
HAL Id: hal-01889046
https://hal.science/hal-01889046

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized verification of synchronization in
constrained reconfigurable broadcast networks

A.R. Balasubramanian, Nathalie Bertrand, Nicolas Markey

To cite this version:
A.R. Balasubramanian, Nathalie Bertrand, Nicolas Markey. Parameterized verification of synchro-
nization in constrained reconfigurable broadcast networks. TACAS 2018 - International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Apr 2018, Thessaloniki, Greece.
pp.38-54, �10.1007/978-3-319-89963-3_3�. �hal-01889046�

https://hal.science/hal-01889046
https://hal.archives-ouvertes.fr

Parameterized verification of synchronization in
constrained reconfigurable broadcast networks?

Balasubramanian A.R.1, Nathalie Bertrand2, and Nicolas Markey2

1 Chennai Mathematical Institute – Chennai (India)
2 Univ. Rennes, Inria, CNRS, IRISA – Rennes (France)

Abstract. Reconfigurable broadcast networks provide a convenient for-
malism for modelling and reasoning about networks of mobile agents
broadcasting messages to other agents following some (evolving) commu-
nication topology. The parameterized verification of such models aims
at checking whether a given property holds irrespective of the initial
configuration (number of agents, initial states and initial communication
topology). We focus here on the synchronization property, asking whether
all agents converge to a set of target states after some execution. This
problem is known to be decidable in polynomial time when no constraints
are imposed on the evolution of the communication topology (while it is
undecidable for static broadcast networks).
In this paper we investigate how various constraints on reconfigurations
affect the decidability and complexity of the synchronization problem.
In particular, we show that when bounding the number of reconfigured
links between two communications steps by a constant, synchroniza-
tion becomes undecidable; on the other hand, synchronization remains
decidable in PTIME when the bound grows with the number of agents.

1 Introduction

There are numerous application domains for networks formed of an arbitrary
number of anonymous agents executing the same code: prominent examples are
distributed algorithms, communication protocols, cache-coherence protocols, and
biological systems such as populations of cells or individuals, etc. The automated
verification of such systems is challenging [15,12,8,3]: its aim is to validate at once
all instances of the model, independently of the (parameterized) number of agents.
Such a problem can be phrased in terms of infinite-state-system verification.
Exploiting symmetries may lead to efficient algorithms for the verification of
relevant properties [7].

Different means of interactions between agents can be considered in such
networks, depending on the application domain. Typical examples are shared
variables [13,10,4], rendez-vous [12], and broadcast communications [9,6]. In this
paper, we target ad hoc networks [6], in which the agents can broadcast messages

? This work has been supported by the Indo-French research unit UMI Relax, and by
ERC project EQualIS (308087).

simultaneously to all their neighbours, i.e., to all the agents that are within their
radio range. The number of agents and the communication topology are fixed
once and for all at the beginning of the execution. Parameterized verification of
broadcast networks checks if a specification is met independently of the number
of agents and communication topology. It is usually simpler to reason about the
dual problem of the existence of an initial configuration (consisting of a network
size, an initial state for each agent, and a communication topology) from which
some execution violates the given specification.

Several types of specifications have been considered in the literature. We focus
here on coverability and synchronization: does there exist an initial configuration
from which some agent (resp. all agents at the same time) may reach a particular
set of target states. Both problems are undecidable; decidability of coverability
can be regained by bounding the length of simple paths in the communication
topology [6].

In the case of mobile ad hoc networks (MANETs), agents are mobile, so that
the communication links (and thus the neighbourhood of each agent) may evolve
over time. To reflect the mobility of agents, Delzanno et al. studied reconfigurable
broadcast networks [6,5]. In such networks, the communication topology can
change arbitrarily at any time. Perhaps surprisingly, this modification not only
allows for a more faithful modelling of MANETs, but it also leads to decidability
of both the coverability and the synchronization problems [6]. A probabilistic
extension of reconfigurable broadcast networks has been studied in [1,2] to model
randomized protocols.

A drawback of the semantics of reconfigurable broadcast networks is that they
allow arbitrary changes at each reconfiguration. Such arbitrary reconfigurations
may not be realistic, especially in settings where communications are frequent
enough, and mobility is slow and not chaotic. In this paper, we limit the impact
of reconfigurations in several ways, and study how those limitations affect the
decidability and complexity of parameterized verification of synchronization.

More specifically, we restrict reconfigurations by limiting the number of
changes in the communication graph, either by considering global constraints (on
the total number of edges being modified), or by considering local constraints
(on the number of updates affecting each individual node). We prove that syn-
chronization is decidable when imposing constant local constraints, as well as
when imposing global constraints depending (as a divergent function) on the
number of agents. On the other hand, imposing a constant global bound makes
synchronization undecidable. We recover decidability by bounding the maximal
degree of each node by 1.

2 Broadcast networks with constrained reconfiguration

In this section, we first define reconfigurable broadcast networks; we then intro-
duce several constraints on reconfigurations along executions, and investigate
how they compare one to another and with unconstrained reconfigurations.

2

q0 q1 q2 q3 q4
!!a !!b ??c ??d

q5 q6
??a !!c

q7 q8
??a

!!d

Fig. 1. Example of a broadcast protocol

B

q0

q0

q0

R

q1

q5

q7

!!a

??a

??a

B

q1

q5

q7

R

q2

q5

q7

!!b

B

q2

q5

q7

R

q3

q6

q7

!!c

??c

B

q3

q6

q7

q4

q6

q8!!d

??d

Fig. 2. Sample execution under reconfigurable semantics, synchronizing to {q4, q6, q8}
(B-transitions are communications steps, R are reconfiguration steps).

2.1 Reconfigurable broadcast networks

Definition 1. A broadcast protocol is a tuple P = (Q, I,Σ,∆) where Q is a
finite set of control states; I ∈ Q is the set of initial control states; Σ is a finite
alphabet; and ∆ ⊆ (Q× {!!a, ??a | a ∈ Σ} ×Q) is the transition relation.

A (reconfigurable) broadcast network is a system made of several copies of
a single broadcast protocol P. Configurations of such a network are undirected
graphs whose each node is labelled with a state of P. Transitions between
configurations can either be reconfigurations of the communication topology
(i.e., changes in the edges of the graph), or a communication via broadcast of a
message (i.e., changes in the labelling of the graph). Figures 1 and 2 respectively
display an example of a broadcast protocol and of an execution of a network
made of three copies of that protocol.

Formally, we first define undirected labelled graphs. Given a set L of labels,
an L-graph is an undirected graph G = (N,E, L) where N is a finite set of nodes;
E ⊆ P2(N)3 (notice in particular that such a graph has no self-loops); finally,
L : N → L is the labelling function. We let GL denote the (infinite) set of L-
labelled graphs. Given a graph G ∈ GL, we write n ∼ n′ whenever {n, n′} ∈ E and
we let NeighG(n) = {n′ | n ∼ n′} be the neighbourhood of n, i.e. the set of nodes
adjacent to n. For a label `, we denote by |G|` the number of nodes in G labelled
by `. Finally L(G) denotes the set of labels appearing in nodes of G.

The semantics of a reconfigurable broadcast network based on broadcast
protocol P is an infinite-state transition system T (P). The configurations of

3 For a finite set S and 1 ≤ k ≤ |S|, we let Pk(S) = {T ⊆ S | |T | = k}.

3

T (P) are Q-labelled graphs. Intuitively, each node of such a graph runs protocol P ,
and may send/receive messages to/from its neighbours. A configuration (N,E, L)
is said initial if L(N) ⊆ I. From a configuration G = (N,E, L), two types of steps
are possible. More precisely, there is a step from (N,E, L) to (N′,E′, L′) if one of
the following two conditions holds:

(reconfiguration step) N′ = N and L′ = L: a reconfiguration step does not
change the set of nodes and their labels, but may change the edges arbitrarily;

(communication step) N′ = N, E′ = E, and there exists n ∈ N and a ∈ Σ
such that (L(n), !!a, L′(n)) ∈ ∆, and for every n′, if n′ ∈ NeighG(n), then
(L(n′), ??a, L′(n′)) ∈ ∆, otherwise L′(n′) = L(n′): a communication step reflects
how nodes evolve when one of them broadcasts a message to its neighbours.

An execution of the reconfigurable broadcast network is a sequence ρ = (Gi)0≤i≤r
of configurations such that for any i < r, there is a step from Gi to Gi+1 and ρ
strictly alternates communication and reconfiguration steps (the latter possibly
being trivial). An execution is initial if it starts from an initial configuration.

An important ingredient that we heavily use in the sequel is juxtaposition of
configurations and shuffling of executions. The juxtaposition of two configurations
G = (N,E, L) and G′ = (N′,E′, L′) is the configuration G⊕G′ = (N]N′,E]E′, L⊕),
in which L⊕ extends both L and L′: L⊕(n) = L(n) if n ∈ N and L⊕(n) = L′(n) if
n ∈ N′. We write G2 for the juxtaposition of G with itself, and, inductively, GN

for the juxtaposition of GN−1 with G. A shuffle of two executions ρ = (Gi)0≤i≤r
and ρ′ = (G′j)0≤j≤r′ is an execution ρ⊕ from G0 ⊕ G′0 to Gr ⊕ G′r′ obtained by
interleaving ρ and ρ′. Note that a reconfiguration step in ρ⊕ may be composed
of reconfigurations from both ρ and ρ′. We write ρ ⊕ ρ′ for the set of shuffle
executions obtained from ρ and ρ′.

Natural decision problems for reconfigurable broadcast networks include
checking whether some node may reach a target state, or whether all nodes
may synchronize to a set of target states. More precisely, given a broadcast
protocol P and a subset F ⊆ Q, the coverability problem asks whether there
exists an initial execution ρ that visits a configuration G with L(G) ∩ F 6= ∅,
and the synchronization problem asks whether there exists an initial execution ρ
that visits a configuration G with L(G) ⊆ F . For unconstrained reconfigurations,
we have:

Theorem 2 ([6,5,11]). The coverability and synchronization problems are de-
cidable in PTIME for reconfigurable broadcast protocols.

Remark 1. The synchronization problem was proven decidable in [6], and PTIME
membership was given in [11, p. 41]. The algorithm consists in computing the set
of states of P that are both reachable (i.e., coverable) from an initial configuration
and co-reachable from a target configuration. This can be performed by applying
iteratively the algorithm of [5] for computing the set of reachable states (with
reversed transitions for computing co-reachable states).

4

Example 1. Consider the broadcast protocol of Fig. 1 with I = {q0}. From each
state, unspecified message receptions lead to an (omitted) sink state; this way,
each broadcast message triggers a transition in all the neighbouring copies.

For that broadcast protocol, one easily sees that it is possible to synchronize
to the set {q4, q6, q8}. Moreover, three copies are needed and sufficient for that
objective, as witnessed by the execution of Fig. 2. The initial configuration has
three copies and two edges. If the central node broadcasts a, the other two
nodes receive, one proceeding to q5 and the other to q7. Then, we assume the
communication topology is emptied before the same node broadcasts b, moving
to q2. Finally the node in q5 connects to the one in q2 to communicate on c and then
disconnects, followed by a similar communication on d initiated by the node in q7.

2.2 Natural constraints for reconfiguration

Allowing arbitrary changes in the network topology may look unrealistic. In order
to address this issue, we introduce several ways of bounding the number of
reconfigurations after each communication step. For this, we consider the following
natural pseudometric between graphs, which for simplicity we call distance.

Definition 3. Let G = (N,E, L) and G′ = (N′,E′, L′) be two L-labelled graphs.
The distance between G and G′ is defined as

dist(G,G′) = |E ∪ E′ \ (E ∩ E′)|

when N = N′ and L = L′, and dist(G,G′) = 0 otherwise.

Setting the “distance” to 0 for two graphs that do not agree on the set of nodes
or on the labelling function might seem strange at first. This choice is motivated
by the definition of constraints on executions (see below) and of the number of
reconfigurations along an execution (see Section 2.3). Other distances may be of
interest in this context; in particular, for a fixed node n ∈ N, we let distn(G,G

′)
be the number of edges involving node n in the symmetric difference of E and E′

(still assuming N = N′ and L = L′).

Constant number of reconfigurations per step. A first natural constraint on
reconfiguration consists in bounding the number of changes in a reconfiguration
step by a constant number. Recall that along executions, communication and
reconfiguration steps strictly alternate.

Definition 4. Let k ∈ N. An execution ρ = (Gi)0≤i≤r of a reconfigurable broad-
cast network is k-constrained if for every index i < r, it holds dist(Gi,Gi+1) ≤ k.

Example 1 (Contd). For the synchronization problem, bounding the number of
reconfigurations makes a difference. The sample execution from Fig. 2 is not
1-constrained, and actually no 1-constrained executions of that broadcast protocol
can synchronize to {q4, q5, q6}. This can be shown by exhibiting and proving an
invariant on the reachable configurations (see Lemma 10).

5

Beyond constant number of reconfigurations per step. Bounding the number of
reconfigurations per step by a constant is somewhat restrictive, especially when
this constant does not depend on the size of the network. We introduce other
kinds of constraints here, for instance by bounding the number of reconfigurations
by k on average along the execution, or by having a bound that depends on the
number of nodes executing the protocol.

For a finite execution ρ = (Gi)0≤i≤r of a reconfigurable broadcast network,
we write nb comm(ρ) for the number of communication steps along ρ (notice
that br/2c ≤ nb comm(ρ) ≤ dr/2e since we require strict alternation between
reconfiguration and communication steps), and nb reconf(ρ) for the total number

of edge reconfigurations in ρ, that is nb reconf(ρ) =
∑r−2
i=0 dist(Gi,Gi+1).

Definition 5. Let k ∈ N. An execution ρ of a reconfigurable broadcast network
is said k-balanced if it starts and ends with a communication step, and satisfies
nb reconf(ρ) ≤ k · (nb comm(ρ)− 1).

This indeed captures our intuition that along a k-balanced execution, reconfigu-
rations on average update less than k links.

Finally, we will also consider two relevant ways to constrain reconfigurations
depending on the size of the network: first locally, bounding the number of
reconfigurations per node by a constant; second globally, bounding the total
number of reconfigurations by a function of the number of nodes.

We first bound reconfigurations locally.

Definition 6. Let k ∈ N. An execution ρ = (Gi)0≤i≤r of a reconfigurable broad-
cast network is k-locally-constrained, if, for every node n and for every index
i < r, distn(Gi,Gi+1) ≤ k.

One may also bound the number of reconfigurations globally using bounding
functions, that depend on the number of nodes in the network:

Definition 7. Let f : N → N be a function. An execution ρ = (Gi)0≤i≤r of a
reconfigurable broadcast network is f -constrained, if, writing n for the number of
nodes in G0, it holds dist(Gi,Gi+1) ≤ f(n) for any i < r.

Notice that if f is the constant function n ∈ N 7→ k for some k ∈ N, f -constrained
executions coincide with k-constrained ones, so that our terminology is non-
ambiguous. Other natural bounding functions are non-decreasing and diverging.
This way, the number of possible reconfigurations tends to infinity when the
network size grows, i.e. ∀n. ∃k. f(k) ≥ n.

Remark 2. Coverability under constrained reconfigurations is easily observed
to be equivalent to coverability with unconstrained reconfigurations: from an
unconstrained execution, we can simply juxtapose extra copies of the protocol,
which would perform extra communication steps so as to satisfy the constraint.
When dealing with synchronization, this technique does not work since the extra
copies would also have to synchronize to a target state. As a consequence, we only
focus on synchronization in the rest of this paper.

6

2.3 Classification of constraints

In this section, we compare our restrictions. We prove that, for the synchronization
problem, k-locally-constrained and f -constrained reconfigurations, for diverging
functions f , are equivalent to unconstrained reconfigurations. On the other hand,
we prove that k-constrained reconfigurations are equivalent to k-balanced recon-
figurations, and do not coincide with unconstrained reconfigurations.

Equivalence between unconstrained and locally-constrained reconfigurations.

Lemma 8. Let P be a broadcast protocol, F ⊆ Q be a target set, and f be a
non-decreasing diverging function. If the reconfigurable broadcast network defined
by P has an initial execution synchronizing in F , then it has an f-constrained
initial execution synchronizing in F .

Proof. We first prove the lemma for the identity function Id. More precisely,
we prove that for an execution ρ = (Gi)0≤i≤n, of the reconfigurable broadcast
network, there exists a Id-constrained execution ρ′ = (G′j)0≤j≤m, whose last
transition (if any) is a communication step, and such that for any control state q,
|Gn|q = |G′m|q. We reason by induction on the length of the execution. The claim
is obvious for n = 0. Suppose the property is true for all naturals less than or
equal to some n ∈ N, and consider an execution ρ = (Gi)0≤i≤n+1. The induction
hypothesis ensures that there is an f -constrained execution ρ′ = (G′j)0≤j≤m
with |Gn|q = |G′m|q for all q. If the last transition from Gn to Gn+1 in ρ is a
reconfiguration step, then the execution ρ′ witnesses our claim. Otherwise, the
transition from Gn to Gn+1 is a communication step, involving a broadcasting
node n of Gn labelled with q, and receiving nodes n1 to nr of Gn, respectively
labelled with q1 to qr. By hypothesis, G′m also contains a node n′ labelled with q
and r nodes n′1 to n′r, labelled with q1 to qr. We then add two steps after G′m
in ρ′: we first reconfigure the graph so that NeighG′

m+1
(n′) = {n′i | 0 ≤ i ≤ r},

which requires changing at most |G0| − 1 links, and then perform the same
broadcast/receive transitions as between Gn and Gn+1.

For the general case of the lemma, suppose f is a non-decreasing diverging
function. Further, let ρ = (Gi)0≤i≤n be an Id-constrained execution, and pick k
such that f(k · |G0|) ≥ |G0|. Consider the initial configuration Gk0 , made of k
copies of G0, and the execution, denoted ρk, made of k copies of ρ running
independently from each of the k copies of G0 in Gk0 . Each reconfiguration step
involves at most |G0| links, so that ρk is f -constrained. �

Lemma 9. Let P be a broadcast protocol with F ⊆ Q a target set. If the recon-
figurable broadcast network defined by P has an initial execution synchronizing
in F , then it has a 1-locally-constrained initial execution synchronizing in F .

k-constrained and k-balanced reconfigurations. We prove here that k-constrained
and k-balanced reconfigurations are equivalent w.r.t. synchronization, and that
they are strictly stronger than our other restrictions. We begin with the latter:

7

Lemma 10. There exists a broadcast protocol P and a set F ⊆ Q of target
states for which synchronization is possible from some initial configuration when
unconstrained reconfigurations are allowed, and impossible, from every initial
configuration when only 1-constrained reconfigurations are allowed.

A protocol with this property is the one from Example 1, for which we
exhibited a 2-constrained synchronizing execution. It can be proved that no 1-
constrained synchronizing executions exist for this protocol, whatever the number
of copies. We now prove the main result of this section:

Theorem 11. Let P be a broadcast protocol and F ⊆ Q. There exists a k-
constrained initial execution synchronizing in F if, and only if, there exists a
k-balanced initial execution synchronizing in F .

Proof. The left-to-right implication is simple: if there is a k-constrained initial
execution synchronizing in F , w.l.o.g. we can assume that this execution starts
and ends with a communication step; moreover, each reconfiguration step contains
at most k edge reconfigurations, so that the witness execution is k-balanced.

Let ρ = (Gi)0≤i≤n be a k-balanced execution synchronizing in F and starting
and ending with communication steps (hence n is odd). We define the poten-
tial (pi)0≤i≤n of ρ as the sequence of n+ 1 integers obtained as follows:

– p0 = 0;
– p2i+1 = p2i + k for i ≤ (n− 1)/2 (this corresponds to a communication step);
– p2i+2 = p2i+1− dist(G2i+1,G2i+2) for i ≤ (n− 1)/2− 1 (reconfiguration step).

That ρ is k-balanced translates as pn−1 ≥ 0: the sequence (pi)0≤i≤n stores the
value of k · nb comm(ρ≤i) − nb reconf(ρ≤i) for each prefix ρ≤i of ρ; being k-
balanced means that pn ≥ k, and since the last step is a communication step,
this in turn means pn−1 ≥ 0. On the other hand, in order to be k-constrained,
it is necessary (but not sufficient) to have pi ≥ 0 for all 0 ≤ i ≤ n.

We build a k-constrained execution by shuffling several copies of ρ. We actually
begin with the case where k = 1, and then extend the proof to any k. We first
compute how many copies we need. For this, we split ρ into several phases, based
on the potential (pi)0≤i≤n defined above. A phase is a maximal segment of ρ≤n−1
(the prefix of ρ obtained by dropping the last (communication) step) along which
the sign of the potential is constant (or zero): graphs Gi and Gj are in the same
phase if, and only if, for all i ≤ l ≤ l′ ≤ j, it holds pl · pl′ ≥ 0. We decompose ρ
as the concatenation of phases (ρj)0≤j≤m; since ρ is k-balanced, m is even, and
ρ0, ρm, and all even-numbered phases are non-negative phases (i.e., the potential
is non-negative along those executions), while all odd-numbered executions are
non-positive phases. Also, all phases end with potential zero, except possibly
for ρm. See Fig. 3 for an example of a decomposition into phases.

Lemma 12. For any phase ρi = Gbi · · ·Gei of a 1-balanced execution ρ =
G0 · · ·Gn, there exists κi ≤ (ei − bi)/2 such that for any N ∈ N, there exists a
1-constrained execution from Gκi

0 ⊕ GNbi to Gκi
1 ⊕ GNei .

8

Proof. We handle non-negative and non-positive phases separately. In a non-
negative phase, we name repeated reconfiguration step any reconfiguration step
that immediately follows another (possibly from the previous phase) reconfigura-
tion step (so that if there are four consecutive reconfiguration steps, the last three
are said repeated); similarly, we name repeated communication step any communi-
cation step that is immediately followed (possibly in the next phase) by another
communication step (hence the first three of fours consecutive communication
steps are repeated).

We first claim that any non-negative phase contains at least as many repeated
communication steps as it contains repeated reconfiguration steps. Indeed, any
non-repeated communication step in a non-negative phase is necessarily followed
by a non-repeated reconfiguration step, and conversely, and non-negative phases
have at least as many communication steps as they have reconfiguration steps.

As a consequence, we can number all repeated reconfiguration steps from 1
(earliest) to κi (latest), for some κi, and similarly for repeated communication
steps. Clearly enough, in a non-negative phase, for any 1 ≤ j ≤ κi, the repeated
communication step numbered j occurs before the repeated reconfiguration step
carrying the same number.

We now build our 1-constrained execution from Gκi
0 ⊕ GNbi to Gκi

1 ⊕ GNei .
We begin with a first part, where only the components starting from Gbi move:

– the first copy starting in Gbi follows the execution ρi until reaching the
repeated reconfiguration step number 1. That reconfiguration step cannot be
performed immediately as it follows another reconfiguration step. Notice that
during this stage, this copy has taken at least one repeated communication
step, numbered 1;

– the second copy then follows ρi until reaching its first repeated communication
step (which must occur before the first repeated reconfiguration step). It takes
this communication step, then allowing the first copy to perform its first
repeated reconfiguration step;

– this simulation continues, each time having the l + 1-st copy of the system
taking its j-th repeated communication step in order to allow the l-th copy
to perform its j-th repeated reconfiguration step. Non-repeated steps can
always be performed individually by each single copy. Also, the first copy
may always take repeated communication steps not having a corresponding
reconfiguration step, as in the first stage of this part.

Notice that the number of copies involved in this process is arbitrary. The process
lasts as long as some copies may advance within phase ρi. Hence, when the
process stops, all copies of the original system either have reached the end of ρi,
or are stopped before a repeated reconfiguration step. For the copies in the latter
situation, we use the copies starting from G0. It remains to prove that having κi
such copies is enough to make all processes reach the end of ρi.

For this, we first assume that the potential associated with ρi ends with
value zero. This must be the case of all phases except the last one, which we
handle after the general case. We first notice that in the execution we are currently
building, any repeated communication step performed by any (but the very first)

9

nonnegative phase

nonpositive phase

nonnegative
phase

potential

À

Á

À Á

Â

À

À

Á

À

Á Â

Fig. 3. Phases of a 1-balanced execution, and correspondence between repeated commu-
nication steps (loosely dotted blue steps) and repeated reconfiguration steps (densely
dotted red steps)

copy that started from Gbi is always followed by a repeated reconfiguration
step. Similarly, non-repeated communication steps of any copy is followed by a
non-repeated broadcast step of the same copy. As a consequence, the potential
associated with the global execution we are currently building never exceeds the
total number of repeated communication steps of performed by the first copy;
hence it is bounded by κi, whatever the number N of copies involved. As a
consequence, at most κi communication steps are sufficient in order to advance
all copies that started from Gbi to the end of ρi.

Finally, the case of the last phase ρm (possibly ending with positive potential)
is easily handled, since it has more communication steps than reconfiguration
steps.

The proof for non-positive phases is similar. �

Pick a 1-balanced execution ρ = G0 · · ·Gn, and decompose it into phases
ρ1 · · · ρm. For each phase ρi, we write κi for the total number of repeated recon-
figuration steps, and we let κ =

∑
1≤i≤m κi for the total number of repeated

reconfiguration steps along ρ. Notice that κ ≤ n/2.

Lemma 13. For every 1-balanced execution ρ = G0 · · ·Gn, and for every N ∈ N,
there exists a 1-constrained execution from GN1 ⊕ GκNem to GN+κN

n .

Combining the above two lemmas, we obtain the following proposition, which
refines the statement of the Theorem 11:

Proposition 14. For every 1-balanced execution ρ = G0 · · ·Gn and every N ≥
κ2 + κ, there exists a 1-constrained execution from GN0 to GNn .

We finally extend this result to k > 1. In this case, splitting ρ into phases is
not as convenient as when k = 1: indeed, a non-positive phase might not end
with potential zero (because communication steps make the potential jump by k
units). Lemma 12 would not hold in this case.

We circumvent this problem by first shuffling k copies of ρ in such a way
that reconfigurations can be gathered into groups of size exactly k. This way,
we can indeed split the resulting execution into non-negative and non-positive
phases, always considering reconfigurations of size exactly k; we can then apply

10

the techniques above in order to build a synchronizing k-constrained execution.
This completes our proof. �

3 Parameterized synchronization under reconfiguration
constraints

3.1 Undecidability for k-constrained reconfiguration

Although synchronization is decidable in PTIME [6,11] for reconfigurable broad-
cast networks, the problem becomes undecidable when reconfigurations are
k-constrained.

Theorem 15. The synchronization problem is undecidable for reconfigurable
broadcast networks under k-constrained reconfigurations.

Proof. We prove this undecidability result for 1-constrained reconfigurations, by
giving a reduction from the halting problem for Minsky machines [14]. We begin
with some intuition. The state space of our protocol has two types of states:

– control states encode the control state of the 2-counter machine;
– counter states are used to model counter values: for each counter cj ∈ {c1, c2},

we have a state zeroj and a state onej . The value of counter cj in the
simulation will be encoded as the number of edges in the communication
topology between the control node and counter nodes in state onej ; moreover,
we will require that control nodes have no communication links with counter
nodes in state zeroj .
Incrementations and decrementations can then be performed by creating
a link with a node in zeroj and sending this node to onej , or sending a
onej-node to zeroj and removing the link.

In order to implement this, we have to take care of the facts that we may have
several control nodes in our network, that we may have links between two control
nodes or between two counter nodes, or that links between control nodes and
counter nodes may appear or disappear at random. Intuitively, those problems
will be handled as follows:

– we cannot avoid having several control nodes; instead, given a synchronizing
execution of the broadcast protocol, we will select one control node and show
that it encodes a correct execution of the 2-counter machine;

– in order to reach a synchronizing configuration, the selected control node
will have to perform at least as many reconfiguration steps as broadcast
steps. Because we consider 1-constrained runs, it will perform exactly the
same number of reconfiguration steps as broadcast steps, so that no useless/
unexpected reconfigurations may take place during the simulation;

– control nodes will periodically run special broadcasts that would send any
connected nodes (except nodes in state onej) to a sink state, thus preventing
synchronization. This way, we ensure that that particular control node is
clean. Initially, we require that control nodes have no connections at all.

11

M0 L1 M1 L2 M2

M ′2

!!start !!i-exit

Fig. 4. Global view of the part of the protocol for control nodes

incrementation module

L i1 i2 i3 i4 i5 i6 i7 M
!!i-init ??fr1 !!i-askj ??i-ackj !!i-okj ??fr2 ??fr3 ??fr3 !!i-exit

decrementation/zero-test module

L d1 d2 d3 d4 d5 M

t1 t2 t3 t4 M ′

!!d-askj ??d-ackj !!d-okj ??fr4 ??fr5 ??fr5

!!t-ask
j

??t-ackj !!t-okj ??fr5 ??fr5

!!d-exit

!!t-exit

Fig. 5. Modules for simulating incrementation and decrementation/zero test

zeroj onej zeroj
′

??i-askj

??i-okj
!!i-ackj ??i-okj

??d-askj

??d-okj
!!d-ackj ??d-okj

??i-init, ??i-ask∗, ??i-ok∗, ??i-exit, ??d-exit

Fig. 6. The part of the protocol for counter nodes

free1 done1
??i-init !!fr1

free2 done2
??i-askj ??i-okj !!fr2

free3 done3
??i-okj !!fr3

free5 done5
??d-okj

??t-okj

!!fr5

free4

done4

??t-ask1 ??t-ask2??d-askj

!!t-ack1 !!t-ack2??d-okj

??t-ok1 ??t-ok2!!fr4

Fig. 7. Parts of the protocol for auxiliary nodes

We now present the detailed construction, depicted at Fig. 4 to 7. Each state of
the protocol is actually able to synchronize with all the messages. Some transitions
are not represented on the figures, to preserve readability: all nodes with no
outgoing transitions (i.e., state Lhalt corresponding to the halting state, as well as
states zeroj

′ and donei) actually carry a self-loop synchronizing on all messages;
all other omitted transitions lead to a sink state, which is not part of the target set.

12

Let us explain the intended behaviour of the incrementation module of Fig. 5:
when entering the module, our control node n in state L is linked to c1 counter
nodes in state one1 and to c2 counter nodes in state one2; it has no other links.
Moreover, all auxiliary nodes are either in state freei or in state donei. Running
through the incrementation module from L will use one counter node m in
state zeroj (which is used to effectively encode the increase of counter cj) and
four auxiliary nodes a1 (initially in state free1), a2 (in state free2), and a3 and a′3
(in state free3).

The execution then runs as follows:

– a link is created between the control node n and the first auxiliary node a1,
followed by a message exchange !!i-init;

– a link is created between n and m, and node a1 broadcasts !!fr1;
– a link is created between n and a2, and n broadcasts !!i-askj , which is received

by both a2 and m;
– a link is created between n and a3; node m sends its acknowledgement !!i-ackj

to n;
– a link is created between n and a′3; node n sends !!i-okj , received by m, a2,
a3 and a′3;

– the link between n and a1 is removed, and a2 sends !!fr2;
– the link between n and a2 is removed, and a3 sends !!fr3;
– the link between n and a3 is removed, and a′3 sends !!fr3;
– finally, the link between n and a′3 is removed, and n sends !!i-exit.

After this sequence of steps, node n has an extra link to a counter node in
state onej , which indeed corresponds to incrementing counter cj . Moreover, no
nodes have been left in an intermediary state. A similar analysis can be done for
the second module, which implements the zero-test and decrementation. This
way, we can prove that if the two-counter machine has a halting computation,
then there is an initial configuration of our broadcast protocol from which there
is an execution synchronizing in the set F formed of the halting control state
and states onej , zeroj

′ and donei.

It now remains to prove the other direction. More precisely, we prove that
from a 1-constrained synchronizing execution of the protocol, we can extract a
synchronizing execution in some normal form, from which we derive a halting
execution of the two-counter machine.

Fix a 1-constrained synchronizing execution of the broadcast network. First
notice that when a control node n reaches some state L (the first node of an
incrementation or decrementation module), it may only be linked to counter nodes
in state onej : this is because states L can only be reached by sending !!i-exit,
!!d-exit, !!t-exit, or !!start. The former two cases may only synchronize with
counter nodes in state onej ; in the other two cases, node n may be linked to no
other node. Hence, for a control node n to traverse an incrementation module,
it must get links to four auxiliary nodes (in order to receive the four fr messages),
those four links must be removed (to avoid reaching the sink state), and an extra
link has to be created in order to receive message i-ackj . In total, traversing

13

an incrementation module takes nine communication steps and at least nine
reconfiguration steps. Similarly, traversing a decrementation module via any of
the two branches takes at least as many reconfiguration steps as communication
steps. In the end, taking into account the initial !!start communication step, if a
control node n is involved in Bn communication steps, it must be involved in at
least Bn − 1 reconfiguration steps.

Assume that every control node n is involved in at least Bn reconfiguration
steps: then we would have at least as many reconfiguration steps as communication
steps, which in a 1-constrained execution is impossible. Hence there must be
a control node n0 performing Bn0 communication steps and exactly Bn0 − 1
reconfiguration steps. As a consequence, when traversing an incrementation
module, node n0 indeed gets connected to exactly one new counter node, which
indeed must be in state onej when n0 reaches the first state of the next module.
Similarly, traversing a decrementation/zero-test module indeed performs the
expected changes. It follows that the sequence of steps involving node n0 encodes
a halting execution of the two-counter machines. �

The 1-constrained executions in the proof of Theorem 15 have the additional
property that all graphs describing configurations are 2-bounded-path configu-
rations. For K ∈ N a configuration G is a K-bounded-path configuration if the
length of all simple paths in G is bounded by K. Note that a constant bound on
the length of simple paths implies that the diameter (i.e. the length of the longest
shortest path between any pair of vertices) is itself bounded. The synchronization
problem was proved to be undecidable for broadcast networks without reconfig-
uration when restricting to K-bounded-path configurations [6]. In comparison,
for reconfigurable broadcast networks under k-constrained reconfigurations, the
undecidability result stated in Theorem 15 can be strengthened into:

Corollary 16. The synchronization problem is undecidable for reconfigurable
broadcast networks under k-constrained reconfigurations when restricted either to
bounded-path configurations, or to bounded-diameter configurations.

3.2 Decidability results

f-constrained and k-locally-constrained reconfigurations. From the equivalence
(w.r.t. synchronization) of k-locally-constrained, f -constrained and unconstrained
executions (Lemmas 9 and 8), and thanks to Theorem 2, we immediately get:

Corollary 17. Let k ∈ N and f : N→ N be a non-decreasing diverging function.
The synchronization problem for reconfigurable broadcast networks under k-locally-
constrained (resp. f -constrained) reconfigurations is decidable in PTIME.

Bounded degree topology. We now return to k-constrained reconfigurations, and
explore restrictions that allow one to recover decidability of the synchronization
problem. We further restrict k-constrained reconfigurations by requiring that
the degree of nodes remains bounded, by 1; in other terms, communications
correspond to rendez-vous between the broadcasting node and its single neighbour.

14

Theorem 18. The synchronization problem is decidable for reconfigurable broad-
cast networks under k-constrained reconfiguration when restricted to 1-bounded-
degree topologies.

Sketch of proof. The proof consists in transforming the synchronization problem
above into a reachability problem for some Petri net. The Petri net has two kinds
of places (plus a few auxiliary places): one place for each state of the protocol,
representing isolated nodes (i.e., nodes having no neighbours), and one place for
each pair of states of the protocol, representing pairs of connected nodes. Since
we restrict to degree-1 topologies, any node of the network is in one of those
two configurations. Places representing isolated nodes are simply called isolated
places in the sequel, while places corresponding to pairs of connects nodes are
called connected places.

An initialization phase stores tokens in the places described above, so as to
represent the initial configuration. In a second phase, the Petri net simulates
an execution of the reconfigurable broadcast network: communication steps and
(k-constrained) reconfiguration steps are easily encoded as transitions of this
Petri net: communication steps correspond to moving tokens from one place to
the place obtained by updating the states as prescribed by the transitions of the
broadcast protocol. Atomic reconfigurations may create or remove links, either
consuming two tokens in isolated places and adding a token in the corresponding
connected place, or the other way around. We use k auxiliary places in order to
count the number of atomic reconfigurations, in order to enforce the k-constraint.

Finally, the Petri net may enter a terminal phase, where it checks synchroniza-
tion by absorbing all tokens that lie in (isolated or connected) places corresponding
to target states. In the end, the simulated execution has been synchronizing if,
and only if, no tokens remain in any of the main states. �

4 Conclusion

Restricting reconfigurations in reconfigurable broadcast networks is natural
to better reflect mobility when communications are frequent enough and the
movement of nodes is not chaotic. In this paper, we studied how constraints
on the number of reconfigurations (at each step and for each node, at each
step and globally, or along an execution) change the semantics of networks, in
particular with respect to the synchronization problem, and affect its decidability.
Our main results are the equivalence of k-constrained and k-balanced semantics,
the undecidability of synchronization under k-constrained reconfigurations, and
its decidability when restricting to 1-bounded-degree topologies.

As future work, we propose to investigate, beyond the coverability and syn-
chronization problems, richer objectives such as cardinality reachability problems
as in [5]. Moreover, for semantics with constrained reconfigurations that are
equivalent to the unconstrained one as far as the coverability and synchronization
problems are concerned, it would be worth studying the impact of the reconfigu-
ration restrictions (e.g. k-locally-constrained or f -constrained) on the minimum
number of nodes for which a synchronizing execution exists, and on the minimum
number of steps to synchronize.

15

References

1. Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with probabilities
in reconfigurable broadcast networks. In FoSSaCS’14, LNCS 8412, p. 134–148.
Springer, 2014.

2. Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Distributed local
strategies in broadcast networks. In CONCUR’15, LIPIcs 42, p. 44–57. LZI, 2015.

3. Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification, Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

4. Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel
Stan. Reachability in networks of register protocols under stochastic schedulers.
In ICALP’16, LIPIcs 55, p. 106:1–106:14. LZI, 2016.

5. Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro.
On the complexity of parameterized reachability in reconfigurable broadcast net-
works. In FSTTCS’12, LIPIcs 18, p. 289–300. LZI, 2012.

6. Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized
verification of ad hoc networks. In CONCUR’10, LNCS 6269, p. 313–327. Springer,
2010.

7. E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal
Methods in System Design, 9(1-2):105–131, 1996.

8. Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verifica-
tion (invited talk). In STACS’14, LIPIcs 25, p. 1–10. LZI, 2014.

9. Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast
protocols. In LICS’99, p. 352–359. IEEE Comp. Soc. Press, 1999.

10. Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification
of asynchronous shared-memory systems. In CAV’13, LNCS 8044, p. 124–140.
Springer, 2013.

11. Paulin Fournier. Parameterized verification of networks of many identical processes.
Thèse de doctorat, Université Rennes 1, France, 2015.

12. Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675–735, 1992.

13. Matthew Hague. Parameterised pushdown systems with non-atomic writes.
In FSTTCS’11, LIPIcs 13, p. 457–468. LZI, 2011.

14. Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
15. Ichiro Suzuki. Proving properties of a ring of finite-state machines. Information

Processing Letters, 28(4):213–214, 1988.

16

http://dx.doi.org/10.1007/978-3-642-54830-7_9
http://dx.doi.org/10.1007/978-3-642-54830-7_9
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.44
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.44
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.106
http://dx.doi.org/LIPIcs.FSTTCS.2012.289
http://dx.doi.org/LIPIcs.FSTTCS.2012.289
http://dx.doi.org/10.1007/978-3-642-15375-4_22
http://dx.doi.org/10.1007/978-3-642-15375-4_22
http://dx.doi.org/10.1007/BF00625970
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1007/978-3-642-39799-8_8
http://dx.doi.org/10.1007/978-3-642-39799-8_8
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.457
http://dx.doi.org/10.1016/0020-0190(88)90211-6

	Parameterized verification of synchronization in constrained reconfigurable broadcast networks

