BG][.

4 Timeline dependences

Following the discussion above, we introduce a new type of dependences between strategies
(which we call timeline dependences). They allow strategies to also observe (and depend on) all
other universally-quantified strategies on the strict prefix of the current history. For instance,
for a block of quantifiers ∀x1. ∃x2. ∀x3, the value of x2 after history ρ may depend on the value
of x1 on ρ and its prefixes (as for elementary maps), but also on the value of x3 on the (strict)
prefixes of ρ. Such dependences are depicted on Fig. 4. We believe that such dependences
are relevant in many situations, especially for reactive synthesis, since in this framework
strategies really base their decisions on what they could observe along the current history.

Formally, a map θ is a timeline map if it satisfies the following condition:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ) = w2(xj)(ρ)
∧ ∀xj ∈ V∀. ∀ρ′ ∈ Pref(ρ). w1(xj)(ρ) = w2(xj)(ρ)

)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (T)

P. Gardy, P. Bouyer, N. Markey 34:9

∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3∀x3

Figure 4 Elementary (left) vs timeline (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

q0

a

b

p1

p2

Figure 5 |=E and |=T differ on SL[CG][

q0

a

b

p1

p2

Figure 6 |=E and |=T differ on SL[DG][

Using those maps, we introduce the timeline semantics of SL[BG][:

G, q |=T ϕ iff ∃θ satisfying (T). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βjϕj

)
j≤n

Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section, it is
easily seen that Property (E) implies Property (T), so that an E-witness is also a T-witness,
and G, q |=E ϕ⇒ G, q |=T ϕ for any formula ϕ ∈ SL[BG][.

I Example 2. Consider again the game of Fig 1 in Section 2. We have seen that G, q0 |=C ϕ

in Section 2, and that G, q0 6|=E ϕ in the proof of Prop. 3. With timeline dependences, we
have G, q0 |=T ϕ. Indeed, now θ(w)(z)(q0 · q2) may depend on w(xA)(q0) and w(xB)(q0):
we could then have e.g. θ(w)(z)(q0 · q2) = p1 when w(xA)(q0) = q2, and θ(w)(z)(q0 · q2) = p2
when w(xA)(q0) = q1. It is easily checked that this map is a T -witness of ϕ for q0.

Comparison of |=E and |=T . As explained at the end of Section 3, the proof of Prop. 2
actually shows the following result:

I Proposition 4. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds
G, q0 |=E ϕ⇔ G, q0 |=T ϕ.

We now prove that this does not extend to SL[CG][and SL[DG][:

I Proposition 5. The relations |=E and |=T differ on SL[CG][, as well as on SL[DG][.

Proof. For SL[CG][, we consider the game structure of Fig. 5, and formula

ϕC = ∃y. ∀xA. ∃xB .
∧{

assign(7→ y; 7→ xA). F p1

assign(7→ y; 7→ xB). F p2

We first notice that G, q0 6|=E ϕC : indeed, in order to satisfy the first goal under any choice
of xA, the strategy for y has to point to p1 from both a and b. But then no choice of xB will
make the second goal true.

On the other hand, considering the timeline semantics, strategy y after q0 · a and q0 · b
may depend on the choice of xA in q0. When w(xA)(q0) = a, we let θ(w)(y)(q0 · a) = p1 and
θ(w)(y)(q0 · b) = p2 and θ(w)(xB)(q0) = b, which makes both goals hold true. Conversely, if
w(xA)(q0) = b, then we let θ(w)(y)(q0 ·b) = p1 and θ(w)(y)(q0 ·a) = p2 and θ(w)(xB)(q0) = a.

STACS 2018

34:10 Dependences in Strategy Logic

For SL[DG][, we consider the game of Fig. 6, and easily prove that formula ϕD below has
a T-witness but no E-witness:

ϕD = ∃y. ∀xA. ∀xB . ∀z.
∨{

assign(7→ y; 7→ xA; 7→ z). F p1

assign(7→ y; 7→ xB ; 7→ z). F p2
J

The syntactic vs. semantic negations. While both semantics differ, we now prove that
the situation w.r.t. the syntactic vs. semantic negations is similar. First, following Prop. 4
and 2, the two negations coincide on SL[1G][under the timeline semantics. Moreover:

I Proposition 6. For any formula ϕ in SL[BG][, for any game G and any state q0, we have
G, q0 |=T ϕ⇒ G, q0 6|=T ¬ϕ.

Sketch of proof. Write ϕ = (Qixi)1≤i≤lξ(βjϕj)j≤n. For a contradiction, assume that there
exist two maps θ and θ witnessing G, q0 |=T ϕ and G, q0 |=T ¬ϕ, respectively. Then for
any strategy valuations w and w for V∀ and V∃, we have that G, q0 |=θ(w) ξ(βjϕj)j and
G, q0 |=θ(w) ¬ξ(βjϕj)j . We can then inductively (on histories and on the sequence of
quantified variables) build a strategy valuation χ on V such that θ(χ|V∀) = θ(χ|V∃) = χ.
Then under valuation χ, both ξ(βjϕj)j and ¬ξ(βjϕj)j hold in q0, which is impossible. J

I Proposition 7. There exists a formula ϕ ∈ SL[BG][, a (turn-based) game G and a state q0
such that G, q0 6|=T ϕ and G, q0 6|=T ¬ϕ.

5 The fragment SL[EG][

In this section, we focus on the timeline semantics |=T . We exhibit a fragment1 SL[EG][of
SL[BG][, containing SL[CG][and SL[DG][, for which the syntactic and semantic negations
coincide, and for which we prove model-checking is in 2 -EXPTIME:

I Theorem 8. For any ϕ ∈ SL[EG][and any state q0, it holds: G, q0 |=T ϕ⇔ G, q0 6|=T ¬ϕ.
Moreover, model checking SL[EG][for the timeline semantics is 2 -EXPTIME-complete.

5.1 Semi-stable sets.
For n ∈ N, we let {0, 1}n be the set of mappings from [1, n] to {0, 1}. We write 0n (or 0 if
the size n is clear) for the function that maps all integers in [1, n] to 0, and 1n (or 1) for the
function that maps [1, n] to 1. For f, g ∈ {0, 1}n, we define:

f : i 7→ 1− f(i) f f g : i 7→ min{f(i), g(i)} f g g : i 7→ max{f(i), g(i)}.

We then introduce the notion of semi-stable sets, on which the definition of SL[EG][relies:
a set Fn ⊆ {0, 1}n is semi-stable if for any f and g in Fn, it holds that

∀s ∈ {0, 1}n. (f f s) g (g f s) ∈ Fn or (g f s) g (f f s) ∈ Fn.

I Example 3. Obviously, the set {0, 1}n is semi-stable, as well as the empty set. For n = 2,
the set {(0, 1), (1, 0)} is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0)
with s = (1, 0), we get (f f s) g (g f s) = (0, 0) and (g f s) g (f f s) = (1, 1). Similarly,
{(0, 0), (1, 1)} is not semi-stable. Any other subset of {0, 1}2 is semi-stable.

1 We name our fragment SL[EG][as it comes as a natural continuation after fragments SL[AG][[21],
SL[BG][[18], and SL[CG][and SL[DG][[20].

P. Gardy, P. Bouyer, N. Markey 34:11

We then define

SL[EG][3 ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= Fn((βi)1≤i≤n)
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψUψ | p

where Fn ranges over semi-stable subsets of {0, 1}n, for all n ∈ N. The semantics of the
operator Fn is defined as

G, q |=χ F
n((βi)i≤n) ⇔ ∃f ∈ Fn. ∀1 ≤ i ≤ n. (f(i) = 1 iff G, q |=χ βi).

Notice that if Fn would range over all subsets of {0, 1}n, then this definition would
exactly correspond to SL[BG][. Similarly, the case where Fn = {1n} corresponds to SL[CG][,
while Fn = {0, 1}n \ {0n} gives rise to SL[DG][.

I Example 4. Consider the following formula, expressing the existence of a Nash equilibrium
for two players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{

(assign(A1 7→ y1;A2 7→ x2).ψ1)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ1)
(assign(A1 7→ x1;A2 7→ y2).ψ2)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ2)

This formula has four goals, and it corresponds to the set

F 4 = {(a, b, c, d) ∈ {0, 1}4 | a ≤ b and c ≤ d}

Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (f f s) g (g f s) =
(1, 0, 0, 1) and (g f s) g (f f s) = (0, 1, 1, 0), none of which is in F 4. Hence our formula is
not (syntactically) in SL[EG][.

The definition of SL[EG] may look artificial. The main reason why we work with SL[EG]
is that it is maximal for the first claim of Theorem 8 (see Prop. 11). But as the next result
shows, it is actually a large fragment encompassing SL[AG] (hence also SL[CG] and SL[DG]):

I Proposition 9. SL[EG][contains SL[AG][. The inclusion is strict (syntactically).

5.2 Defining quasi-orders from semi-stable sets.
For Fn ⊆ {0, 1}n, we write Fn for the complement of Fn. Fix such a set Fn, and pick
s ∈ {0, 1}n. For any h ∈ {0, 1}n, we define

Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}
Fn(h, s) = {h′ ∈ {0, 1}n | (hf s) g (h′ f s) ∈ Fn}

Trivially Fn(h, s) ∩ Fn(h, s) = ∅ and Fn(h, s) ∪ Fn(h, s) = {0, 1}n. If we assume Fn to be
semi-stable, then the family (Fn(h, s))h∈{0,1}n enjoys the following property:

I Lemma 10. Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either
Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Given a semi-stable set Fn and s ∈ {0, 1}n, we can use the inclusion relation of Lemma 10
to define a relation �Fn

s (written �s when Fn is clear) over the elements of {0, 1}n. It is
defined as follows: h1 �s h2 if, and only if, Fn(h1, s) ⊆ Fn(h2, s).

This relation is a quasi-order: its reflexiveness and transitivity both follow from the
reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 10, this quasi-order is
total. Intuitively, �s orders the elements of {0, 1}n based on how “easy” it is to complete

STACS 2018

34:12 Dependences in Strategy Logic

their restriction to s so that the completion belongs to Fn. In particular, only the indices on
which s take value 1 are used to check whether h1 �s h2: given h1, h2 ∈ {0, 1}n such that
(h1 f s) = (h2 f s), we have F(h1, s) = F(h2, s), and h1 ≡s h2.

I Example 5. Consider the set F 3 = {(1, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1), (1, 1, 1)} represented on the figure opposite,
and which can be shown to be semi-stable. Fix s = (1, 1, 0).
Then F3((0, 1, ?), s) = {0, 1}2 × {1}, while F3((1, 1, ?), s) =
F3((1, 0, ?), s) = {0, 1}3 and F3((0, 0, ?), s) = ∅. It follows that
(0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?). (0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1) F 3

5.3 Sketch of proof of Theorem 8

The approach we used in Prop 2 does not extend in general to formulas with several goals.
Consider for instance formula (Qixi)i≤l(β1.ψ1 ⇔ β2.ψ2): if at some points the two goals give
rise to two different outcomes (hence to two different subgames), the winning objectives in
one subgame depends on what is achieved in the other subgame.

SL[EG][has been designed to prevent such situations: when two (or more) outcomes are
available at a given position, each subgame can be assigned an independent winning objective.
This objective can be obtained from the quasi-orders �s associated with the SL[EG][formula
being considered. Consider again Example 5: associating the set F 3 with three goals β1, β2
and β3, we get a formula in SL[EG][. Assume that the moves selected by the players give rise
to the same transition for β1 and β2, and to a different transition for β3; then in the subgame
reached when following the transition of β1 and β2 (hence with s = (1, 1, 0)), the optimal
way of fulfilling goals β1 and β2 is given by (0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?),
independently of what may happen in the subgame reached by following the transition given
by β3.

We exploit this idea in our proof: first, in order to keep track of the truth values of the
LTL formulas ψi of each goal, we define a family of parity automata, one for each subset of
goals of the formula under scrutiny. A subgame, as considered above, is characterized by
a state q of the original concurrent game, a state dp of each of the parity automata, and a
vector s ∈ {0, 1}n defining which goals are still active. For each subgame, we can compute,
by induction on s, the optimal set of goals that can be fulfilled from that configuration.
The optimal strategies of both players in each subgame can be used to define (partial) optimal
timeline dependence maps. We can then combine these partial maps together to get optimal
dependence maps θ and θ; using similar arguments as for the proof of Prop. 6, we get a
valuation χ such that θ(χ|V∀) = χ = θ(χ|V∃), from which we deduce that exactly one of ϕ
and ¬ϕ holds.

5.4 Maximality of SL[EG][

Finally, we prove that SL[EG][is, in a sense, maximal for the first property of Theorem 8:

I Proposition 11. For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a SL[BG][
formula ϕ built on Fn, a game G and a state q0 such that G, q0 6|=T ¬ϕ and G, q0 6|=T ϕ.

Whether SL[EG][is also maximal for having a 2 -EXPTIME model-checking algorithm
remains open. Actually, we do not know if SL[BG][model checking is decidable under the
timeline semantics. These questions will be part of our future works on this topic.

P. Gardy, P. Bouyer, N. Markey 34:13

References

1 Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time temporal
logics with irrevocable strategies. In Dov Samet, editor, Proceedings of the 11th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK’07), pages 15–24, June 2007.

2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.

3 Patricia Bouyer, Patrick Gardy, and Nicolas Markey. Weighted strategy logic with boolean
goals over one-counter games. In Prahladh Harsha and G. Ramalingam, editors, Proceedings
of the 35th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’15), volume 45 of Leibniz International Proceedings in Informatics, pages
69–83. Leibniz-Zentrum für Informatik, December 2015. doi:10.4230/LIPIcs.FSTTCS.
2015.69.

4 Patricia Bouyer, Patrick Gardy, and Nicolas Markey. On the semantics of strategy logic.
Information Processing Letters, 116(2):75–79, February 2016. doi:10.1016/j.ipl.2015.
10.004.

5 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Informatica, 54(1):41–83, February 2017. doi:10.1007/s00236-016-0273-2.

6 Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey. ATL with
strategy contexts and bounded memory. In Sergei N. Artemov and Anil Nerode, edit-
ors, Proceedings of the International Symposium Logical Foundations of Computer Science
(LFCS’09), volume 5407 of Lecture Notes in Computer Science, pages 92–106. Springer-
Verlag, January 2009. doi:10.1007/978-3-540-92687-0_7.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. In Luís
Caires and Vasco T. Vasconcelos, editors, Proceedings of the 18th International Conference
on Concurrency Theory (CONCUR’07), volume 4703 of Lecture Notes in Computer Science,
pages 59–73. Springer-Verlag, September 2007. doi:10.1007/978-3-540-74407-8_5.

8 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skel-
etons using branching-time temporal logic. In Dexter C. Kozen, editor, Proceedings of the
3rd Workshop on Logics of Programs (LOP’81), volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, 1982. doi:10.1007/BFb0025774.

9 Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
2000.

10 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
complexity of rational synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, Proceedings of the 43rd International Colloquium on
Automata, Languages and Programming (ICALP’16) – Part II, volume 55 of Leibniz Inter-
national Proceedings in Informatics, pages 121:1–121:15. Leibniz-Zentrum für Informatik,
July 2016. doi:10.4230/LIPIcs.ICALP.2016.121.

11 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determin-
acy. In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS’91), pages 368–377. IEEE Comp. Soc. Press, October 1991. doi:10.1109/SFCS.
1991.185392.

12 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Javier Esparza
and Rupak Majumdar, editors, Proceedings of the 16th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS’10), volume 6015 of
Lecture Notes in Computer Science, pages 190–204. Springer-Verlag, March 2010. doi:
10.1007/978-3-642-12002-2_16.

13 Valentin Goranko and Govert van Drimmelen. Complete axiomatization and decidability
of alternating-time temporal logic. Theoretical Computer Science, 353(1-3):93–117, March
2006.

STACS 2018

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.69
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.69
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://dx.doi.org/10.1007/s00236-016-0273-2
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/978-3-540-74407-8_5
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.121
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dx.doi.org/10.1007/978-3-642-12002-2_16

34:14 Dependences in Strategy Logic

14 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational envir-
onments. Annals of Mathematics and Artificial Intelligence, 78(1):3–20, September 2016.
doi:10.1007/s10472-016-9508-8.

15 François Laroussinie and Nicolas Markey. Augmenting ATL with strategy contexts. Inform-
ation and Computation, 245:98–123, December 2015. doi:10.1016/j.ic.2014.12.020.

16 François Laroussinie, Nicolas Markey, and Ghassan Oreiby. On the expressiveness and
complexity of ATL. Logical Methods in Computer Science, 4(2), May 2008. doi:10.2168/
LMCS-4(2:7)2008.

17 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. What makes
ATL∗ decidable? A decidable fragment of strategy logic. In Maciej Koutny and Irek
Ulidowski, editors, Proceedings of the 23rd International Conference on Concurrency The-
ory (CONCUR’12), volume 7454 of Lecture Notes in Computer Science, pages 193–208.
Springer-Verlag, September 2012.

18 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Transactions on Computational Logic,
15(4):34:1–34:47, August 2014. doi:10.1145/2631917.

19 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the satisfiability problem. Logical Methods in Computer Science, 13(1),
March 2017. doi:10.23638/LMCS-13(1:9)2017.

20 Fabio Mogavero, Aniello Murano, and Luigi Sauro. On the boundary of behavioral
strategies. In Proceedings of the 28th Annual Symposium on Logic in Computer Science
(LICS’13), pages 263–272. IEEE Comp. Soc. Press, June 2013.

21 Fabio Mogavero, Aniello Murano, and Luigi Sauro. A behavioral hierarchy of strategy
logic. In Nils Bulling, Leendert W. N. van der Torre, Serena Villata, Wojciech Jam-
roga, and Wamberto Weber Vasconcelos, editors, Proceedings of the 15th International
Workshop on Computational Logic in Multi-Agent Systems (CLIMA’14), volume 8624
of Lecture Notes in Artificial Intelligence, pages 148–165. Springer-Verlag, August 2014.
doi:10.1007/978-3-319-09764-0_10.

22 Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies. In
Kamal Lodaya and Meena Mahajan, editors, Proceedings of the 30th Conference on Found-
ations of Software Technology and Theoretical Computer Science (FSTTCS’10), volume 8
of Leibniz International Proceedings in Informatics, pages 133–144. Leibniz-Zentrum für
Informatik, December 2010. doi:10.4230/LIPIcs.FSTTCS.2010.133.

23 Andrzej Mostowski. Games with forbidden positions. Research Report 78, University of
Danzig, 1991.

24 Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press,
October-November 1977. doi:10.1109/SFCS.1977.32.

25 Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings
of the 5th International Symposium on Programming (SOP’82), volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer-Verlag, April 1982. doi:10.1007/
3-540-11494-7_22.

26 Farn Wang, Chung-Hao Huang, and Fang Yu. A temporal logic for the interaction of
strategies. In Joost-Pieter Katoen and Barbara König, editors, Proceedings of the 22nd
International Conference on Concurrency Theory (CONCUR’11), volume 6901 of Lecture
Notes in Computer Science, pages 466–481. Springer-Verlag, September 2011.

http://dx.doi.org/10.1007/s10472-016-9508-8
http://dx.doi.org/10.1016/j.ic.2014.12.020
http://dx.doi.org/10.2168/LMCS-4(2:7)2008
http://dx.doi.org/10.2168/LMCS-4(2:7)2008
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.23638/LMCS-13(1:9)2017
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22

	Introduction
	Definitions
	Concurrent game structures
	Strategy Logic with boolean goals

	Strategy dependences
	Timeline dependences
	The fragment SL[EG]b
	Semi-stable sets.
	Defining quasi-orders from semi-stable sets.
	Sketch of proof of Theorem 8
	Maximality of SL[EG]b

