Norine, Florine, s2m: powerful bioinformatics resource and tools for the discovery of novel nonribosomal peptides, natural metabolites with versatile activities
Qassim Esmaeel, Yoann Dufresne, Areski Flissi, Maude Pupin, Philippe Jacques, Valérie Leclère

To cite this version:
Qassim Esmaeel, Yoann Dufresne, Areski Flissi, Maude Pupin, Philippe Jacques, et al.. Norine, Florine, s2m: powerful bioinformatics resource and tools for the discovery of novel nonribosomal peptides, natural metabolites with versatile activities. FEMS 2017 - 7th congress of Federation of European Microbiology societies, Jul 2017, Valencia, Spain. hal-01888999

HAL Id: hal-01888999
https://hal.archives-ouvertes.fr/hal-01888999
Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Norine, Florine, s2m: powerful bioinformatics resource and tools for the discovery of novel nonribosomal peptides, natural metabolites with versatile activities

Qassim Esmaeel¹, Yoann Dufresne²,³, Areski Flissi²,³, Maude Pupin²,³, Philippe Jacques¹,⁴ and Valérie Leclère¹

¹: Univ Lille, INRA, ISA, Univ Artois, Univ Littoral Côte d’Opale, EA 7394 - Institut Charles Viollette, Lille France
²: Univ Lille, CNRS, Centrale Lille, UMR9189 – CRISTAL- Lille, France
³: INRIA –Lille Nord Europe, Bonsai team, Villeneuve d’Ascq, France
⁴: TERRA research centre, MiPI, Gembloux AgroBiotech, Univ Liège, Gembloux, Belgium

NonRibosomal peptides (NRPs) are a huge untapped resource of natural products displaying activities with applications in health (i.e. antibiotics) or in biocontrol (especially siderophores and lipopeptides with antifungal activity). NRPs are microbial secondary metabolites produced by enzymatic complexes, so-called non-ribosomal peptide synthetases (NRPSs). These modular assembly lines work step by step to build the peptides, each module adding one monomer to the peptidic chain. Considering the modular organization of NRPSs, and the structural specific features of the NRPs, dedicated bioinformatics tools have been developed with the aim of accelerating the screening for new active metabolites.

NORINE http://bioinfo.cristal.univ-lille.fr/norine/
- A unique database containing more than 1200 annotated NRPs
- Now open to crowdsourcing (Flissi et al., 2016)

Florine workflow: from genomic data to the discovery of new NRPs (Caradec et al. 2014)

Genomic data → Gene clusters → NRPS genes → NRPS proteins → Monomer prediction → Isomery prediction → Structure comparison

Smiles2Monomers http://bioinfo.cristal.univ-lille.fr/norine/smiles2monomers.jsp
- A software to infer monomeric structure of polymers from their atomic structure (Dufresne et al. 2015)

Burkholderia genome mining: a user case

Burkholderia mallei/pseudomallei

Clade 1

Chromosome → 3 clusters

Plasmide → 8 clusters

Clade 2

Mainly Bcc (cepacia complex)

Phymabactin (siderophore)

Malleobactin (siderophore)

Ornibactin (siderophore)

Pb. rhizoxinica

High potential for lipopeptide synthesis

Clade 3

Mainly Bcc (cepacia complex)

Cepaciachelin (siderophore)

Plant beneficial

Paraburkholderia