Bayesian Models for Unit Discovery on a Very Low Resource Language

Abstract : Developing speech technologies for low-resource languages has become a very active research field over the last decade. Among others, Bayesian models have shown some promising results on artificial examples but still lack of in situ experiments. Our work applies state-of-the-art Bayesian models to unsupervised Acoustic Unit Discovery (AUD) in a real low-resource language scenario. We also show that Bayesian models can naturally integrate information from other resourceful languages by means of informative prior leading to more consistent discovered units. Finally, discovered acoustic units are used, either as the 1-best sequence or as a lattice, to perform word segmentation. Word segmentation results show that this Bayesian approach clearly outperforms a Segmental-DTW baseline on the same corpus.
Type de document :
Communication dans un congrès
ICASSP 2018, Apr 2018, Calgary, Alberta, Canada
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01888718
Contributeur : Emmanuel Dupoux <>
Soumis le : vendredi 7 décembre 2018 - 14:38:54
Dernière modification le : vendredi 7 décembre 2018 - 17:49:48

Fichier

Ondel_GBLHSDBYK_2018_Bayesian_...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01888718, version 1
  • ARXIV : 1802.06053

Citation

Lucas Ondel, Pierre Godard, Laurent Besacier, Elin Larsen, Mark Hasegawa-Johnson, et al.. Bayesian Models for Unit Discovery on a Very Low Resource Language. ICASSP 2018, Apr 2018, Calgary, Alberta, Canada. 〈hal-01888718〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

10