On the logical strengths of partial solutions to mathematical problems
Laurent Bienvenu, Ludovic Patey, Paul Shafer

To cite this version:

HAL Id: hal-01888542
https://hal.archives-ouvertes.fr/hal-01888542
Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE LOGICAL STRENGTHS OF PARTIAL SOLUTIONS TO MATHEMATICAL PROBLEMS

LAURENT BIENVENU, LUDOVIC PATEY, AND PAUL SHAFER

ABSTRACT. We use the framework of reverse mathematics to address the question of, given a mathematical problem, whether or not it is easier to find an infinite partial solution than it is to find a complete solution. Following Flood [9], we say that a Ramsey-type variant of a problem is the problem with the same instances but whose solutions are the infinite partial solutions to the original problem. We study Ramsey-type variants of problems related to König’s lemma, such as restrictions of König’s lemma, Boolean satisfiability problems, and graph coloring problems. We find that sometimes the Ramsey-type variant of a problem is strictly easier than the original problem (as Flood showed with weak König’s lemma) and that sometimes the Ramsey-type variant of a problem is equivalent to the original problem. We show that the Ramsey-type variant of weak König’s lemma is robust in the sense of Montalbán [26]: it is equivalent to several perturbations. We also clarify the relationship between Ramsey-type weak König’s lemma and algorithmic randomness by showing that Ramsey-type weak weak König’s lemma is equivalent to the problem of finding diagonally non-recursive functions and that these problems are strictly easier than Ramsey-type weak König’s lemma. This answers a question of Flood.

1. INTRODUCTION

This work presents a detailed study of the question given some mathematical problem, is it easier to find an infinite partial solution than it is to find a complete solution? that was implicitly raised by Flood’s work in [9]. By ‘mathematical problem,’ we simply mean any theorem from ordinary mathematics that can be easily formulated in the language of instances and solutions in the sense illustrated by the key example of König’s lemma. König’s lemma states that every infinite, finitely branching tree has an infinite path. The corresponding problem is thus that of finding an infinite path through a given infinite, finitely branching tree. The problem’s instances are the infinite, finitely branching trees T, and the solutions to a given instance T are the infinite paths through T.

Formally, we consider Π^0_2 statements of the form

$$\forall X (\varphi(X) \rightarrow \exists Y \psi(X, Y)).$$

Every such statement corresponds to a problem whose instances are the sets X such that $\varphi(X)$ and whose solutions to a given instance X are the sets Y such that $\psi(X, Y)$. In the example of König’s lemma, $\varphi(X)$ expresses that X is an infinite, finitely branching tree, and $\psi(X, Y)$ expresses that Y is an infinite path through X.

The problems we consider come with natural notions of infinite partial solutions. Again, consider König’s lemma, where we specify that an infinite, finitely branching tree means an infinite, finitely branching subtree of $\mathbb{N}^{<\mathbb{N}}$. For such a tree T, a path through T, which we think of as a complete solution to the instance T, is a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall n((f(0), f(1), \ldots, f(n-1)) \in T)$. An infinite partial solution to the instance T is then a function $g : X \rightarrow \mathbb{N}$ for an infinite $X \subseteq \mathbb{N}$ such...
that there is a function $f : \mathbb{N} \to \mathbb{N}$ that extends g and is a path through T. Following Flood [9], we call the variant of a problem in which we ask not for complete solutions but for infinite partial solutions the Ramsey-type variant of the problem. Thus, for example, Ramsey-type König's lemma is the problem of producing an infinite partial path (in the sense described above) through an infinite, finitely-branching tree. The label 'Ramsey-type' comes from an analogy with the infinite versions of Ramsey's theorem. Any infinite subset of an infinite homogenous set for some coloring is also an infinite homogeneous set for that coloring. The Ramsey-type variant of a problem has this same flavor: an infinite piece of a partial solution to some instance of the problem is also a partial solution to that same instance.

Thus given a mathematical problem, we ask whether or not it can be solved using its Ramsey-type variant. If the answer is positive, then finding partial solutions to the problem is just as hard as finding complete solutions. If the answer is negative, then it is easier to find partial solutions than it is to find complete solutions. Reverse mathematics, a foundational program whose aim is to classify the theorems of ordinary (i.e., non-set-theoretic) mathematics according to their provability strengths, provides an appropriate framework in which to analyze such questions. In reverse mathematics, theorems are formalized in the language of second-order arithmetic (which even suffices for theorems concerning the structure of the real line or analysis on complete separable metric spaces), and the implications among them are studied over a base theory called RCA$_0$. Roughly speaking, the theorems provable in RCA$_0$ are those that are computable in the sense illustrated by the example of the intermediate value theorem. Given a continuous real-valued function which is negative at 0 and positive at 1, one can compute an $x \in (0, 1)$ such that $f(x) = 0$ essentially by using the usual interval-halving procedure. This argument can be formalized to a proof of the intermediate value theorem in RCA$_0$ (see [34] Theorem II.6.6).

Implication over RCA$_0$ provides a natural classification of logical strength. We think of a theorem φ as being at least as strong as a theorem ψ if $\varphi \rightarrow \psi$ can be proved in RCA$_0$. Similarly, we think of φ and ψ as having equivalent strength if $\varphi \leftrightarrow \psi$ can be proved in RCA$_0$. Thus we may, for example, formalize the question of whether or not it is easier to find partial paths through infinite, finitely branching trees than it is to find complete paths by asking whether or not the statement “for every infinite, finitely branching tree there exists an infinite partial path implies König's lemma” can be proved in RCA$_0$. Flood [9] was the first to consider such questions and he showed (among other results) that the Ramsey-type variant of weak König's lemma (which is König's lemma restricted to infinite, binary branching trees) is indeed easier than weak König's lemma. In contrast, we show that the forgoing example of König's lemma for arbitrary infinite, finitely branching trees is equivalent to its Ramsey-type variant (Theorem 3.17 below). Thus for some problems it is easier to find infinite partial solutions and for other problems it is not.

Much of the present work is dedicated to understanding the relationships among Flood's Ramsey-type variant of weak König's lemma (henceforth 'RWKL'), Ramsey-type variants of other problems, and problems that are well-studied in reverse mathematics. For example, Flood proved that RWKL is strictly weaker than weak König's lemma and at least as strong as DNR (an important statement defined in Section 2.4), but he left as an open question whether or not RWKL is strictly stronger than DNR. We answer Flood's question by showing that RWKL is indeed strictly stronger than DNR (Corollary 6.12 below), and we also show that DNR is equivalent to the Ramsey-type variant of weak weak König's lemma (which is König's lemma restricted to binary branching trees of positive measure;
ON THE LOGICAL STRENGTHS OF PARTIAL SOLUTIONS TO MATHEMATICAL PROBLEMS

Theorem 3.4 below).1 Thus RWKL is distinct from every theorem previously studied in the context of reverse mathematics. This raises the question of whether RWKL is a sort of logical artifact or whether RWKL characterizes the logical strength of a fundamental mathematical idea. We propose that RWKL is indeed fundamental, in no small part because the basic question that inspires RWKL, that is, the question of whether or not it is easier to find an infinite partial solution to a problem than to find a complete solution, is so natural. In order to provide further support for RWKL, we prove a number of theorems which, together, suggest that RWKL is robust in the informal sense proposed by Montalbán [26]. Theorem 3.27 shows that RWKL is equivalent to several small perturbations. Much more significantly, in Section 4 and Section 5 we show that RWKL is equivalent to several quite large perturbations. In these sections, we consider statements that are equivalent to weak König’s lemma (compactness for propositional logic in Section 4 and graph coloring in Section 5) and show that their corresponding Ramsey-type variants are equivalent to RWKL.

RWKL is also of significant technical interest because it provides a sufficient amount of compactness for many separation results concerning Ramsey-type statements. For example, Seetapun’s theorem [33] (separating RT_2^2 from ACA_0), Wang’s separation of the free set and thin set theorems from ACA_0 [36], and various recent separations of Patey [31, 32] can be streamlined by using models of RWKL in place of models of WKL. Many computability-theoretic properties are preserved by both RT_2^2 and WKL, such as cone avoidance [33], hyperimmunity [29], and fairness [31]. Explicit use of models of RWKL is helpful when proving that RT_2^2 preserves a property which is not preserved by WKL, such as constant-bound-enumeration avoidance [24]. In particular, Liu’s theorems [23, 24], that RT_2^2 does not imply WKL or WWKL, can be simplified by making explicit use of models of RWKL. In this sense, using of models of RWKL rather than of WKL is more general because it facilitates proving preservations of more computability-theoretic properties.

The paper is organized as follows. In the next section, we present the necessary reverse mathematics background. In Section 3, we study several Ramsey-type variants of full, bounded, weak, and weak weak König’s lemma. The remainder of the paper focuses on Ramsey-type variants of theorems equivalent to weak König’s lemma. In Section 4, we study Ramsey-type variants of the compactness theorem for propositional logic. In Section 5, we study Ramsey-type variants of graph coloring theorems. In Section 6, we prove several non-implications concerning the Ramsey-type theorems, including that DNR does not imply RWKL.

1.1. Basic notation

We follow the standard notation from computability theory. $(\Phi_e)_{e \in \mathbb{N}}$ is an effective list of all partial recursive functions. $W_e = \text{dom}(\Phi_e)$ is the e^{th} r.e. set. These relativize to any oracle X, and we denote the corresponding lists by $(\Phi^X_e)_{e \in \mathbb{N}}$ and $(W^X_e)_{e \in \mathbb{N}}$.

Identify each $k \in \mathbb{N}$ with the set $\{0, 1, \ldots, k-1\}$. For $k \in \mathbb{N} \cup \{\mathbb{N}\}$ and $s \in \mathbb{N}$, k^s is the set of strings of length s over k, $k^{<\omega}$ is the set of strings of length $< s$ over k, k^{ω} is the set of finite strings over k, and $k^\mathbb{N}$ is the set of infinite strings over k. The length of a finite string σ is denoted $|\sigma|$. For $i \in \mathbb{N}$ and σ a finite or infinite string, $\sigma(i)$ is the $(i+1)^{th}$ value of σ. For finite or infinite strings σ and τ, σ is a prefix of τ (written $\sigma \preceq \tau$) if $\text{dom}(\sigma) \subseteq \text{dom}(\tau)$ and $(\forall i \in \text{dom}(\sigma))(\sigma(i) = \tau(i))$. For an $n \in \mathbb{N}$ and a string (finite or infinite) σ of length $\geq n$, $\sigma \upharpoonright n = \langle \sigma(0), \sigma(1), \ldots, \sigma(n-1) \rangle$ is the initial segment of σ of length n.

1These results have been independently proven by Flood and Towsner [11].
A tree is a set $T \subseteq \mathbb{N}^{<\mathbb{N}}$ such that $\forall \sigma \forall \tau (\sigma \in T \land \tau \leq \sigma \rightarrow \tau \in T)$. If T is a tree and $s \in \mathbb{N}$, then T^s is the set of strings in T of length s. An $f \in \mathbb{N}^\mathbb{N}$ is a path through a tree T if $(\forall n \in \mathbb{N})(f \upharpoonright n \in T)$. The set of paths through T is denoted $[T]$.

For $k \in \mathbb{N} \cup \{\mathbb{N}\}$, the space $k^\mathbb{N}$ is topologized by viewing it as $\prod_{i \in \mathbb{N}} k$, giving each copy of k the discrete topology, and giving the product the product topology. Basic open sets, also called cylinders, are sets of the form $[\sigma] = \{ f \in k^\mathbb{N} : f \geq \sigma \}$ for $\sigma \in k^{<\mathbb{N}}$. Open sets are of the form $\bigcup_{\sigma \in W} [\sigma]$ for $W \subseteq k^{<\mathbb{N}}$. If the set W is an r.e. subset of $k^{<\mathbb{N}}$, then $\bigcup_{\sigma \in W} [\sigma]$ is said to be r.e. (or effectively) open. We identify the space $2^\mathbb{N}$ of infinite binary strings with $\mathscr{P}(\mathbb{N})$ by equating each subset of \mathbb{N} with its characteristic string as usual. $2^\mathbb{N}$ is compact, and its clopen sets are exactly the finite unions of cylinders. The uniform (or Lebesgue) measure μ on $2^\mathbb{N}$ is the Borel probability measure for which $(\forall \sigma \in 2^{<\mathbb{N}})(\mu([\sigma])) = 2^{-|\sigma|})$.

It is a convention, when working in second-order arithmetic, to use the symbol ‘ω’ to refer to the standard natural numbers and to use the symbol ‘\mathbb{N}’ to refer to the first-order part of a possibly non-standard model of some fragment of arithmetic. We follow this convention. For example, the definitions above use ‘\mathbb{N}’ because they are intended to be interpreted in possibly non-standard models. We use ‘ω’ when we explicitly build a structure whose first-order part is standard.

2. Reverse mathematics background

Reverse mathematics is a foundational program, introduced by Friedman [12] and developed by Friedman and by Simpson, whose goal is to classify the theorems of ordinary mathematics according to their provability strengths. Simpson’s book [34] is the standard reference. A truly remarkable phenomenon is that five equivalence classes, called the Big Five (in order of increasing strength: RCA_0, WKL_0, ACA_0, ATR_0, and $\Pi^1_1\text{-CA}_0$), emerge and classify the majority of usual theorems. The Big Five classes also have satisfying interpretations as the ability to perform well-known computability-theoretic operations. For example, RCA_0 corresponds to the ability to perform Turing reductions and Turing joins, whereas ACA_0 corresponds to the ability to perform Turing reductions, Turing joins, and Turing jumps.

There is, however, a notable family of theorems which are not classified by the Big Five. These are what we call the Ramsey-type theorems, perhaps the most famous of which is Ramsey’s theorem for pairs and two colors. Since the seminal paper of Cholak, Jockusch, and Slaman [4], an abundant literature has developed surrounding the strength of Ramsey’s theorem for pairs and related theorems, such as chain-antichain, ascending or descending sequence, and the Erdős-Moser theorem (see, for example, [15] and [22]). These Ramsey-type theorems do not typically have nice computability-theoretic characterizations of their equivalence classes.

We are primarily concerned with the logical relationships among combinatorial statements (specifically Ramsey-type statements) provable in the system ACA_0. Thus we now summarize several of the subsystems of second-order arithmetic below ACA_0 and the relationships among them.

2.1. Recursive comprehension, weak König’s lemma, and arithmetical comprehension

First we summarize the induction, bounding, and comprehension schemes and three of the most basic subsystems of second-order arithmetic. Everything stated here is explained in full detail in [34].

Full second-order arithmetic consists of the basic axioms:
∀m(m + 1 ≠ 0) ∀m∀n(m × (n + 1) = (m × n) + m)
∀m∀n(m + 1 = n + 1 → m = n) ∀m∀n(m < n + 1 ↔ (m < n ∨ m = n))
∀m(n + 0 = m) ∀m~(m < 0)
∀m∀n(m + (n + 1) = (m + n) + 1) ∀m(m × 0 = 0)

the induction axiom:

∀X((0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X)) → ∀n(n ∈ X));

and the comprehension scheme, which consists of the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is any formula in the language of second-order arithmetic in which X is not free. We obtain subsystems of second-order arithmetic by limiting induction and comprehension to predicates of a prescribed complexity.

For each n ∈ ω, the Σ^0_n (Π^0_n) induction scheme, denoted Σ^0_n (Π^0_n), consists of the universal closures of all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n + 1))] → ∀nϕ(n),

where ϕ is Σ^0_n (Π^0_n). The induction schemes are closely related to the bounding (also called collection) schemes. For each n ∈ ω, the Σ^0_n (Π^0_n) bounding scheme, denoted Σ^0_n (Π^0_n), consists of the universal closures of all formulas of the form

∀a[(∀n < a)(∃m)ϕ(n, m) → ∃b(∀n < a)(∃m < b)ϕ(n, m)],

where ϕ is Σ^0_n (Π^0_n).

The arithmetical comprehension scheme consists of the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is an arithmetical formula in which X is not free. A further restriction of comprehension is the Δ^0_1 comprehension scheme, which consists of the universal closures of all formulas of the form

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ^0_1, ψ is Π^0_1, and X is not free in ϕ.

RCA_0 (for recursive comprehension axiom) encapsulates recursive mathematics and is the usual base system used when comparing the logical strengths of statements of second-order arithmetic. The axioms of RCA_0 are the basic axioms, IΣ^0_1, and the Δ^0_1 comprehension scheme.

RCA_0 proves sufficient number-theoretic facts to implement the codings of finite sets and sequences that are typical in computability theory. Thus inside RCA_0, we can fix an enumeration (Φ_e)_{e ∈ N} of the partial recursive functions. We can also interpret the existence of the set N^{<N} of all finite strings and give the usual definition of a tree as subset of N^{<N} that is closed under initial segments.

Weak König’s lemma (WKL) is the statement “every infinite subtree of 2^{<N} has an infinite path,” and WKL_0 is the subsystem RCA_0 + WKL. WKL_0 captures compactness arguments, and it is strictly stronger than RCA_0 (i.e., RCA_0 ⊈ WKL).

ACA_0 (for arithmetical comprehension axiom) is the subsystem axiomatized by the basic axioms, the induction axiom, and the arithmetical comprehension scheme. It can also be obtained by adding
the arithmetical comprehension scheme to \(\text{RCA}_0 \). \(\text{ACA}_0 \) is strictly stronger than \(\text{WKL}_0 \), and all of the statements that we consider are provable in \(\text{ACA}_0 \).

2.2. Ramsey’s theorem and its consequences

Let \(S \subseteq \mathbb{N} \) and \(n \in \mathbb{N} \). \([S]^n\) denotes the set of \(n \)-element subsets of \(S \), typically thought of as coded by the set of strictly increasing \(n \)-tuples over \(S \).

Definition 2.1 (Ramsey’s theorem). Fix \(n, k \in \mathbb{N} \) with \(n, k > 0 \). A set \(H \) is homogeneous for a coloring \(f : [\mathbb{N}]^n \to k \) (or \(f \)-homogeneous) if there is a color \(c < k \) such that \(f([H]^n) = \{c\} \). A coloring \(f : [\mathbb{N}]^n \to k \) is stable if for every \(\sigma \in [\mathbb{N}]^{n-1} \) there is a color \(c \) such that \((\exists m)(\forall s > m)(f(\sigma, s) = c)\). \(\text{RT}^n_k \) is the statement “for every coloring \(f : [\mathbb{N}]^n \to k \), there is an infinite \(f \)-homogeneous set.” \(\text{SRT}^n_k \) is the restriction of \(\text{RT}^n_k \) to stable colorings.

Definition 2.2 (Cohesiveness). Let \(\vec{R} = (R_i)_{i \in \mathbb{N}} \) be a sequence of subsets of \(\mathbb{N} \). A set \(C \subseteq \mathbb{N} \) is called \(\vec{R} \)-cohesive if \(C \) is infinite and \(\forall i (C \subseteq R_i \lor C \subseteq \overline{R_i}) \), where \(A \subseteq B \) means that \(A \setminus B \) is finite. \(\text{COH} \) is the statement “for every sequence of sets \(\vec{R} \), there is an \(\vec{R} \)-cohesive set.”

For every fixed \(n \in \omega \) with \(n \geq 3 \), the statement \((\forall k \geq 2) \text{RT}^n_k \) is equivalent to \(\text{ACA}_0 \) over \(\text{RCA}_0 \). Indeed, the statement \(\text{RT}^3_2 \) is already equivalent to \(\text{ACA}_0 \) over \(\text{RCA}_0 \) (see [34] Theorem III.7.6).

Much work was motivated by the desire to characterize the logical strength of \(\text{RT}^2_2 \). Among many results, Cholak, Jockusch, and Slaman [4] (with a bug-fix in [25]) showed that \(\text{RT}^2_2 \) splits into \(\text{COH} \) and \(\text{SRT}^2_2 \) over \(\text{RCA}_0 \): \(\text{RCA}_0 \vdash \text{RT}^2_2 \iff \text{COH} \land \text{SRT}^2_2 \). By work of Chong, Slaman, and Yang [5], \(\text{SRT}^2_2 \) is strictly weaker than \(\text{RT}^2_2 \) over \(\text{RCA}_0 \). By work of Hirst [17] and Liu [23], \(\text{RT}^2_2 \) and \(\text{SRT}^2_2 \) are independent of \(\text{WKL}_0 \) over \(\text{RCA}_0 \).

Definition 2.3 (Chain-antichain). A partial order \(P = (P, \leq_P) \) consists of a set \(P \subseteq \mathbb{N} \) together with a reflexive, antisymmetric, transitive, binary relation \(\leq_P \) on \(P \). A chain in \(P \) is a set \(S \subseteq P \) such that \((\forall x, y \in S)(x \leq_P y \lor y \leq_P x)\). An antichain in \(P \) is a set \(S \subseteq P \) such that \((\forall x, y \in S)(x \neq y \to x \nmid_P y)\) (where \(x \mid_P y \) means that \(x \nleq_P y \land y \nleq_P x \)). A partial order \((P, \leq_P) \) is stable if either \((\forall i \in P)(\exists s)(\forall j \in P \to i \leq_P j) \lor (\forall j \in P \to i \nmid_P j)\) or \((\forall i \in P)(\exists s)(\forall j \in P \to i \geq_P j) \lor (\forall j \in P \to i \nmid_P j)\). \(\text{CAC} \) is the statement “every infinite partial order has an infinite chain or an infinite antichain.” \(\text{SCAC} \) is the restriction of \(\text{CAC} \) to stable partial orders.

Hirschfeldt and Shore give a detailed study of \(\text{CAC} \) and \(\text{SCAC} \) (and many other principles) in [15]. They show that \(\text{RCA}_0 \vdash \text{CAC} \iff \text{COH} \land \text{SCAC} \) and that, over \(\text{RCA}_0 \), \(\text{SCAC} \) is strictly weaker than \(\text{CAC} \) and \(\text{CAC} \) is strictly weaker than \(\text{RT}^2_2 \).

Definition 2.4 (The Erdős-Moser theorem). A tournament \(T = (D, T)^2 \) consists of a set \(D \subseteq \mathbb{N} \) and an irreflexive binary relation on \(D \) such that for all \(x, y \in D \) with \(x \neq y \), exactly one of \(T(x, y) \) and \(T(y, x) \) holds. A tournament \(T \) is transitive if the relation \(T \) is transitive in the usual sense. A tournament \(T \) is stable if \((\forall x \in D)(\exists n)(\forall y > n)(y \in D \to T(x, y)) \land (\forall y > n)(y \in D \to T(y, x))\). A sub-tournament of \(T \) is a tournament of the form \((E, E^2 \cap T)\) for an \(E \subseteq D \). \(\text{SEM} \) is the statement “for every infinite tournament there is an infinite transitive sub-tournament.” \(\text{SEM} \) is the restriction of \(\text{EM} \) to stable tournaments.

It is easy to see that \(\text{RCA}_0 \vdash \text{RT}^2_2 \to \text{EM} \) and that \(\text{RCA}_0 \vdash \text{SRT}^2_2 \to \text{SEM} \). Furthermore, \(\text{SEM} \) is strictly weaker than \(\text{EM} \) over \(\text{RCA}_0 \). This can be deduced from the fact that \(\text{RCA}_0 \vdash \text{EM} \to ^2\text{The notational convention is that a partial order } P = (P, \leq_P) \text{ is identified with its underlying set, whereas a tournament } T = (D, T) \text{ is identified with its relation.}
2-DNR (Joseph Miller, personal communication; see Section 2.4 below for the definition of 2-DNR) and the fact that there is a (non-standard) model of $\text{RCA}_0 + \text{SRT}_2^2$ (and hence of $\text{RCA}_0 + \text{SEM}$) that contains only low sets [5] (see [28] for a complete explanation). By work of Bovykin and Weiermann [3] and of Lerman, Solomon, and Towsner [22], EM and SEM are strictly weaker than RT_2^2 over RCA_0 and are independent of CAC and SCAC over RCA_0.

2.3. Weak weak König’s lemma and Martin-Löf randomness

Let $T \subseteq 2^{<\omega}$ be a tree and let $q \in \mathbb{Q}$. The measure of (the set of paths through) T is $\geq q$ (written $\mu(T) \geq q$) if $\forall s(2^{-|T|} \geq q)$ (recall that T^s is the set of strings in T of length s). A tree $T \subseteq 2^{<\omega}$ has positive measure, written $\mu(T) > 0$, if $(\exists q \in \mathbb{Q})(q > 0 \land \mu(T) \geq q)$. Weak weak König’s lemma (WWKL), introduced by Yu and Simpson [37], is the statement “every subtree of $2^{<\omega}$ with positive measure has an infinite path.” WWKL is strictly weaker than WKL over RCA_0 [37]. It is well-known that, over RCA_0, WWKL is equivalent to 1-RAN, which is the statement “for every set X, there is a set Y that is Martin-Löf random relative to X” (see [2], for example).

Avigad, Dean, and Rute [2] generalize WWKL to n-WWKL for each $n \in \omega$ with $n \geq 1$. Informally, n-WWKL asserts that if X is a set and $T \subseteq 2^{<\omega}$ is a tree of positive measure that is recursive in $X^{(n-1)}$, then T has an infinite path. Care must be taken to formalize n-WWKL without implying the existence of $X^{(n-1)}$ or of T. For $n \in \omega$ with $n \geq 1$, let $e \in X^{(n)}$ abbreviate the formula

$$(Qx_{n-2}) \ldots (\exists x_1)(\forall x_0)(\exists \sigma \leq X)[\Phi^q_e((x_{n-2}, \ldots, x_0, 0))].$$

The quantifier ‘Q’ is ‘∀’ if n is even and is ‘∃’ if n is odd. In the case $n = 1$, the formula is simply $(\exists \sigma \leq X)[\Phi^0_e((0))].$

Definition 2.5. For $n \in \omega$ with $n \geq 2$, n-WWKL is the statement “for every X and e, if $\Phi^X_{(n-1)}$ is the characteristic function of a subtree of $2^{<\omega}$ with positive measure, then this tree has an infinite path.” (That is, there is a function $f : \mathbb{N} \to 2$ such that $\forall m[\Phi^X_{(n-1)}(f \upharpoonright m) = 1].$)

Avigad, Dean, and Rute [2] also generalize 1-RAN to n-RAN, which is a formalization of the statement “for every X there is a Y that is n-random relative to X,” for all $n \in \omega$ with $n \geq 1$. They prove that the correspondence between 1-WWKL and 1-RAN also generalizes to all n once $\mathbb{B} \Sigma^0_n$ is added to n-RAN: for every $n \in \omega$ with $n \geq 1$, n-WWKL and n-RAN + $\mathbb{B} \Sigma^0_n$ are equivalent over RCA_0. Notice that this implies that for every $n \in \omega$ with $n \geq 1$, $\text{RCA}_0 + n$-WWKL + $\mathbb{B} \Sigma^0_n$.

2.4. Diagonally non-recursive functions

A function $f : \mathbb{N} \to \mathbb{N}$ is diagonally non-recursive (DNR) if $\forall e(f(e) \neq \Phi^X_e(e))$ and is diagonally non-recursive relative to a set X (DNR(X)) if $\forall e(f(e) \neq \Phi^X_e(e))$. An important characterization is that a set computes a DNR function if and only if it computes a fixed-point free function, i.e., a function $g : \mathbb{N} \to \mathbb{N}$ such that $\forall e(W^g_e \neq W_e)$.

Definition 2.6. DNR is the statement “for every X there is a function f such that $\forall e(f(e) \neq \Phi^X_e(e)).$”

It is clear that no DNR function is recursive and therefore that $\text{RCA}_0 \nvdash \text{DNR}$. On the other hand, it is a classical result of Kučera [21] that every Martin-Löf random set computes a DNR function, and
its proof readily relativizes and easily formalizes in RCA$_0$. Therefore RCA$_0$ ⊬ WWKL → DNR. By work of Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1], DNR is strictly weaker than WWKL over RCA$_0$.

As with weak weak König’s lemma and Martin-Löf randomness, we can define a hierarchy of principles expressing the existence of diagonally non-recursive functions. For every $n \in \omega$ with $n \geq 1$, we generalize DNR to n-DNR, which is a formalization of the statement “for every X there exists a function that is diagonally non-recursive relative to $X^{(n-1)}$.”

Definition 2.7. n-DNR is the statement “for every X there is a function f such that $\forall e(f(e) \neq \Phi_e^{X^{(n-1)}}(e))$”.

Of course, the $\Phi_e^{X^{(n-1)}}(e)$ in the above definition should be interpreted as it is in Section 2.3. Again, RCA$_0$ ⊬ n-WWKL → n-DNR. We prove this via n-RAN to avoid the use of $B\Sigma^0_n$.

Theorem 2.8. RCA$_0$ ⊬ n-RAN → n-DNR.

Proof. Let X be given, and, by n-RAN, let Y be n-random relative to X. Define $f : \mathbb{N} \to \mathbb{N}$ by $\forall e(f(e) = \text{the number whose binary expansion is } Y \upharpoonright e)$. We show that f is almost DNR relative to $X^{(n-1)}$. Consider the sequence $(\Psi_i)_{i \in \mathbb{N}}$ defined by

$$\Psi_i = \{Z : (\exists e > i)(\exists \sigma \in 2^e)(\text{the binary expansion of } \Phi_e^{X^{(n-1)}}(e) \text{ is } \sigma \text{ and } \sigma \leq Z)\}.$$

$(\Psi_i)_{i \in \mathbb{N}}$ is a uniform sequence of strict (in the sense of [2]) Σ^0_n sets, and $\forall i(\mu(\Psi_i) \leq 2^{-i})$ because Ψ_i contains at most one string of length e for each $e > i$. Thus $(\Psi_i)_{i \in \mathbb{N}}$ is a Σ^0_n-test. Therefore $Y \notin \Psi_i$ for some $i \in \mathbb{N}$. Suppose for a moment that $f(e) = \Phi_e^{X^{(n-1)}}(e)$ for an $e > i$. This means that $\Phi_e^{X^{(n-1)}}(e)$ is the number whose binary expansion is $Y \upharpoonright e$ and thus that $\llbracket Y \upharpoonright e \rrbracket \subseteq \Psi_i$, a contradiction. Therefore f is DNR relative to $X^{(n-1)}$ at all $e > i$. For each $e \leq i$, we can effectively find an index m_e such that $\forall \sigma \exists x(\Phi_{m_e}(x) = \Phi_e^\sigma(e))$. Thus $f(m_e) \neq \Phi_e^{X^{(n-1)}}(m_e) = \Phi_e^{X^{(n-1)}}(e)$. So we may obtain a function that is DNR relative to $X^{(n-1)}$ by changing $f(e)$ to $f(m_e)$ for all $e \leq i$. □

It follows that RCA$_0$ ⊬ n-WWKL → n-DNR because RCA$_0$ ⊬ n-WWKL → n-RAN. By work of Slaman [35], RCA$_0$ + 2-RAN $\not\vdash B\Sigma^0_2$, so we may also conclude that RCA$_0$ + 2-DNR $\not\vdash B\Sigma^0_2$.

2.5. Ramsey-type weak König’s lemma

In [9], Flood introduced the principle Ramsey-type weak König’s lemma, a simultaneous weakening of WKL and RT$_2^2$. Informally, RWKL states that if $T \subseteq 2^{\omega}$ is an infinite tree, then there is an infinite set X that is either a subset of a path through T or disjoint from a path through T (when thinking of the paths through T as characteristic strings of subsets of \mathbb{N}). When formalizing RWKL, care must be taken to avoid implying the existence of a path through T and hence implying WKL.

Definition 2.9. A set $H \subseteq \mathbb{N}$ is homogeneous for a $\sigma \in 2^{\omega}$ if $(\exists c < 2)(\forall i \in H)(i < |\sigma| \to \sigma(i) = c)$, and a set $H \subseteq \mathbb{N}$ is homogeneous for an infinite tree $T \subseteq 2^{\omega}$ if the tree $\{\sigma \in T : H \text{ is homogeneous for } \sigma\}$ is infinite. RWKL is the statement “for every infinite subtree of 2^{ω}, there is an infinite homogeneous set.”

Remark 2.10. Flood actually named his principle RKL, for Ramsey-type König’s lemma. We found it more convenient to refer to this principle as RWKL. Indeed, we study Ramsey-type variations of several principles, and the convention we follow is to add an ‘R’ to a principle’s name to denote its Ramsey-type variation (see, for example, RSAT, RCOLOR$_n$, and RWWKL below). The typical scheme is to view a combinatorial principle as a problem comprised of instances and solutions to
these instances. For example, with WKL, an instance would be an infinite subtree of \(2^{\infty} \), and a solution to that instance would be a path through the tree. The Ramsey-type variation of a principle has the same class of instances, but instead of asking for a full solution in the problem’s original sense, we ask only for an infinite set consistent with being a solution.

Flood [9] proved that \(\text{RCA}_0 \vdash \text{WKL} \rightarrow \text{RWKL} \) and that \(\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \text{RWKL} \). He also noted that RWKL is strictly weaker than both WKL and SRT\(^2_2\) over \(\text{RCA}_0\) because WKL and SRT\(^2_2\) are independent over \(\text{RCA}_0\). The result \(\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \text{RWKL} \) can be improved to \(\text{RCA}_0 \vdash \text{SEM} \rightarrow \text{RWKL} \), which we show now.

Theorem 2.11. \(\text{RCA}_0 \vdash \text{SEM} \rightarrow \text{RWKL} \)

Proof. Let \(T \subseteq 2^{\infty} \) be an infinite tree. For each \(s \in \mathbb{N}\), let \(\sigma_s\) be the leftmost element of \(T^s\). We define a tournament \(R\) from the tree \(T\). For \(x < s\), if \(\sigma_s(x) = 1\), then \(R(x,s)\) holds and \(R(s,x)\) fails; otherwise, if \(\sigma_s(x) = 0\), then \(R(x,s)\) fails and \(R(s,x)\) holds. This tournament \(R\) is essentially the same as the coloring \(f(x,s) = \sigma_s(x)\) defined by Flood in his proof that \(\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \text{RWKL} \) ([9] Theorem 5), in which he showed that \(f\) is stable. By the same argument, \(R\) is stable.

Apply SEM to \(R\) to get an infinite transitive sub-tournament \(U\). Say that a \(\tau \in U^{\infty} \) satisfies \((\ast)\) if \(\text{ran}(\tau)\) is not homogenous for \(T\) with color 1 and \((\forall k < |\tau|)R(\tau(k), \tau(k+1))\). Consider a hypothetical \(\tau \in U^{\infty} \) satisfying \((\ast)\). There must be a \(k < |\tau|\) such that \(R(\tau(k), \tau(k))\) for cofinitely many \(s\). This is because otherwise there would be infinitely many \(s\) such that \((\forall k < |\tau|)R(\tau(k), s)\) and hence infinitely many \(s\) for which \(\text{ran}(\tau)\) is homogenous for \(\sigma_s\) with color 1, contradicting that \(\text{ran}(\tau)\) is not homogenous for \(T\) with color 1. From the facts that \(R(\tau, \tau(k))\) for cofinitely many \(s\), that \((\forall k < |\tau|)R(\tau(k), \tau(k+1))\), and that \(U\) is transitive, we conclude that \(R(\tau, \tau(|\tau| - 1))\) for cofinitely many \(s\).

The proof now breaks into two cases. First, suppose that the \(\tau(|\tau| - 1)\) for the \(\tau \in U^{\infty} \) satisfying \((\ast)\) are unbounded. Then, because \((\ast)\) is a \(\Sigma^0_3\) property of \(U\), there is an infinite set \(X\) consisting of numbers of the form \(\tau(|\tau| - 1)\) for \(\tau \in U^{\infty} \) satisfying \((\ast)\). As argued above, every \(x \in X\) satisfies \(R(s, x)\) for cofinitely many \(s\). Thus we can thin out \(X\) to an infinite set \(H\) such that \((\forall x, y \in H)(x < y \rightarrow R(y, x)))\). Thus \(H\) is homogeneous for \(T\) with color 0 because \(H\) is homogeneous for \(\sigma_y\) with color 0 for every \(y \in H\).

Second, suppose that the \(\tau(|\tau| - 1)\) for the \(\tau \in U^{\infty} \) satisfying \((\ast)\) are bounded, say by \(m\). Then \(H = U \setminus \{0, 1, \ldots, m\}\) is homogeneous for \(T\) with color 1. To see this, suppose not. Then there is a finite \(V \subseteq H\) that is not homogeneous for \(T\) with color 1. Let \(\tau \in V^{\infty} \) be the enumeration of \(V\) in the order given by \(R\): \((\forall k < |\tau|)R(\tau(k), \tau(k+1))\). Then \(\tau\) satisfies \((\ast)\), but \(\tau(|\tau| - 1) > m\). This is a contradiction.

Flood also proved that \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{DNR}\), and this result prompted him to ask if \(\text{RCA}_0 \vdash \text{DNR} \rightarrow \text{RWKL}\). Corollary 6.12 shows that the answer to this question is negative.

3. Ramsey-type König’s Lemma and its Variants

We investigate the strengths of several variations of RWKL. Our variations are obtained in one of two ways. First, we consider Ramsey-type König’s lemma principles applied to different classes of trees. We show that when we restrict to trees of positive measure, the resulting principle is equivalent to DNR (Theorem 3.4); that when we allow subtrees of \(k^{\infty} \) (for a fixed \(k \in \omega\) with \(k \geq 2\), the

\(^3\)Obtained independently by Flood and Towsner [11].
resulting principle is equivalent to RWKL (Theorem 3.27); that when we allow bounded subtrees of $\mathbb{N}^{<\mathbb{N}}$, the resulting principle is equivalent to WKL (Theorem 3.19); and that when we allow arbitrary finitely-branching subtrees of $\mathbb{N}^{<\mathbb{N}}$, the resulting principle is equivalent to ACA_0 (Theorem 3.17).

Second, we impose additional requirements on the homogeneous sets that RWKL asserts exist. If we require that homogeneous sets be homogeneous for color 0 and restrict to trees that have no paths that are eventually 1, then the resulting principle is equivalent to WKL (Theorem 3.12). If we impose a bound on the sparsity of the homogeneous sets, then the resulting principle is also equivalent to WKL (Theorem 3.15). If we require that the homogeneous sets be subsets of some prescribed infinite set, then the resulting principle is equivalent to RWKL (Theorem 3.27). It is interesting to note that each variation of RWKL that we consider is either equivalent to RWKL itself or some other well-known statement. We also note that sometimes the Ramsey-type variant of a principle is equivalent to the original principle, as with König’s lemma for bounded trees and König’s lemma for arbitrary finitely-branching trees; and that sometimes the Ramsey-type variant of a principle is strictly weaker than the original principle, as with weak König’s lemma and weak weak König’s lemma.

Several results in this section indicate robustness in RWKL. For example, we may generalize RWKL to subtrees of $k^{<\mathbb{N}}$ (for fixed $k \in \omega$ with $k \geq 2$) without changing the principle’s strength. We explore the robustness of RWKL more fully in Section 4 and Section 5. This robustness we take as evidence that RWKL is a natural principle.

3.1. DNR functions and subsets of paths through trees of positive measure

Just as WKL can be weakened to WWKL by restricting to trees of positive measure, so can RWKL be weakened to RWWKL by restricting to trees of positive measure.

Definition 3.1. RWWKL is the statement “for every subtree of $2^{<\mathbb{N}}$ with positive measure, there is an infinite homogeneous set.”

Applying RWWKL to a tree in which every path is Martin-Löf random yields an infinite subset of a Martin-Löf random set, and every infinite subset of every Martin-Löf random set computes a DNR function. In fact, computing an infinite subset of a Martin-Löf random set is equivalent to computing a DNR function, as the following theorem states.

Theorem 3.2 (Kjos-Hanssen [20], Greenberg and Miller [13]). For every $A \in 2^{\omega}$, A computes a DNR function if and only if A computes an infinite subset of a Martin-Löf random set.

This theorem can be weakened to \mathbb{N}^3 by letting W^X_e be a function such that, for all e, k, n with $n \geq 1$, $W^X_e(n) = k \iff g(e, k, n) \in W^X_e$. We then have the following corollary.

Lemma 3.3. The statement “for every set X there is a function $g : \mathbb{N}^3 \to \mathbb{N}$ such that $\forall e, k, n(g(e, k, n) > n \land (|W^X_e| < k \to g(e, k, n) \notin W^X_e))” is provable in RCA_0 + DNR.

Proof. Fix a sequence of functions $\{b_k\}_{k \in \mathbb{N}}$ such that, for each $k \in \mathbb{N}$, b_k maps \mathbb{N} onto \mathbb{N}^k in such a way that $b_k^{-1}(\vec{x})$ is infinite for every $\vec{x} \in \mathbb{N}^k$. Let $c : \mathbb{N} \to \mathbb{N}$ be a function such that, for all $e, i, k, x \in \mathbb{N}$ with $i < k$, $\Phi^X_{c(e, i, k)}(x) = b_k(y)(i)$ for the $(i + 1)^{\text{th}}$ number y enumerated in W^X_e if $|W^X_e| \geq i + 1$; and $\Phi^X_{c(e, i, k)}(x) \uparrow$ otherwise. Let f be diagonally non-recursive relative to X. Define g by letting $g(e, k, n)$
be the least \(x > n \) such that \(b_k(x) = (f(c(e, 0, k)), f(c(e, 1, k)), \ldots, f(c(e, k - 1, k))) \). Suppose for a contradiction that \(|W_{e,c}^X| < k \) but that \(g(e, k, n) \in W_{e,c}^X \). Then \(g(e, k, n) \) is the \((i + 1)^{th}\) number enumerated into \(W_{e,c}^X \) for some \(i + 1 < k \). Hence \(\Phi_{c(e,i,k)}^X(c(e,i,k)) = b_k(g(e,k,n))(i) \). However, by the definition of \(g \), \(b_k(g(e,k,n))(i) = f(c(e,i,k)) \). Thus \(f(c(e,i,k)) = \Phi_{c(e,i,k)}^X(c(e,i,k)) \), contradicting that \(f \) is DNR relative to \(X \).

Notice that in the statement of the above lemma, \(W_{e,c}^X \) need not exist as a set. Thus \(|W_{e,c}^X| < k \) should be interpreted as ‘\(\forall s(|W_{e,c}^X| < k) \),’ where \((W_{e,c}^X)_{s \in \mathbb{N}}\) is the standard enumeration of \(W_{e,c}^X \).

Theorem 3.4. \(\text{RCA}_0 \vdash \text{DNR} \iff \text{RWWKL} \).\(^4\)

Proof. The direction \(\text{RWWKL} \to \text{DNR} \) is implicit in Flood’s proof that \(\text{RCA}_0 \vdash \text{RWKL} \to \text{DNR} \) ([9] Theorem 8). Indeed, Flood’s proof uses the construction of a tree of positive measure due to Jockusch [19]. (For a similar construction proving a generalization of \(\text{RWWKL} \to \text{DNR} \), see the proof of Lemma 3.6 below.) The proof that \(\text{DNR} \to \text{RWWKL} \) is similar to the original proof of Theorem 3.2. However, some adjustments are needed as the original argument uses techniques from measure theory and algorithmic randomness which can only be formalized within \(\text{WWKL} \). We instead use explicit combinatorial bounds.

Assume \(\text{DNR} \), and consider a tree \(T \) of measure \(\geq 2^{-c} \) for some \(c \), which we can assume to be \(\geq 3 \) (the reason for this assumption will become clear). For a given set \(H \subseteq \mathbb{N} \) and a value \(v \in \{0, 1\} \), let \(\Gamma^v_n = \{ \sigma \in 2^{<\mathbb{N}} : (\forall i \in H)(\sigma(i) = v) \} \), and abbreviate \(\Gamma^v_n \) by \(\Gamma^v_n \). For a tree \(T \) and a constant \(c \), let \(\text{Bad}(n, T, c) \) be \(\sum^1_1 \) predicate ‘\(\mu(T \cap \Gamma^0_n) < 2^{-2c} \).’ In the following claim, \(\{n : \text{Bad}(n, T, c)\} \) need not \emph{a priori} exist as a set, so ‘\(\{n : \text{Bad}(n, T, c)\} < 2c \)’ should be interpreted in the same manner as ‘\(|W_{e,c}^X| < k \)’ in the statement of Lemma 3.3.

Claim. If \(c \geq 3 \) and \(\mu(T) \geq 2^{-c} \), then \(\{n : \text{Bad}(n, T, c)\} < 2c \).

Proof. Suppose for a contradiction that \(\{n : \text{Bad}(n, T, c)\} \geq 2c \), and let \(B \) be the first \(2c \) elements enumerated in \(\{n : \text{Bad}(n, T, c)\} \). For each \(n \in B \), the tree \(T \cap \Gamma^0_n \) has measure \(< 2^{-2c} \), which implies that \((\forall n \in B)(\exists i)(((T^i \cap \Gamma^0_n) < 2^{-2c}) \) (recall that \(T^i \) is the set of strings in \(T \) of length \(i \)). By \(B \Sigma^0_1 \), let \(N_0 \) be such that \((\forall n \in B)(\exists i < N_0)((T^i \cap \Gamma^0_n) < 2^{-2c}) \), and observe that \((\forall n \in B)(\exists j > N_0)((T^j \cap \Gamma^0_n) < 2^{-2c}) \). Let \(N = N_0 + \max(B) \).

On the one hand,

\[
|T^N \cap \bigcup_{n \in B} \Gamma^0_n| = |T^N \cap \Gamma^1_B| \geq |T^N| - |\Gamma^1_B \cap \{0, 1\}^N| \geq 2^{N-c} - 2^{N-2c}.
\]

On the other hand,

\[
|T^N \cap \bigcup_{n \in B} \Gamma^0_n| = \left| \bigcup_{n \in B} T^N \cap \Gamma^0_n \right| \leq \sum_{n \in B} |T^N \cap \Gamma^0_n| \leq 2c2^{N-2c}.
\]

Putting the two together, we get that \(2^{N-c} - 2^{N-2c} \leq 2c2^{N-2c} \), which is a contradiction for \(c \geq 3 \).

Let \(g \) be as in Lemma 3.3 for \(X = T \). Given a (canonical index for \(a \)) finite set \(F \) and a \(c \), we can effectively produce an index \(e(F, c) \) such that \(\forall n (n \in W_{e(F,c)}^T \iff \text{Bad}(n, T \cap \Gamma^0_{e(F,c)})). \) Recursively construct an increasing sequence \(h_0 < h_1 < h_2 < \ldots \) of numbers by letting, for each \(s \in \mathbb{N}, H_s = \{h_i : i < s\} \) and \(h_s = g(e(H_s, c2^s), c2^{s+1}, \max(H_s \cup \{0\})) \). Using \(\text{III}_1 \), we prove that \(\forall s(\mu(T \cap \Gamma^0_{H_s}) \geq 2^{-c2^s}) \).

\(^4\)Obtained independently by Flood and Towsner [11].
For \(s = 0 \), this is simply the assumption \(\mu(T) \geq 2^{-c} \). Assuming \(\mu(T \cap \Gamma^0_n) \geq 2^{-c'^2} \), the claim implies that \(|W_{e,T}(H_i, c^2)| < c^{2'^2 + 1}\). Thus \(h_n = g(e(H_i, c^2), c^2 + 1, \max(H_i \cup \{0\}) \notin W_{e, H_i, c^2} \), and therefore \(\neg \text{Bad}(h_n, T \cap \Gamma^0_n, c^2) \). This means that \(\mu(T \cap \Gamma^0_n \cap \Gamma^0_n) \geq 2^{-c^{2'^2 + 1}} \), which is what we wanted because \(\Gamma^0_n \cap \Gamma^0_n = \Gamma^0_{n^2} \).

Let \(H = \{ h_s : s \in \mathbb{N} \} \), which exists by \(\Delta^0_0 \) comprehension because the sequence \(h_0 < h_1 < h_2 < \ldots \) is increasing. We show that \(H \) is homogeneous for \(T \). Suppose for a contradiction that \(H \) is not homogeneous for \(T \). This means that there are only finitely many \(\sigma \in T \) such that \(H \) is homogeneous for \(\sigma \). Therefore at some level \(s \), \(\{ \sigma \in T^s : (\forall i \in H)(\sigma(i) = 0) \} = \emptyset \). As \(H \cap \{0, 1, \ldots, s\} \subseteq H_i \), we in fact have that \(\{ \sigma \in T^s : (\forall i \in H_i)(\sigma(i) = 0) \} = \emptyset \). In other words, \(T \cap \Gamma^0_n = \emptyset \), which contradicts \(\mu(T \cap \Gamma^0_n) \geq 2^{-c^2} \). Thus \(H \) is homogeneous for \(T \).

Fix \(n = \omega \) with \(n \geq 2 \). Just as with \(n \text{-WWKL} \), it is possible to define \(n \text{-RWWKL} \) to be the generalization of \(\text{RWWKL} \) to \(X^{(n-1)} \)-computable trees. The equivalence between \(n \text{-DNR} \) and \(n \text{-RWWKL} \) persists in the presence of sufficient induction.

Definition 3.5. For \(n = \omega \) with \(n \geq 2 \), \(n \text{-RWWKL} \) is the statement “for every \(X \) and \(e \), if \(\Phi_e^{X^{(n-1)}} \) is the characteristic function of a subtree of \(2^{< \mathbb{N}} \) with positive measure, then there is an infinite homogeneous set.” (That is, there is an infinite \(H \subseteq \mathbb{N} \) that is homogeneous for infinitely many \(\sigma \in 2^{< \mathbb{N}} \) such that \(\Phi_e^{X^{(n-1)}}(\sigma) = 1 \).)

Lemma 3.6. For every \(n = \omega \) with \(n \geq 1 \), \(\text{RCA}_0 + \text{BSigma}^0_n \vdash n \text{-RWWKL} \rightarrow n \text{-DNR} \).

Proof. Fix a sequence of functions \((b_k)_{k \in \mathbb{N}} \) such that, for each \(k \in \mathbb{N} \), \(b_k \) is a bijection between \(\mathbb{N} \) and \(\mathbb{N}^{[k]} \). Let \(X \) be given. Let \(e \) be an index such that \(\Phi_e^{X^{(n-1)}}(\sigma) = 1 \) if

\[
(\forall i < |\sigma|)(\Phi_{b_k(i)}^{X^{(n-1)}}(i) \Downarrow) \Rightarrow b_{i+3}(\Phi_{i+3}^{X^{(n-1)}}(i)) \text{ is not homogeneous for } \sigma,
\]

and \(\Phi_e^{X^{(n-1)}}(\sigma) = 0 \) otherwise. It is clear that \(\Phi_e^{X^{(n-1)}} \) is the characteristic function of a tree. We need to show that this tree has positive measure. Fix \(s \in \mathbb{N} \). By bounded \(\Delta^0_0 \) comprehension, which is a consequence of \(\text{BSigma}^0_n \) (see, for example, [14] Lemma 2.19), \(T^s = \{ \sigma \in 2^s : \Phi_e^{X^{(n-1)}}(\sigma) = 1 \} \) exists as a finite set. For each \(i < s \), the proportion of strings in \(2^s \) missing from \(T^s \) on account of \(\Phi_e^{X^{(n-1)}} \) is at most \(2^{-i-2} \). Therefore \(|T^s|2^{-i} \geq \sum_{i < s} 2^{-i-2} \geq 1/2 \), so the tree indeed has positive measure.

By \(n \text{-RWWKL} \), there is an infinite homogeneous set \(H \) for the tree described by \(\Phi_e^{X^{(n-1)}} \). For each \(i \in \mathbb{N} \), let \(H_i \) denote the set consisting of the \(i \) least elements of \(H \). Define \(f : \mathbb{N} \rightarrow \mathbb{N} \) by \(f(i) = b(i+3)(H_i+3) \). We finish the proof by showing that \(f \) is DNR relative to \(X^{(n-1)} \). Suppose for a contradiction that there is an \(i \in \mathbb{N} \) such that \(f(i) = \Phi_e^{X^{(n-1)}}(i) \), and let \(s \) be such that \(\Phi_{i,s}^{X^{(n-1)}}(i) \Downarrow \). By the definition of \(f \), we have that \(b(i+3)(H_i+3) = f(i) = \Phi_{i,s}^{X^{(n-1)}}(i) \). Applying the bijection \(b_{i+3} \), we have that \(b_{i+3}(\Phi_{i,s}^{X^{(n-1)}}(i)) = H_i+3 \) is homogeneous for the tree described by \(\Phi_e^{X^{(n-1)}} \). This is a contradiction because if \(b_{i+3}(\Phi_{i,s}^{X^{(n-1)}}(i)) \) is homogeneous for \(\sigma \in 2^{< \mathbb{N}} \) with \(|\sigma| > s \), then \(\Phi_e^{X^{(n-1)}}(\sigma) = 0 \). \(\square \)

Lemma 3.7. For every \(n = \omega \) with \(n \geq 1 \), \(\text{RCA}_0 + \text{BSigma}^0_n \vdash n \text{-DNR} \rightarrow n \text{-RWWKL} \).

Proof sketch. Follow the proof that \(\text{RCA}_0 \vdash \text{DNR} \rightarrow \text{RWWKL} \) from Theorem 3.4, but interpret \(T \) as an \(X^{(n-1)} \)-computable tree of positive measure in the sense of Section 2.3. The proof of Lemma 3.3 goes through in \(\text{RCA}_0 \) when \(X \) is replaced by \(X^{(n-1)} \) and DNR is replaced by \(n \text{-DNR} \). The predicate \(\text{Bad}(n, T, c) \) is now \(\Sigma^0_n \), and the proof of the claim goes through in \(\text{RCA}_0 + \text{BSigma}^0_n \). The function \(g \) exists by the generalization of Lemma 3.3, and the function \(e \) is the same as it was before. The set \(H \)
is constructed from \(g \) and \(e \) as it was before. Use \(\Pi_n^0 \), a consequence of \(\text{RCA}_0 + I\Sigma^0_n \), to prove the analog of \(\forall s(\mu(T \cap T^0_{I_n^s}) \geq 2^{-2^s}) \). The rest of the proof is the same as it was before. \(\square \)

Theorem 3.8. For every \(n \in \mathbb{N} \) with \(n \geq 1 \), \(\text{RCA}_0 + I\Sigma^0_n \vdash n\text{-DNR} \iff n\text{-RWWKL} \).

Proof. The theorem follows from Lemma 3.6 and Lemma 3.7. \(\square \)

We leave open the question of the exact amount of induction required to prove Lemma 3.6 and Lemma 3.7. It would be particularly interesting to determine whether or not \(n\text{-RWWKL} \) implies \(\text{B}^\Sigma_2^0 \).

Question 3.9. Does \(\text{RCA}_0 + 2\text{-RWWKL} \vdash \text{B}^\Sigma_2^0 \)?

In [9], Flood also studies what he calls \(\text{RKL}^{(1)} \), which is \(\text{RWKL} \) for \(\Sigma^0_1 \)-definable infinite subtrees of \(2^{<\mathbb{N}} \). He notes that \(\text{RKL}^{(1)} \) is equivalent to \(\text{RWKL} \) for \(\Pi^0_2 \) trees, and thus it follows that \(\text{RKL}^{(1)} \) is equivalent to \(\text{RWKL} \) for \(\Delta^0_2 \) trees, a statement which we would call \(2\text{-RWKL} \) in the foregoing notation. Flood presents Yokoyama’s proof that \(\text{RCA}_0 \vdash 2\text{-RWKL} \to \text{SRT}_2^3 \), and Flood asks ([9] Question 22) if the reverse implication holds. We show that it does not.

Theorem 3.10. \(\text{RCA}_0 + \text{SRT}_2^2 \nvdash 2\text{-RWKL} \).

Proof. Over \(\text{RCA}_0 + \text{B}^\Sigma_2^0 \), \(2\text{-RWKL} \) implies \(2\text{-RWWKL} \) and, by Lemma 3.6, \(2\text{-RWWKL} \) in turn implies \(2\text{-DNR} \). However, \(\text{SRT}_2^2 \) does not imply \(2\text{-DNR} \) over \(\text{RCA}_0 + \text{B}^\Sigma_2^0 \) because there are models of \(\text{RCA}_0 + \text{B}^\Sigma_2^0 + \text{SRT}_2^2 \) in which every set is low [5]. In particular, every set in such a structure is computable from 0’, so such a structure is not a model of \(2\text{-DNR} \). \(\square \)

3.2. Changing homogeneity constraints

Notice that the homogeneous set constructed in the proof of Theorem 3.4 is always homogeneous for color 0, and we could just as easily constructed a set homogeneous for color 1. Thus no additional power is gleaned from \(\text{RWWKL} \) by prescribing the color of the homogeneous set ahead of time.

Corollary 3.11 (to the proof of Theorem 3.4). The following statements are equivalent over \(\text{RCA}_0 \):

(i) \(\text{DNR} \)

(ii) \(\text{RWWKL} \)

(iii) For every tree \(T \subseteq 2^{<\mathbb{N}} \) of positive measure, there is an infinite set that is homogeneous for \(T \) with color 0.

One then wonders if any additional strength is gained by modifying \(\text{RWKL} \) to require that homogeneous sets be homogeneous for color 0. Of course an infinite homogeneous set for color 0 need not exist in general, so we restrict to trees that do not have paths that are eventually 1. For the purposes of the next theorem, “\(T \) has no path that is eventually 1” means \(\forall \sigma \exists n(\sigma \upharpoonright 1^n \notin T) \).

Theorem 3.12. The following statements are equivalent over \(\text{RCA}_0 \):

(i) \(\text{WKL} \)

(ii) For every infinite tree \(T \subseteq 2^{<\mathbb{N}} \) with no path that is eventually 1, there is an infinite set homogeneous for \(T \) with color 0.

Proof. Clearly (i) \(\rightarrow \) (ii). For (ii) \(\rightarrow \) (i), let \(S \subseteq 2^{<\mathbb{N}} \) be an infinite tree. We define a tree \(T \subseteq 2^{<\mathbb{N}} \) whose paths have 0’s only at positions corresponding to codes of initial segments of paths through \(S \). Let \((\tau_i)_{i \in \mathbb{N}} \) be the enumeration of \(2^{<\mathbb{N}} \) in length-lexicographic order, and note that \(\forall i(|\tau_i| \leq i) \). Let

\[
T = \{ \sigma \in 2^{<\mathbb{N}} : (\exists \tau \in S^{<\mathbb{N}})(\forall i < |\sigma|)(\sigma(i) = 0 \iff \tau_i \leq \tau) \}. \]
Theorem 3.15. Let T be a tree with a version of that tree having sufficient redundancy. Let S be the Ramsey-type variants of full König’s lemma and of bounded König’s lemma. Function-homogeneity. However, function-homogeneity lets us impose the density constraints we need for T. In Definition 3.13, we always assume that $\forall \sigma \in \mathbb{N} \rightarrow \mathbb{N}$ is homogeneous for $\forall \sigma \in \mathbb{N}^{<\mathbb{N}}$ if $(\forall n \in \text{dom}(h))(n < |\sigma| \rightarrow \sigma(n) = h(n))$. If T is an infinite, finitely branching tree, a partial function $h: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ is homogeneous for T if the tree $\{\sigma \in T : h \text{ is homogeneous for } \sigma \}$ is infinite.

In Definition 3.13, we always assume that $\text{dom}(h)$ exists as a set. This is no real restriction because in RCA_0 one can prove that every infinite Σ^0_1-definable set has an infinite subset that actually exists as a set. Thus if h is infinite, we may always restrict h to an infinite subset of $\text{dom}(h)$ that exists as a set.

If h is infinite and homogenous for an infinite tree $T \subseteq 2^{<\mathbb{N}}$, then both of the sets $h^{-1}(0)$ and $h^{-1}(1)$ are homogeneous for T, and one of them must be infinite. Conversely, if H is homogeneous for an infinite tree $T \subseteq 2^{<\mathbb{N}}$ with color c, then the function $h: H \rightarrow 2$ with constant value c is homogeneous for T. Thus, over RCA_0, it is equivalent to define RWKL in terms of set-homogeneity or in terms of function-homogeneity. However, function-homogeneity lets us impose the density constraints we need for our everywhere-packed variant of RWKL. Function-homogeneity also lets us formulate Ramsey-type variants of full König’s lemma and of bounded König’s lemma.

Recall that an order function is a non-decreasing unbounded function $g: \mathbb{N} \rightarrow \mathbb{N}$.

Definition 3.14. Let g be an order function. A partial function $h: \subseteq \mathbb{N} \rightarrow \mathbb{N}$ is everywhere-packed for g if $\forall n(\text{dom}(h) \uparrow n \geq g(n))$.

Our everywhere-packed variant of RWKL is equivalent to WKL by an argument that replaces a tree with a version of that tree having sufficient redundancy.

Theorem 3.15. RCA_0 proves that, for every order function g satisfying $\forall n(g(n) \leq n)$, the following statements are equivalent:

(i) WKL
(ii) For every infinite tree $T \subseteq 2^{<\omega}$, there is an infinite h that is homogeneous for T and everywhere-packed for g.

Proof. Fix an order function g bounded by the identity.

The direction $(i) \to (ii)$ is trivial. If f is a path through T, then f is also homogeneous for T and everywhere-packed for g.

Consider the direction $(ii) \to (i)$, and let T be an infinite subtree of $2^{<\omega}$. Define a sequence $(u_n)_{n \in \mathbb{N}}$ by $u_0 = 0$ and $u_{n+1} = \mu_i(g(i) \geq u_n + 1)$. Let $S = \{\sigma \in 2^{<\omega} : (\exists \tau \in T)[|\tau| = \mu_i(|\sigma| < u_i) \land (\forall i < |\sigma|)(\forall j < |\tau|)(i \in [u_j, u_{j+1}) \to \sigma(i) = \tau(j))]\}$. The idea behind S is to ensure enough redundancy so that the domain of every infinite function that is homogeneous for S and everywhere-packed for g intersects each interval $[u_i, u_{i+1})$. For example, if $g(n) = \lfloor \frac{n}{2} \rfloor$, then $u_1 = 2$, $u_2 = 6$, $u_3 = 14$, $u_4 = 30$, and the string 10101 in T corresponds in S to $u_1^u_{u_2} u_3^u_{u_4}$.

It is easy to see that if T is infinite, then so is S. To see that S is a tree, consider a $\sigma \in S$, and let $\tau \in T$ witness σ’s membership in S. Given an $n \leq |\sigma|$, let $i = \mu_i(n < u_i)$ and verify that $\tau \upharpoonright i$ witnesses that $\sigma \upharpoonright n$ is in S. Let h be an infinite function that is homogeneous for S and everywhere-packed for g.

First we show that $(\forall j)(\text{dom}(h) \cap [u_j, u_{j+1}) \neq \emptyset)$. To see this, observe that $|\text{dom}(h) \upharpoonright u_{j+1}| \geq g(u_{j+1})$ because h is everywhere-packed for g. By definition, $g(u_{j+1}) \geq u_j + 1$. Thus, by the finite pigeonhole principle, there must be an i in $\text{dom}(h) \upharpoonright u_{j+1}$ with $i \geq u_j$.

Now, for each j, let i_j be the least element of $\text{dom}(h) \cap [u_j, u_{j+1})$. Define a function f by $f(j) = h(i_j)$. This f is a path through T. To see this, fix n and let $\sigma \in S^n$ be such that h is homogeneous for σ. Let $\tau \in T$ witness that $\sigma \in S$, and note that $|\tau| = n + 1$. For each $j < n$, we have that $\sigma(i_j) = \tau(j)$ by the choice of i_j and the definition of S, and we also have that $\sigma(i_j) = f(j)$ by the choice of σ and the definition of f. Thus $f \upharpoonright n = \tau \upharpoonright n$, so $f \upharpoonright n \in T$ as desired.

3.3. Ramsey-type König’s lemma for arbitrary finitely branching trees

Using the functional notion of homogeneity, we easily generalize RWKL to infinite, bounded trees and to infinite, finitely branching trees. It is well known that König’s lemma (KL) is equivalent to ACA$_0$ (see [34] Theorem III.7.2) and that bounded König’s lemma (i.e., König’s lemma for infinite bounded subtrees of $\omega^{<\omega}$) is equivalent to WKL (see [34] Lemma IV.1.4). Interestingly, we find that the Ramsey-type variant of König’s lemma is equivalent to ACA$_0$ and that the Ramsey-type variant of bounded König’s lemma is equivalent to WKL, not RWKL.

Definition 3.16. RKL is the statement “for every infinite, finitely branching subtree of $\omega^{<\omega}$, there is an infinite homogeneous partial function.”

Theorem 3.17. RCA$_0 \vdash$ ACA$_0 \rightarrow$ RKL.

Proof. Let KL$_{2\text{-branching}}$ denote KL restricted to trees $T \subseteq \omega^{<\omega}$ in which every $\sigma \in T$ has at most two immediate successors in T. We take advantage of the fact that ACA$_0$, KL, and KL$_{2\text{-branching}}$ are pairwise equivalent over RCA$_0$ (see [34] Theorem III.7.2). Clearly RCA$_0 \vdash$ KL \rightarrow RKL, so it suffices to show that RCA$_0 \vdash$ RKL \rightarrow KL$_{2\text{-branching}}$. Thus let $T \subseteq \omega^{<\omega}$ be an infinite, finitely branching

5RKL’ was Flood’s original name for RWKL. We prefer to use ‘RKL’ for the Ramsey-type variant of König’s lemma and ‘RWKL’ for the Ramsey-type variant of weak König’s lemma. See Remark 2.10.
tree in which every \(\sigma \in T \) has at most two immediate successors in \(T \). Let \((\tau_i)_{i\in\mathbb{N}}\) be a one-to-one enumeration of \(\mathbb{N}^{<\mathbb{N}} \). Define the tree \(S \) by
\[
S = \{ \sigma \in \mathbb{N}^{<\mathbb{N}} : (\forall i, j < |\sigma|)(\tau_{\sigma(i)} \in T \land |\tau_{\sigma(i)}| = i \land (i \leq j \rightarrow \tau_{\sigma(i)} \trianglelefteq \tau_{\sigma(j)})\}.
\]
Clearly \(S \) is a tree. \(S \) is infinite because \(T \) is infinite and, given a \(\tau \) in \(T \), it is easy to produce a \(\sigma \) in \(S \) of the same length. Now consider a \(\sigma \in S \). For \(\sigma \rightharpoonup n \) to be in \(S \), it must be that \(\tau_n \) is an immediate successor of \(\tau_{\sigma([\sigma]-1)} \) on \(T \) (or that \(\tau_n = \emptyset \) in the case that \(\sigma = \emptyset \)). As the enumeration \((\tau_n)_{n\in\mathbb{N}}\) is one-to-one and every string in \(T \) has at most two immediate successors in \(T \), it is also the case that every string in \(S \) has at most two immediate successors in \(S \). In particular, \(S \) is finitely branching.

By RKL, let \(h \) be infinite and homogeneous for \(S \), and let \(S_h \) be the infinite tree \(\{ \sigma \in S : h \text{ is homogeneous for } \sigma \} \). Note that \(S_h \) contains strings of arbitrary length because it is infinite and every string in \(S_h \) contains at most two immediate successors in \(S_h \). Now, if \(i \) and \(j \) are in \(\text{dom}(h) \) with \(i \leq j \), then \(\tau_{h(i)} \) and \(\tau_{h(j)} \) are in \(T \) with \(\tau_{h(i)} \trianglelefteq \tau_{h(j)} \), which may be seen by considering a \(\sigma \in S_h \) of length \(j + 1 \). Hence \(\bigcup_{i\in\text{dom}(h)} \tau_{h(i)} \) is a path through \(T \), as desired. \(\square \)

In fact, the above proof shows that the restriction of RKL to trees in which each string has at most two immediate successors is also equivalent to ACA\(_0\) over RCA\(_0\).

Recall that a tree \(T \subseteq \mathbb{N}^{<\mathbb{N}} \) is bounded if there is a function \(g : \mathbb{N} \rightarrow \mathbb{N} \) such that \((\forall \sigma \in T)(\forall n < |\sigma|)(\sigma(n) < g(n))\).

Definition 3.18. RbWKL is the statement “for every infinite, bounded subtree of \(\mathbb{N}^{<\mathbb{N}} \), there is an infinite homogeneous partial function.”

Theorem 3.19. RCA\(_0\) \(\vdash \) WKL \(\iff \) RbWKL. \(^6\)

Proof. Over RCA\(_0\), WKL implies RbWKL because WKL implies bounded König’s lemma, which clearly implies RbWKL. Thus it suffices to show that RbWKL implies WKL over RCA\(_0\). This can be done by following the proof of Theorem 3.17. Let \(T \subseteq 2^{<\mathbb{N}} \) be an infinite tree. Let \((\tau_i)_{i\in\mathbb{N}}\) be the enumeration of \(2^{<\mathbb{N}} \) in length-lexicographic order, and let \(g : \mathbb{N} \rightarrow \mathbb{N} \) be a function such that \(\forall n, i ((|\tau_i| = n \rightarrow i < g(n)) \). Define \(S \) from \(T \) as in Theorem 3.17. Then \((\forall \sigma \in S)(\forall i < |\sigma|)(\sigma(i) < g(i))\). Thus \(S \) is bounded by \(g \). The rest of the proof is similar to that of Theorem 3.17. \(\square \)

We remark that it is not difficult to strengthen Theorem 3.19 by fixing the function bounding the tree in the Ramsey-type bounded König’s lemma instance to be an arbitrarily slow growing order function. Indeed, RCA\(_0\) proves the statement “for every order function \(g \), WKL if and only if Ramsey-type König’s lemma holds for infinite subtrees of \(\mathbb{N}^{<\mathbb{N}} \) bounded by \(g \)” However, as we will see next, it is not possible to replace an order function by a constant function.

3.4. Locality and \(k \)-branching trees

We analyze a notion of locality together with Ramsey-type weak König’s lemma for \(k \)-branching trees. These notions aid our analysis of Ramsey-type analogs of other combinatorial principles. Consider a function \(f : [\mathbb{N}]^n \rightarrow k \). RT\(_k^n\) asserts the existence of an infinite homogeneous set \(H \subseteq \mathbb{N} \). However, for the purpose of some particular application, we may want the infinite homogeneous set \(H \) to be a subset of some pre-specified infinite set \(X \subseteq \mathbb{N} \). This is the idea behind locality, and in such a situation we say that the RT\(_k^n\)-instance \(f \) has been localized to \(X \). It is easy to see that RT\(_k^n\) proves that every RT\(_k^n\)-instance can be localized to every infinite \(X \subseteq \mathbb{N} \). The following proposition is well-known and is often used implicitly, such as when proving RT\(_2^3\) from RT\(_2^2\).

\(^6\)This theorem was obtained independently by Flood (personal communication).
Theorem 3.24. The following statements are equivalent over RCA₀:

(i) RT^n_k

(ii) For every $f : [\mathbb{N}]^n \rightarrow k$ and every infinite $X \subseteq \mathbb{N}$, there is an infinite $H \subseteq X$ that is homogeneous for f.

Proof. Clearly (ii) → (i), so it suffices to show that (i) → (ii). Let f and X be as in (ii). Let $(x_i)_{i \in \mathbb{N}}$ enumerate X in increasing order. Define $g : [\mathbb{N}]^n \rightarrow k$ by $g(i_0, i_1, \ldots, i_{n-1}) = f(x_{i_0}, x_{i_1}, \ldots, x_{i_{n-1}})$ for increasing n-tuples $(i_0, i_1, \ldots, i_{n-1})$. Apply RT^n_k to g to get an infinite $H_0 \subseteq \mathbb{N}$ that is homogeneous for g with some color $c < k$. Let $H = \{ i : i \in H_0 \}$. Then $H \subseteq X$ is infinite, and H is homogeneous for f with color c because if $x_{i_0} < x_{i_1} < \cdots < x_{i_{n-1}}$ are in H, then $i_0 < i_1 < \cdots < i_{n-1}$ are in H_0, hence $f(x_{i_0}, x_{i_1}, \ldots, x_{i_{n-1}}) = g(i_0, i_1, \ldots, i_{n-1}) = c$. □

By analogy with Proposition 3.20, we formulate LRWKL, a localized variant of Ramsey-type weak König’s lemma.

Definition 3.21. LRWKL is the statement “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ and every infinite $X \subseteq \mathbb{N}$, there is an infinite $H \subseteq X$ that is homogeneous for T.”

Lemma 3.22. RCA₀ ⊢ RWKL ↔ LRWKL.

Proof. Clearly RCA₀ ⊢ RWKL → RWKL, so it suffices to prove that RCA₀ ⊢ RWKL → LRWKL. Let $T \subseteq 2^{<\mathbb{N}}$ be an infinite tree and $X \subseteq \mathbb{N}$ be an infinite set. Let $(x_i)_{i \in \mathbb{N}}$ enumerate X in increasing order. Let $S \subseteq 2^{<\mathbb{N}}$ be the set

$$S = \{ \sigma \in 2^{<\mathbb{N}} : (\exists \tau \in T)(|\tau| = x_{|\sigma|} \land (\forall i < |\sigma|)(\sigma(i) = \tau(x_i))) \}.$$

S exists by Δ^0_3 comprehension, and S is clearly closed under initial segments. To see that S is infinite, let $n \in \mathbb{N}$ and, as T is infinite, let $\tau \in T$ have length x_n. Then the $\sigma \in 2^n$ such that $(\forall i < n)(\sigma(i) = \tau(x_i))$ is a string in S of length n. Now apply RWKL to S to get an infinite $H_0 \subseteq \mathbb{N}$ that is homogeneous for S with some color $c < 2$. Let $H = \{ i : i \in H_0 \}$. H is an infinite subset of X; we show that H is homogeneous for T with color c. Given $n \in \mathbb{N}$, let $m \in H_0$ be such that $x_m > n$. By the homogeneity of H_0 for S, let $\sigma \in S$ be of length m and such that $(\forall i \in H_0)(i < |\sigma| \rightarrow \sigma(i) = c)$. By the definition of S, there is a $\tau \in T$ of length x_m such that $(\forall i < |\sigma|)(\sigma(i) = \tau(x_i))$. So if $x_i \in H$ is less than $|\tau| = x_m$, then i is in H_0 and is less than $|\sigma| = m$, in which case $\tau(x_i) = \sigma(i) = c$. Thus H is homogeneous for T with color c, and, as $|\tau| = x_m > n$, $\tau \upharpoonright n$ is a string in T of length n for which H is homogeneous with color c. □

Similarly, we can define a localized variant of Ramsey-type weak weak König’s lemma.

Definition 3.23. LRWWKL is the statement “for every tree $T \subseteq 2^{<\mathbb{N}}$ of positive measure and every infinite $X \subseteq \mathbb{N}$, there is an infinite $H \subseteq X$ that is homogeneous for T.”

Theorem 3.24. The following statements are equivalent over RCA₀:

(i) DNR

(ii) RWWWKL

(iii) LRWWKL.

Proof. Theorem 3.4 states that (i) ↔ (ii), and (iii) → (ii) is clear. To see that (ii) → (iii), we need only check that the tree S constructed in Lemma 3.22 has positive measure when the tree T has
positive measure. To this end, notice that for every $k \in \mathbb{N}$,
\[
\left| \{ \sigma \in S : |\sigma| = k \} \right| \geq \frac{|\{ \tau \in T : |\tau| = x_k \}|}{2^{x_k-k}}.
\]
Thus
\[
\frac{\left| \{ \sigma \in S : |\sigma| = k \} \right|}{2^k} \geq \frac{|\{ \tau \in T : |\tau| = x_k \}|}{2^{x_k}},
\]
which implies that S has positive measure if T has positive measure. \qed

Using LRWKL, we prove variants of RWKL and LRWKL for k-branching trees. Define a set $H \subseteq \mathbb{N}$ to be homogeneous for a string $\sigma \in k^{<\mathbb{N}}$ with color $c < k$ and a set $H \subseteq \mathbb{N}$ to be homogeneous for an infinite tree $T \subseteq k^{<\mathbb{N}}$ as in Definition 2.9 but with k in place of 2.

Definition 3.25.

- RWKL$_k$ is the statement “for every infinite tree $T \subseteq k^{<\mathbb{N}}$, there is an infinite $H \subseteq \mathbb{N}$ that is homogeneous for T.”
- LRWKL$_k$ is the statement “for every infinite tree $T \subseteq k^{<\mathbb{N}}$ and every infinite $X \subseteq \mathbb{N}$, there is an infinite $H \subseteq X$ that is homogeneous for T.”

Lemma 3.26. For every $k \in \omega$, $\text{RCA}_0 \vdash \text{LRWKL} \rightarrow \text{RWKL}_k$.

Proof. If $j < k$ then $\text{RCA}_0 \vdash \text{RWKL}_k \rightarrow \text{RWKL}_j$ by identifying $j^{<\mathbb{N}}$ with the obvious subtree of $k^{<\mathbb{N}}$. It therefore suffices to show that, for every $k \in \omega$, $\text{RCA}_0 \vdash \text{LRWKL} \rightarrow \text{RWKL}_{2^k}$.

Let $T \subseteq (2^k)^{<\mathbb{N}}$ be an infinite tree. The idea of the proof is to code T as a subtree of $2^{<\mathbb{N}}$ by coding each number less than 2^k by its binary expansion. We then obtain a homogeneous set for T by using k applications of LRWKL.

For each $a < 2^k$ and each $i < k$, let $a(i) < 2$ denote the $(i+1)$th digit in the binary expansion of a. Then to each $\sigma \in (2^k)^{<\mathbb{N}}$ associate a string $\tau_\sigma \in 2^{<\mathbb{N}}$ of length $k|\sigma|$ by $\tau_\sigma(ki + j) = \sigma(i)(j)$ (i.e., the jth digit in the binary expansion of $\sigma(i)$) for all $i < |\sigma|$ and all $j < k$. We define infinite trees $2^{<\mathbb{N}} \supseteq S_0 \supseteq S_1 \supseteq \cdots \supseteq S_{k-1}$, and, for each $i < k$, we find an infinite set H_i homogeneous for S_i. Moreover, the sets H_i will be such that $(\forall i < k)(\forall n \in H_i)(n \equiv i \text{ mod } k)$ and $(\forall i < k-1)(\forall n)(n \in H_{i+1} \rightarrow n - 1 \in H_i)$. Let $S_0 = \{ \tau \in 2^{<\mathbb{N}} : (\exists \sigma \in T)(|\sigma| = |\tau|/k \land \tau \subseteq \tau_\sigma) \}$. That is, S_0 consists of the substrings of the binary expansions of the strings in T. S_0 exists by Δ^0_1 comprehension, S_0 is clearly a tree, and S_0 is infinite because if $n \in \mathbb{N}$ and $\sigma \in T$ has length n, then $\tau_\sigma \upharpoonright n$ is a member of S_0 of length n. Let $X_0 = \{ n \in \mathbb{N} : n \equiv 0 \text{ mod } k \}$. Apply LRWKL to S_0 and X_0 to get an infinite set $H_0 \subseteq X_0$ and a color $c_0 < 2$ such that H_0 is homogeneous for S_0 with color c_0. Now suppose that S_{ℓ}, H_ℓ, and c_ℓ are defined for some $\ell < k-1$. Let $S_{\ell+1} = \{ \tau \in S_\ell : (\forall j < |\tau|)(j \in H_\ell \rightarrow \tau(j) = c_\ell) \}$. $S_{\ell+1}$ exists by Δ^0_1 comprehension, it is easy to check that $S_{\ell+1}$ is a tree, and $S_{\ell+1}$ is infinite because H_ℓ is homogeneous for S_ℓ with color c_ℓ. Let $X_{\ell+1} = \{ n + 1 : n \in H_\ell \}$, and note that $(\forall n \in X_{\ell+1})(n \equiv \ell + 1 \text{ mod } k)$ because $(\forall n \in H_\ell)(n \equiv \ell \text{ mod } k)$. Apply LRWKL to $S_{\ell+1}$ and $X_{\ell+1}$ to get an infinite set $H_{\ell+1} \subseteq X_{\ell+1}$ and a color $c_{\ell+1} < 2$ such that $H_{\ell+1}$ is homogeneous for $S_{\ell+1}$ with color $c_{\ell+1}$. By choice of $X_{\ell+1}$, we also have that $(\forall n \in H_{\ell+1})(n \equiv \ell + 1 \text{ mod } k)$ and that $\forall n(n \in H_{\ell+1} \rightarrow n - 1 \in H_\ell)$.

Once S_k, H_k, and c_k are defined for all $i < k$, let $H = \{ n : kn + (k-1) \in H_{k-1} \}$ and let $a < 2^k$ be the number whose binary expansion is $c_0c_1 \cdots c_{k-1}$. We show that H is homogeneous for T with color a.

Given $n \in \mathbb{N}$, let $\tau \in S_{k-1}$ be of length kn and such that H_{k-1} is homogeneous for τ. Let $\sigma \in (2^k)^{<\mathbb{N}}$ be such that $\tau = \tau_\sigma$. As $\tau \in S_{k-1} \subseteq S_0$, it must be that $\sigma \in T$ by the definition of S_0. It remains to show that $(\forall i \in H)(i < |\sigma| \rightarrow \sigma(i) = a)$. Consider $i \in H$ with $i < |\sigma|$. The binary expansion of $\sigma(i)$ is $\tau(ki)\tau(ki + 1)\cdots \tau(ki + (k-1))$, and $ki + (k-1) \in H_{k-1}$ by the definition of H. Thus,
\(\tau(ki + (k - 1)) = c_{k - 1} \) because \(H_{k - 1} \) is homogeneous for \(\tau \). Now let \(\ell \) be such that \(0 \leq \ell < k - 1 \). Then \(ki + \ell \in H_\ell \) because \(ki + (k - 1) \in H_{k - 1} \) and \((\forall i < k - 1)(\forall m)(m \in H_{i+1} \rightarrow m - 1 \in H_i)\). Thus \(\tau(ki + j) = c_\ell \) because \(\tau \in S_{k - 1} \subseteq S_{\ell + 1} \), and \(S_{\ell + 1} \) was chosen so that if \(\eta \in S_{\ell + 1} \) and \(m < |\eta| \) is in \(H_\ell \), then \(\eta(m) = c_\ell \). Thus the binary expansion of \(\sigma(i) \) is \(c_0c_1\cdots c_{k - 1} \), so \(\sigma(i) = a \) as desired. \(\square \)

Thus we have the following equivalences.

Theorem 3.27. For every \(k \in \omega \) with \(k \geq 2 \), the following statements are equivalent over \(\text{RCA}_0 \):

1. \(\text{RWKL} \)
2. \(\text{LRWKL} \)
3. \(\text{RWKL}_k \)
4. \(\text{LRWKL}_k \)

Proof. Lemma 3.22 states that \((i) \iff (ii)\). Lemma 3.26 states that \((ii) \rightarrow (iii)\). A proof analogous to that of Lemma 3.22 shows that \((iii) \iff (iv)\). Clearly \((iv) \rightarrow (i)\) when \(k \geq 2 \). \(\square \)

The statement \(\forall k \ \text{RWKL}_k \) easily implies \(\text{RT}^1 \) over \(\text{RCA}_0 \), and \(\text{RT}^1 \) is equivalent to \(\text{BΣ}_2^0 \) over \(\text{RCA}_0 \) (this equivalence is due to Hirst [17]). To see that \(\text{RCA}_0 \vdash \forall k \ \text{RWKL}_k \rightarrow \text{RT}^1 \), given a function \(f : \mathbb{N} \rightarrow k \), define the tree \(T \subseteq k^{<\omega} \) by \(T = \{ f \upharpoonright n : n \in \mathbb{N} \} \). Then \(H \) is homogeneous for \(T \) if and only if \(H \) is homogeneous for \(f \). Thus \(\text{WKL}_0 \) does not prove \(\forall k \ \text{RWKL}_k \) because \(\text{WKL}_0 \) does not prove \(\text{BΣ}_2^0 \). (It is well-known that \(\text{WKL}_0 \) is \(\Pi_1^1 \)-conservative over \(\text{RCA}_0 \) and that \(\text{RCA}_0 \) does not prove \(\text{BΣ}_2^0 \). See [34] Corollary IX.2.6 and [14] Section IV.1.) However, it is easy to see that \(\text{WKL}_0 + \text{BΣ}_2^0 \) proves \(\forall k \ \text{RWKL}_k \). Moreover, \(\text{RCA}_0 + \forall k \ \text{SRT}^2_k \) proves \(\forall k \ \text{RWKL}_k \) by essentially same argument used for \(k = 2 \) in [9] Theorem 5.

Question 3.28. Does \(\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \forall k \ \text{RWKL}_k \)?

The strength of having various kinds of homogeneous sets for various kinds of infinite trees is summarized in Table 1. The columns correspond to the kinds of trees allowed, whereas the rows correspond to the kinds of homogeneous sets asserted to exist. The first column considers infinite, finitely branching trees. The second column restricts to trees whose nodes have at most two immediate successors. The third column restricts to trees whose branching is bounded by some function. The fourth column restricts to trees whose branching is bounded by a constant function. The last column restricts to binary trees of positive measure. The first row corresponds to König-like statements, that is, statements asserting the existence of paths through the tree. The second row asserts the existence of everywhere-packed homogeneous sets. The third row asserts the existence of sets that are homogeneous for a fixed color. The fourth row asserts the existence of homogeneous sets that are contained in a prescribed infinite set. The last row asserts the existence of homogeneous sets.

<table>
<thead>
<tr>
<th>Tree</th>
<th>fin. branch.</th>
<th>2-ary</th>
<th>bounded</th>
<th>(k)-bounded</th>
<th>pos. meas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>packed hom.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hom. fixed color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>local hom.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hom.</td>
<td></td>
<td></td>
<td></td>
<td>RWKL [3.27]</td>
<td></td>
</tr>
<tr>
<td>ACA(_0)</td>
<td></td>
<td></td>
<td>ACA(_0) [3.17]</td>
<td>WKL [3.19]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(k)-bounded</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Paths and homogeneous sets existence for classes of trees
The question mark in Table 1 indicates that we did not study principles asserting that trees of positive measure have everywhere-packed homogeneous functions. It would be interesting to determine the proper analog of Theorem 3.15 when the trees in item (ii) are required to have positive measure.

4. The strength of Ramsey-type satisfiability principles

One can conceivably consider a Ramsey-type variant of any Π^1_1 statement $\forall X \exists Y \varphi(X,Y)$ so long as one can provide a reasonable formulation of what it means for a set Z to be consistent with a Y such that $\varphi(X,Y)$. For example, in the case of RWKL, we think of a set H as being consistent with a path through an infinite tree $T \subseteq 2^{<\omega}$ if H is homogeneous for T. We are interested in analyzing the strengths of Ramsey-type variants of statements that are equivalent to WKL over RCA$_0$. Several such statements have trivial Ramsey-type variants. For example, RCA$_0$ proves that for every pair of injections $f, g : \mathbb{N} \to \mathbb{N}$ with disjoint ranges, there is an infinite set X consistent with being a separating set for the ranges of f and g because RCA$_0$ proves that there is an infinite subset of the range of f. The obvious Ramsey-type variant of Lindenbaum’s lemma (every consistent set of sentences has a consistent completion) is also easily seen to be provable in RCA$_0$. For the remainder of this paper, we consider non-trivial Ramsey-type variants of the compactness theorem for propositional logic and of graph coloring theorems. Many of these variants are equivalent to RWKL, which we take as evidence that RWKL is robust.

Definition 4.1. A set C of propositional formulas is *finitely satisfiable* if every finite $C_0 \subseteq C$ is satisfiable (i.e., has a satisfying truth assignment). We denote by SAT the compactness theorem for propositional logic, which is the statement “every finitely satisfiable set of propositional formulas is satisfiable.”

It is well-known that SAT is equivalent to WKL over RCA$_0$ (see [34] Theorem IV.3.3).

If C is a set of propositional formulas, then let atoms(C) denote the set of propositional atoms appearing in the formulas in C. Strictly speaking, RCA$_0$ does not prove that atoms(C) exists for every set of propositional formulas C. However, in RCA$_0$ we can rename the atoms appearing in a set of propositional formulas C in such a way as to produce an equivalent set of propositional formulas C' for which atoms(C') does exist. Indeed, we may assume that atoms(C) = \mathbb{N} whenever atoms(C) is infinite. Thus for ease of mind we always assume that atoms(C) exists as a set.

Definition 4.2. Let C be a set of propositional formulas. A set $H \subseteq$ atoms(C) is *homogeneous for C* if there is a $c \in \{T,F\}$ such that every finite $C_0 \subseteq C$ is satisfiable by a truth assignment ν such that $(\forall a \in H)(\nu(a) = c)$.

As is typical, we identify T with 1 and F with 0.

Definition 4.3.

- RSAT is the statement “for every finitely satisfiable set C of propositional formulas with atoms(C) infinite, there is an infinite $H \subseteq$ atoms(C) that is homogeneous for C.”
- LRSAT is the statement “for every finitely satisfiable set C of propositional formulas with atoms(C) infinite and every infinite $X \subseteq$ atoms(C), there is an infinite $H \subseteq X$ that is homogeneous for C.”

We also consider r.e. variants of RSAT and LRSAT, denoted r.e.-RSAT and r.e.-LRSAT, obtained by replacing the finitely satisfiable set of propositional formulas C by a list of propositional formulas.
Let $(\varphi_i)_{i \in \mathbb{N}}$ such that $\{\varphi_i : i < n\}$ is satisfiable for every $n \in \mathbb{N}$. This amounts to considering r.e. sets of propositional formulas instead of recursive sets of propositional formulas. In this situation, we may still assume that atoms$((\varphi_i)_{i \in \mathbb{N}})$ (the set of propositional atoms appearing in the φ_i’s) exists as a set.

We first show that $\mathsf{RCA}_0 \vdash \mathsf{RSAT} \rightarrow \mathsf{RWKL}$. In fact, we show that the restriction of RSAT to what we call 2-branching clauses implies RWKL over RCA_0. This technical restriction is useful for the proof of Theorem 5.13 in our analysis of Ramsey-type graph coloring principles.

Recall that a propositional formula ℓ is called a literal if either $\ell = a$ or $\ell = \neg a$ for some propositional atom a and that a clause is a disjunction of literals.

Definition 4.4. Let $\{a_i : i \in \mathbb{N}\}$ be an infinite set of propositional atoms. A set C of clauses is called 2-branching if, for every clause $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1} \in C$ and every $i < n$, the literal ℓ_i is either a_i or $\neg a_i$. $\mathsf{RSAT}_{2\text{-branching}}$ is RSAT restricted to 2-branching clauses.

Proposition 4.5. $\mathsf{RCA}_0 \vdash \mathsf{RSAT}_{2\text{-branching}} \rightarrow \mathsf{RWKL}$.

Proof. Let $A = \{a_i : i \in \mathbb{N}\}$ be a set of propositional atoms, and to each string $\sigma \in 2^{< \mathbb{N}}$ associate the clause $\theta_\sigma = \bigwedge_{i < |\sigma|} \ell_i$, where $\ell_i = a_i$ if $\sigma(i) = 0$ and $\ell_i = \neg a_i$ if $\sigma(i) = 1$. Let $T \subseteq 2^{< \mathbb{N}}$ be an infinite tree. Let $C = \{\theta_\sigma : \sigma \notin T\}$, and observe that C is 2-branching. We show that C is finitely satisfiable. Given $C_0 \subseteq C$ finite, choose n large enough so that the atoms appearing in the clauses in C_0 are among $\{a_i : i < n\}$. As T is infinite, choose a $\tau \in T$ of length n. Define a truth assignment $t : \{a_i : i < n\} \rightarrow \{T, F\}$ by $t(a_i) = \tau(i)$. Now, if θ is a clause in C_0, then $\theta = \theta_\sigma = \bigwedge_{i < |\sigma|} \ell_i$ for some $\sigma \notin T$ with $|\sigma| < n$. Thus there is an $i < n$ such that $\sigma(i) \neq \tau(i)$ (because $\tau \in T$ and $\sigma \notin T$), from which we see that $t(\ell_i) = T$ and hence that $t(\theta) = T$. Thus t satisfies C_0.

By $\mathsf{RSAT}_{2\text{-branching}}$, let $H_0 \subseteq A$ and $c \in \{T, F\}$ be such that H_0 is homogeneous for C with truth value c. Let $H = \{i \in \mathbb{N} : a_i \in H_0\}$. We show that H is homogeneous for a path through T with color c. Given $n \in \mathbb{N}$, we want to find a $\tau \in T$ such that $|\tau| = n$ and $(\forall i < |\tau|)((i \in H \rightarrow \tau(i) = c)$. Thus let $t : \{a_i : i < n\} \rightarrow \{T, F\}$ be a truth assignment satisfying $C_0 = \{\theta_\sigma : \sigma \notin T \land |\sigma| = n\}$ such that $(\forall a \in \{a_i : i < n\} \cap H_0)(t(a) = c)$. Let $\tau \in 2^n$ be defined by $\tau(i) = t(a_i)$ for all $i < n$. Notice that $(\forall i < |\tau|)(i \in H \rightarrow \tau(i) = c)$ and that $t(\theta_\tau) = F$. If $\tau \notin T$, then $\tau \in C_0$, contradicting that t satisfies C_0. Thus $\tau \in T$ as desired. \hfill \square

Proposition 4.6. $\mathsf{RCA}_0 \vdash \mathsf{LRWKL} \rightarrow \mathsf{r.e.}-\mathsf{LSAT}$.

Proof. Let $(\varphi_i)_{i \in \mathbb{N}}$ be a list of propositional formulas over an infinite set of atoms A such that $\{\varphi_i : i < n\}$ is satisfiable for every $n \in \mathbb{N}$, and let $X \subseteq A$ be infinite. Let $(a_i)_{i \in \mathbb{N}}$ enumerate A. For each $\sigma \in 2^{< \mathbb{N}}$, identify σ with the truth assignment ν_σ on $\{a_i : i < |\sigma|\}$ given by $(\forall i < |\sigma|)(\nu_\sigma(a_i) = T \leftrightarrow \sigma(i) = 1)$. Let $T \subseteq 2^{< \mathbb{N}}$ be the tree

$$T = \{\sigma \in 2^{< \mathbb{N}} : \neg(\exists i < |\sigma|)(\nu_\sigma(\varphi_i) = F)\},$$

where $\nu_\sigma(\varphi_i)$ is the truth value assigned to φ_i by ν_σ (we consider $\nu_\sigma(\varphi_i)$ to be undefined—hence not F—if φ_i contains an atom a_m for an $m \geq |\sigma|$). T exists by Δ^0_1 comprehension and is closed downward. T is infinite because for any $n \in \mathbb{N}$, any satisfying truth assignment of $\{\varphi_i : i < n\}$ restricted to $\{a_i : i < n\}$ yields a string in T of length n. Let $X_0 = \{i \in \mathbb{N} : a_i \in X\}$, and, by LRWKL, let $H_0 \subseteq X_0$ and $c < 2$ be such that H_0 is infinite and homogeneous for T with color c. Let $H = \{a_i : i \in H_0\}$ and note that it is an infinite subset of X. We show that, for every $n \in \mathbb{N}$, $\{\varphi_i : i < n\}$ can be satisfied by a truth assignment ν such that $(\forall a \in H)(\nu(a) = c)$. Let $n \in \mathbb{N}$, and let m be large enough so that atoms$((\varphi_i : i < n) \subseteq \{a_i : i < m\}$. Let $\sigma \in T$ be such that $|\sigma| = m$ and H_0 is homogeneous for σ
with color \(c \). Then \((\forall i < n)(v_\sigma(\varphi_i) = T)\) because \(v_\sigma(\varphi_i) \) is defined for all \(i < n \) and \(v_\sigma(\varphi_i) \neq F \) for all \(i < n \). Thus \(v_\sigma \) satisfies \(\{\varphi_i : i < n\} \), and, because \(H_0 \) is homogeneous for \(\sigma \) with color \(c \), \((\forall a \in H)(v_\sigma(a) = c)\).

Theorem 4.7. The following statements are equivalent over \(\text{RCA}_0 \):

\[
\begin{align*}
(i) & \quad \text{RWKL} \\
(ii) & \quad \text{RSAT} \\
(iii) & \quad \text{LRSAT} \\
(iv) & \quad \text{r.e.-RSAT} \\
(v) & \quad \text{r.e.-LRSAT}.
\end{align*}
\]

Proof. Clearly \((v) \rightarrow (iii) \rightarrow (ii)\) and \((v) \rightarrow (iv) \rightarrow (ii)\), so it suffices to show the equivalence of \((i), (ii),\) and \((v)\). We have that \((i) \rightarrow (v)\) by Proposition 4.6 and Lemma 3.22, that \((v) \rightarrow (ii)\) is clear, and that \((ii) \rightarrow (i)\) by Proposition 4.5.

\[\square \]

5. **Ramsey-type graph coloring principles**

Let \(k \in \mathbb{N} \), and let \(G = (V, E) \) be a graph. A function \(f : V \rightarrow k \) is a \(k \)-coloring of \(G \) if \((\forall x, y \in V)((x, y) \in E \rightarrow f(x) \neq f(y))\). A graph is \(k \)-colorable if it has a \(k \)-coloring, and a graph is locally \(k \)-colorable if every finite subgraph is \(k \)-colorable. A simple compactness argument proves that every locally \(k \)-colorable graph is \(k \)-colorable. In the context of reverse mathematics, we have the following well-known equivalence.

Theorem 5.1 (see [18]). For every \(k \in \omega \) with \(k \geq 2 \), the following statements are equivalent over \(\text{RCA}_0 \):

\[
\begin{align*}
(i) & \quad \text{WKL} \\
(ii) & \quad \text{Every locally } k \text{-colorable graph is } k \text{-colorable}.
\end{align*}
\]

In light of Theorem 5.1, we define Ramsey-type analogs of graph coloring principles and compare them to Ramsey-type weak König’s lemma.

Definition 5.2.

- Let \(G = (V, E) \) be a graph. A set \(H \subseteq V \) is \(k \)-homogeneous for \(G \) if every finite \(V_0 \subseteq V \) induces a subgraph that is \(k \)-colorable by a coloring that colors every vertex in \(V_0 \cap H \) color \(0 \). We often write homogeneous for \(k \)-homogeneous when the \(k \) is clear from context.
- \(\text{RCOLOR}_k \) is the statement “for every infinite, locally \(k \)-colorable graph \(G = (V, E) \), there is an infinite \(H \subseteq V \) that is \(k \)-homogeneous for \(G \).”
- \(\text{LRCOLOR}_k \) is the statement “for every infinite, locally \(k \)-colorable graph \(G = (V, E) \) and every infinite \(X \subseteq V \), there is an infinite \(H \subseteq X \) that is \(k \)-homogeneous for \(G \).”

The goal of this section is to obtain the analog of Theorem 5.1 with \(\text{RWKL} \) in place of \(\text{WKL} \) and with \(\text{RCOLOR}_k \) in place of the statement “every locally \(k \)-colorable graph is \(k \)-colorable.” We are able to obtain this analog for all standard \(k \geq 3 \) instead of all standard \(k \geq 2 \). The case \(k = 2 \) remains open. Showing the forward direction, that \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{RCOLOR}_k \) (indeed, that \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{LRCOLOR}_k \), is straightforward.

Lemma 5.3. For every \(k \in \omega \), \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{LRCOLOR}_k \).

Proof. Let \(G = (V, E) \) be an infinite graph such that every finite \(V_0 \subseteq V \) induces a \(k \)-colorable subgraph, and let \(X \subseteq V \) be infinite. Enumerate \(V \) as \((v_i)_{i \in \mathbb{N}} \), and let \(T \subseteq k^{<\mathbb{N}} \) be the tree

\[T = \{ \sigma \in k^{<\mathbb{N}} : (\forall i, j < |\sigma|)((v_i, v_j) \in E \rightarrow \sigma(i) \neq \sigma(j)) \}. \]
T exists by Δ^0_1 comprehension and is closed downward. T is infinite because for any $n \in \mathbb{N}$, any k-coloring of the subgraph induced by $\{v_i : i < n\}$ corresponds to a string in the tree of length n. Let $X_0 = \{ i \in \mathbb{N} : v_i \in \mathcal{X} \}$, and apply LRWKL$_k$ (which follows from RCA$_0$ + RWKL by Theorem 3.27) to T and X_0 to get an infinite set $H_0 \subseteq X_0$ and a color $c < k$ such that H_0 is homogeneous for a path through T with color c. Let $H = \{ v_i : i \in H_0 \}$. We show that every finite $V_0 \subseteq V$ induces a subgraph that is k-colorable by a coloring that colors every $v \in V_0 \cap H$ color 0. Let $V_0 \subseteq V$ be finite, let $n = \max\{ i + 1 : v_i \in V_0 \}$, and let $\sigma \in T$ be such that $|\sigma| = n$ and such that H_0 is homogeneous for σ with color c. Then the coloring of V_0 given by $v_i \mapsto \sigma(i)$ is a k-coloring of V_0 that colors the elements of $V_0 \cap H$ color c. Swapping colors 0 and c thus gives a k-coloring of V_0 that colors the elements of $V_0 \cap H$ color 0.

We now prove that RCA$_0$ \vdash RCOLOR$_3$ \rightarrow RWKL (Theorem 5.13 below). Our proof factors through the Ramsey-type satisfiability principles and is a rather elaborate exercise in circuit design. The plan is to prove that RCA$_0$ \vdash RCOLOR$_3$ \rightarrow RSAT$_{2\text{-branching}}$, then appeal to Proposition 4.5. Given a 2-branching set of clauses C, we compute a locally 3-colorable graph G such that every set homogeneous for G computes a set that is homogeneous for C. G is built by connecting widgets, which are finite graphs whose colorings have desirable properties. A widget $W(\mathcal{V})$ has distinguished vertices \mathcal{V} through which we connect the widget to the larger graph. These distinguished vertices can also be regarded, in a sense, as the inputs and outputs of the widget.

In an RCOLOR$_3$ instance built out of widgets according to an RSAT$_{2\text{-branching}}$ instance, some of the vertices code literals so that the colorings of these coding vertices code truth assignments of the corresponding literals in such a way that a homogeneous set for the RSAT$_{2\text{-branching}}$ instance can be decoded from a homogeneous set for the graph that contains only coding vertices. However, we have no control over what vertices appear in an arbitrary homogeneous set. Therefore, we must build our graph so that the color of every vertex gives information about the color of some coding vertex.

When we introduce a widget, we prove a lemma concerning the three key aspects of the widget’s operation: soundness, completeness, and reversibility. By soundness, we mean conditions on the 3-colorings of the widget, which we think of as input-output requirements for the widget. By completeness, we mean that the widget is indeed 3-colorable and, moreover, that 3-colorings of certain sub-widgets extend to 3-colorings of the whole widget. By reversibility, we mean that the colors of some vertices may be deduced from the colors of other vertices.

To aid the analysis of our widgets, we introduce a notation for the property that a coloring colors two vertices the same color.

Notation 5.4. Let $G = (V, E)$ be a graph, let $a, b \in V$, and let $\nu : V \rightarrow k$ be a k-coloring of G. We write $a =_\nu b$ if $\nu(a) = \nu(b)$.

The graph G that we build from our widgets has three distinguished vertices, 0, 1, and 2, connected as a triangle. The intention of these vertices is to code truth values. If ν is a vertex coding a literal ℓ, then $(\nu, 2)$ is an edge in G, and, for a 3-coloring ν, we interpret $\nu =_\nu 0$ as ℓ is false and $\nu =_\nu 1$ as ℓ is true. Our widgets often include vertices 0, 1, and 2.

Widget 5.5. $R_{x \rightarrow y}^{y \rightarrow z}(a, u)$ is the following widget.
Lemma 5.6.

(i) Let v be a 3-coloring of $R_{x \to y}(a, u)$. If $a =_v x$ then $u =_v y$, and if $a =_v y$ then $u =_v z$.

(ii) Every 3-coloring of the subgraph of $R_{x \to y}(a, u)$ induced by \{x, y, z, a\} can be extended to a 3-coloring of $R_{x \to y}(a, u)$.

(iii) In every 3-coloring of $R_{x \to y}(a, u)$, the color of each vertex in \{u, v\} determines the color of a.

Proof. The lemma follows from examining the two possible (up to permutations of the colors) 3-colorings of $R_{x \to y}(a, u)$:

\begin{align*}
a =_v x & \quad v =_v z & \quad u =_v y & \quad (1) \\
a =_v y & \quad v =_v x & \quad u =_v z. & \quad (2)
\end{align*}

We see (i) immediately. For (ii), if $a =_v x$, then color the widget according to the first coloring; and if $a =_v y$, then color the widget according to the second coloring. For (iii), if $u =_v y$ or $v =_v z$, then $a =_v x$; and if $u =_v z$ or $v =_v x$, then $a =_v y$.

The intention is that, in $R_{x \to y}(a, u)$, the vertices x, y, and z are some permutation of the vertices 0, 1, and 2. For example, $R_{0 \to 1}(a, u)$ is the instance of this widget where $x = 0$, $y = 1$, and $z = 2$. The notation ‘$R_{0 \to 1}(a, u)$’ is evocative of Lemma 5.6 (i). Thinking of a as the widget’s input and of u as the widget’s output, Lemma 5.6 (i) says that the widget maps 0 to 1 and 1 to 2.

Widget 5.7. $U_{x,y,z}(\ell, b, u)$ is the following widget.

In the diagram above, the box labeled ‘$R_{x \to y}(\ell, r)$’ represents an $R_{x \to y}(\ell, r)$ sub-widget. The vertices ℓ and r are the same as those appearing inside $R_{x \to y}(\ell, r)$. They have been displayed to show how they connect to the rest of the $U_{x,y,z}(\ell, b, u)$ widget. The vertices x, y, and z are also the same as the corresponding vertices appearing inside $R_{x \to y}(\ell, r)$, and some of the edges incident to them (for example, the edge (x, r)) have been omitted to improve legibility.

The properties of $U_{x,y,z}(\ell, b, u)$ highlighted by the next lemmas may seem ill-motivated at first. We explain their significance after the proofs.
Lemma 5.8.

(i) Every 3-coloring \(\nu \) of the subgraph of \(U_{x,y,z}(\ell, b, u) \) induced by \(\{x, y, z, \ell, b\} \) can be extended to a 3-coloring of \(U_{x,y,z}(\ell, b, u) \).

(ii) If \(\nu \) is a 3-coloring of \(U_{x,y,z}(\ell, b, u) \) in which \(\ell = \nu x \) and \(b = \nu y \), then \(u = \nu x \).

(iii) Every 3-coloring \(\nu \) of the subgraph of \(U_{x,y,z}(\ell, b, u) \) induced by \(\{x, y, z, \ell, b\} \) in which \(\ell = \nu x \) and \(b \neq \nu y \) can be extended to a 3-coloring of \(U_{x,y,z}(\ell, b, u) \) in which \(u = \nu z \).

(iv) Every 3-coloring \(\nu \) of the subgraph of \(U_{x,y,z}(\ell, b, u) \) induced by \(\{x, y, z, \ell, b\} \) in which \(\ell = \nu y \) can be extended to a 3-coloring of \(U_{x,y,z}(\ell, b, u) \) in which \(u = \nu y \).

Proof. For (i), let \(\nu \) be a 3-coloring of the subgraph of \(U_{x,y,z}(\ell, b, u) \) induced by \(\{x, y, z, \ell, b\} \).

- If \(\ell = \nu x \) and \(b = \nu x \), then color the widget so that \(\ell = \nu y \), \(r = \nu y \), \(d = \nu y \), and \(u = \nu z \).
- If \(\ell = \nu x \) and \(b = \nu y \), then color the widget so that \(\ell = \nu y \), \(r = \nu y \), \(d = \nu z \), and \(u = \nu x \).
- If \(\ell = \nu y \) and \(b = \nu z \), then color the widget so that \(\ell = \nu y \), \(r = \nu y \), \(d = \nu y \), and \(u = \nu y \).
- If \(\ell = \nu y \), and \(b = \nu z \), then color the widget so that \(\ell = \nu x \), \(r = \nu z \), \(d = \nu x \), and \(u = \nu y \).

In each of the above cases, the sub-widget \(R_{x\rightarrow y}(\ell, r) \) is colored according to Lemma 5.6.

For (ii), let \(\nu \) be a 3-coloring of \(U_{x,y,z}(\ell, b, u) \) in which \(\ell = \nu x \) and \(b = \nu y \). Then it must be that \(\ell = \nu y \) and \(d = \nu z \), and therefore it must be that \(u = \nu x \).

Item (iii) can be seen by inspecting the first and third colorings in the proof of (i).

Item (iv) can be seen by inspecting the last three colorings in the proof of (i).

Lemma 5.9. Let \(\nu \) be a 3-coloring of \(U_{x,y,z}(\ell, b, u) \). If \(w \) is \(\ell \), \(u \), or any vertex appearing in the \(R_{x\rightarrow y}(\ell, r) \) sub-widget that is not \(x \), \(y \), or \(z \), then the color of \(w \) determines the color of \(\ell \). Moreover,

- if \(d = \nu x \), then \(\ell = \nu y \);
- if \(d = \nu y \), then \(\ell = \nu x \);
- if \(d = \nu z \), then \(b \neq \nu z \).

Proof. Let \(\nu \) be a 3-coloring of \(U_{x,y,z}(\ell, b, u) \). It is easy to see that if \(\ell = \nu x \), then \(\ell = \nu y \) and that if \(\ell = \nu y \), then \(\ell = \nu x \). If \(w \) is a vertex in \(R_{x\rightarrow y}(\ell, r) \) that is not \(x \), \(y \), or \(z \), then the color of \(w \) determines the color of \(\ell \) by Lemma 5.6 (iii). For \(u \), if \(u = \nu x \) or \(u = \nu z \) it cannot be that \(\ell = \nu y \) because then \(\ell = \nu x \) and, by Lemma 5.6 (i), \(r = \nu z \). On the other hand, if \(u = \nu y \), it cannot be that \(\ell = \nu x \) because then \(\ell = \nu y \). Thus if \(u = \nu x \) or \(u = \nu z \), then \(\ell = \nu x \); and if \(u = \nu y \), then \(\ell = \nu y \). It is easy to see that if \(d = \nu x \) then \(\ell = \nu y \), that if \(d = \nu y \) then \(\ell = \nu x \), and that if \(d = \nu z \) then \(b \neq \nu z \) because \(\ell \) and \(b \) are neighbors of \(d \).

Consider a clause \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1} \). The idea is to code truth assignments that satisfy the clause as 3-colorings of a graph constructed by chaining together widgets of the form \(U_{x,y,z}(\ell_i, b, u) \). Let \(\nu \) be a 3-coloring of \(U_{x,y,z}(\ell_i, b, u) \). The color of the vertex \(\ell_i \) represents the truth value of the literal \(\ell_i \): \(\ell_i = \nu x \) is interpreted as \(\ell_i \) is false, and \(\ell_i = \nu y \) is interpreted as \(\ell_i \) is true. The color of the vertex \(b \) represents the truth value of \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{i-1} \) as well as the truth value of the literal \(\ell_{i-1} \): \(b = \nu x \) is interpreted as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{i-1} \) is false but \(\ell_{i-1} \) is false; \(b = \nu y \) is interpreted as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{i-1} \) is false (and hence also as \(\ell_{i-1} \) is false); and \(b = \nu z \) is interpreted as \(\ell_{i-1} \) is true (and hence also as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{i-1} \) is true). Similarly, the color of the vertex \(u \) represents the truth value of \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i \) as well as the truth value of the literal \(\ell_i \). However, the meanings of the colors are permuted: \(u = \nu x \) is interpreted as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i \) is false (and hence also as \(\ell_i \) is
false); \(u = v\) \(y\) is interpreted as \(\ell_i\) is true (and hence also as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is true); and \(u = v\) \(z\) is interpreted as \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is true but \(\ell_i\) is false. Lemma 5.8 tells us that \(U_{x,y,z}(\ell_i, b, u)\) properly implements this coding scheme. Lemma 5.8 (ii) says that if a 3-coloring codes that \(\ell_i\) is false and that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is false, then it must also code that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is false. Lemma 5.8 (iii) says that if \(v\) is a 3-coloring of the subgraph of \(U_{x,y,z}(\ell_i, b, u)\) induced by \(\{x, y, z, \ell_i, b\}\) coding that \(\ell_i\) is false and that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is true, then \(v\) can be extended to a 3-coloring of \(U_{x,y,z}(\ell_i, b, u)\) coding that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is true. The reader may worry that here it is also possible to extend \(v\) to incorrectly code that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is false, so we assure the reader that this is irrelevant. What is important is that it is possible to extend \(v\) to code the correct information. Lemma 5.8 (iv) says that if \(v\) is a 3-coloring of the subgraph of \(U_{x,y,z}(\ell_i, b, u)\) induced by \(\{x, y, z, \ell_i, b\}\) coding that \(\ell_i\) is true, then \(v\) can be extended to a 3-coloring of \(U_{x,y,z}(\ell_i, b, u)\) coding that \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_i\) is true. Lemma 5.9 helps us deduce the colors of literal-coding vertices from the colors of auxiliary vertices and hence helps us compute a homogeneous set for a set of clauses from a homogeneous set for a graph.

The next widget combines \(U_{x,y,z}(\ell, b, u)\) widgets into widgets coding clauses.
Widget 5.10. $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ is the following widget.

The widget also contains the edge $(2, \ell_i)$ for each $i < n$, which we omitted from the diagram to keep it legible. For $0 < i < n$, the sub-widget $U^i(\ell'_i, u_{i-1}, u_i)$ is $U_{0,1,2}(\ell_i, u_{i-1}, u_i)$ if $i \equiv 0 \mod 3$, is $U_{2,0,1}(\ell'_i, u_{i-1}, u_i)$ if $i \equiv 1 \mod 3$ (with ℓ_0 in place of u_0 when $i = 1$), and is $U_{1,2,0}(\ell'_i, u_{i-1}, u_i)$ if $i \equiv 2 \mod 3$. For $0 < i < n$, the sub-widget $R^i(\ell_i, \ell'_i)$ is $R_{n-2}(\ell_i, \ell'_i)$ if $i \equiv 1 \mod 3$ and is $R_{1-2}(\ell_i, \ell'_i)$ if $i \equiv 2 \mod 3$. If $i \equiv 0 \mod 3$, then there is just the vertex ℓ_i instead of the subgraph $R^i(\ell_i, \ell'_i)$.

The vertex x is 0 if $n-1 \equiv 0 \mod 3$, is 2 if $n-1 \equiv 1 \mod 3$, and is 1 if $x \equiv 2 \mod 3$. Note that the vertex x is thus drawn twice because it is identical to one of 0, 1, 2. For clarity, we also point out that in the case of $D(\ell_0)$, the widget is simply

Lemma 5.11.
(i) Every 3-coloring \(\nu \) of the subgraph of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) induced by \(\{0, 1, 2, \ell_0, \ell_1, \ldots, \ell_{n-1}\} \) in which \(\ell_i = \nu \) for some \(i < n \) can be extended to a 3-coloring of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \).

(ii) There is no 3-coloring \(\nu \) of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) in which \(\ell_0 = \nu, \ell_1 = \nu \cdots = \nu, \ell_{n-1} = \nu \).

Proof. For (i), let \(\nu \) be a 3-coloring of the subgraph induced by \(\{0, 1, 2, \ell_0, \ell_1, \ldots, \ell_{n-1}\} \) in which \(\ell_i = \nu \) for some \(i < n \). For each \(i < n \), let \(D_i(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) denote the subgraph of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) induced by \(0, 1, 2 \) and the vertices appearing in \(R(\ell_j, \ell'_j) \) and \(U^{i}(\ell'_i, u_{i-1}, u_i) \) for all \(j \leq i \). That is, if \(i < n-1 \), then \(D_i(\ell_0, \ell_1, \ldots, \ell_{n-1}) = D(\ell_0, \ell_1, \ldots, \ell_i) \) without the edge between \(u_i \) and \(x \); and if \(i = n-1 \), then \(D_i(\ell_0, \ell_1, \ldots, \ell_{n-1}) = D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \). Item (i) is then the instance \(i = n-1 \) of the following claim.

Claim. For all \(i < n \), \(\nu \) can be extended to a 3-coloring of \(D_i(\ell_0, \ell_1, \ldots, \ell_{n-1}) \). Moreover, if \(\ell_j = \nu \) for some \(j \leq i \), then \(\nu \) can be extended to a 3-coloring of \(D_i(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) in which \(\nu(u_i) \) codes this fact. That is, if \(i \equiv 0 \mod 3 \), then \(u_i \neq \nu \); if \(i \equiv 1 \mod 3 \), then \(u_i \neq \nu \); and if \(i \equiv 2 \mod 3 \), then \(u_i \neq \nu \) (for \(i = 0 \), interpret \(u_0 \) as \(\nu \)).

Proof. By induction on \(i < n \). For \(i = 0 \), \(D_0(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) is the subgraph of induced by \(\{0, 1, 2, \ell_0\} \), which is 3-colored by \(\nu \) by assumption. Clearly if \(\ell_0 = \nu \), then \(\ell_0 \neq \nu \). Now suppose that \(\nu \) has been extended to a 3-coloring of \(D_{i-1}(\ell_0, \ell_1, \ldots, \ell_{n-1}) \). For the sake of argument, suppose that \(i \equiv 1 \mod 3 \) (the \(i \equiv 0 \mod 3 \) and \(i \equiv 2 \mod 3 \) cases are symmetric), and suppose that if \(\ell_j = \nu \) for some \(j \leq i-1 \), then \(u_{i-1} \neq \nu \). First suppose that \(\ell_i = \nu \). As \(R(\ell_i, \ell'_i) = R_{0\to2}(\ell_i, \ell'_i) \), apply Lemma 5.6 (i) to extend \(\nu \) to \(R(\ell_i, \ell'_i) \) so that \(\ell'_i = \nu \). By Lemma 5.8 (i), it is possible to extend \(\nu \) to \(U^{i}(\ell'_i, u_{i-1}, u_i) \). Furthermore, if \(\ell_j = \nu \) for some \(j \leq i-1 \), then \(u_{i-1} \neq \nu \). In this situation, by Lemma 5.8 (iii), it is possible to extend \(\nu \) to \(U^{i}(\ell'_i, u_{i-1}, u_i) = U_{2,0,1}(\ell'_i, u_{i-1}, u_i) \) so that \(u_i = \nu \) (and hence \(u_i = \nu \)). Now suppose that \(\ell_i = \nu \). As \(U^{i}(\ell_i, \ell'_i) = U_{0\to2}(\ell_i, \ell'_i) \), apply Lemma 5.6 (i) to extend \(\nu \) to \(U^{i}(\ell'_i, u_{i-1}, u_i) \) so that \(u_i = \nu \). By Lemma 5.8 (iv), it is possible to extend \(\nu \) to \(U^{i}(\ell'_i, u_{i-1}, u_i) = U_{0\to2}(\ell'_i, u_{i-1}, u_i) \) so that \(u_i = \nu \) (and hence \(u_i = \nu \)).

For (ii), suppose for a contradiction that \(\nu \) is a 3-coloring of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) in which \(\ell_0 = \nu, \ell_1 = \nu \cdots = \nu, \ell_{n-1} = \nu \). We prove by induction on \(i < n \) that \(u_i = \nu \) if \(i \equiv 0 \mod 3 \), \(u_i = 2 \) if \(i \equiv 1 \mod 3 \), and \(u_i = 1 \) if \(i \equiv 2 \mod 3 \) (again \(u_i \) is interpreted as \(\ell_i \)). Item (ii) follows from the case \(i = n-1 \) because this gives the contradiction \(u_{n-1} = x \). For \(i = 0 \), \(\ell_0 = \nu \) by assumption. Now consider \(0 < i < n \), assume for the sake of argument that \(i \equiv 1 \mod 3 \) (the \(i \equiv 0 \mod 3 \) and \(i \equiv 2 \mod 3 \) cases are symmetric), and assume that \(u_{i-1} = \nu \). By Lemma 5.6 (i) for the widget \(R(\ell_i, \ell'_i) = R_{0\to2}(\ell_i, \ell'_i) \), we have that \(\ell'_i = \nu \). Thus \(U^{i}(\ell'_i, u_{i-1}, u_i) = U_{2,0,1}(\ell'_i, u_{i-1}, u_i) \), \(\ell'_i = \nu = 2 \), and \(u_{i-1} = \nu \), so it must be that \(u_i = \nu = 2 \) by Lemma 5.8 (ii).

Lemma 5.12. Let \(\nu \) be a 3-coloring of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \). If \(0 < i < n \) and \(w \) is a vertex appearing in an \(R^{i}(\ell_i, \ell'_i) \) sub-widget or a \(U^{i}(\ell'_i, u_{i-1}, u_i) \) sub-widget that is not 0, 1, or 2, then the color of \(w \) determines either the color of \(\ell_i \) or the color of \(\ell_{i-1} \).

Proof. Consider a 3-coloring \(\nu \) of \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \), an \(i \) with \(0 < i < n \), and a vertex \(w \) in an \(R^{i}(\ell_i, \ell'_i) \) sub-widget or a \(U^{i}(\ell'_i, u_{i-1}, u_i) \) sub-widget that is not 0, 1, or 2. If \(w \) appears in \(R^{i}(\ell_i, \ell'_i) \), then the color of \(w \) determines the color of \(\ell_i \) by Lemma 5.6 (iii). If \(w \) appears in \(U^{i}(\ell'_i, u_{i-1}, u_i) \), then there are a few cases. If \(w \) is not \(u_{i-1} \) or \(d_i \), then the color of \(w \) determines the color \(\ell'_i \) by Lemma 5.9, which we have just seen determines the color of \(\ell_i \) (or \(\ell'_i \) is the case in \(i \equiv 0 \mod 3 \)). Consider \(w = u_{i-1} \). If \(i = 1 \), then \(u_{i-1} \) is really \(\ell_0 \), and of course the color of \(\ell_0 \) determines the color of \(\ell_0 \).
Otherwise, \(i > 1 \), \(u_{i-1} \) appears in the sub-widget \(U^{i-1}(\ell'_{i-1}, u_{i-2}, u_{i-1}) \), and hence the color of \(u_{i-1} \) determines the color of \(\ell_{i-1} \).

Lastly, consider \(w = d \). \(U^i(\ell'_i, u_{i-1}, u_i) = U_{x,y,z}(\ell'_i, u_{i-1}, u_i) \), where \(x, y, \) and \(z \) are some permutation of 0, 1, and 2. If \(d = y \) or \(d = z \), then this determines the color of \(\ell'_i \) by Lemma 5.9, which in turn determines the color of \(\ell_i \). Otherwise \(d = y \), meaning that \(u_{i-1} \neq y \) by Lemma 5.9. If \(i = 1 \), then \(z = 1 \), \(u_0 \) is really \(\ell_0 \), and we conclude that \(\ell_0 = y \). If \(i > 1 \), then \(U^{i-1}(\ell'_{i-1}, u_{i-2}, u_{i-1}) \) is \(U_{y,z,x}(\ell'_{i-1}, u_{i-2}, u_{i-1}) \) and, by examining the proof of Lemma 5.9, \(u_{i-1} \neq y \) implies that \(\ell'_{i-1} = y \), which in turn determines the color of \(\ell_{i-1} \).

To code the conjunction of two clauses \(\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1} \) and \(s_0 \lor s_1 \lor \cdots \lor s_{m-1} \), we overlap the widgets \(D(\ell_0, \ell_1, \ldots, \ell_{n-1}) \) and \(D(s_0, s_1, \ldots, s_{m-1}) \) by sharing the vertices pertaining to the longest common prefix of \(\ell_0, \ell_1, \ldots, \ell_{n-1} \) and \(s_0, s_1, \ldots, s_{m-1} \). For example, consider the clauses \(\ell_0 \lor \ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4 \) and \(\ell_0 \lor \ell_1 \lor s_2 \lor s_3 \), where \(\ell_2 \neq s_2 \). We overlap \(D(\ell_0, \ell_1, \ell_2, \ell_3, \ell_4) \) and \(D(\ell_0, \ell_1, s_2, s_3) \) as follows:

![Diagram](image-url)

Theorem 5.13. \(\text{RCA}_0 \vdash \text{RCOLOR}_3 \rightarrow \text{RWKL} \).

Proof. We prove \(\text{RCA}_0 \vdash \text{RCOLOR}_3 \rightarrow \text{RSAT}_{2\text{-branching}} \). The theorem follows by Proposition 4.5.

Let \(C \) be a 2-branching and finitely satisfiable set of clauses over an infinite set of atoms \(A = \{ a_i : i \in \mathbb{N} \} \). We assume that no clause in \(C \) is a proper prefix of any other clause in \(C \) by removing from \(C \) every clause that has a proper prefix also in \(C \). We build a locally 3-colorable graph \(G \) such that every infinite homogeneous set for \(G \) computes an infinite homogeneous set for \(C \). To start, \(G \) contains the vertices 0, 1, and 2, as well as the literal-coding vertices \(a_i \) and \(\neg a_i \) for each atom \(a_i \in A \). These vertices are connected according to the diagram below.
Now build G in stages by considering the clauses in C one-at-a-time. For clause $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$, find the previously appearing clause $s_0 \lor s_1 \lor \cdots \lor s_{m-1}$ having the longest common prefix with $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$. Then add the widget $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ by overlapping it with $D(s_0, s_1, \ldots, s_{m-1})$ as described above. In $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$, for each $i < n$, the vertex ℓ_i is the vertex a_i if the literal ℓ_i is the literal a_i, and the vertex ℓ_i is the vertex $\neg a_i$ if the literal ℓ_i is the literal $\neg a_i$. The vertices appearing in the sub-widgets $R(i, i')$ and $U(i, i'_1, u_{i-1}, u_i)$ for i beyond the index at which $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$ differs from $s_0 \lor s_1 \lor \cdots \lor s_{m-1}$ are chosen fresh, except for 0, 1, 2, and the literal-coding vertices ℓ_i. This completes the construction of G.

Claim. G is locally 3-colorable.

Proof. Let G_0 be a finite subgraph of G. Let s be the latest stage at which a vertex in G_0 appears, and let $C_0 \subseteq C$ be the set of clauses considered up to stage s. By extending G_0, we may assume that it is the graph constructed up to stage s.

By the finite satisfiability of C, let $t : \text{atoms}(C_0) \rightarrow \{T, F\}$ be a truth assignment satisfying C_0. The truth assignment t induces a 3-coloring ν on the literal-coding vertices in G_0. First define ν on the truth value-coding vertices by $\nu(0) = 0$, $\nu(1) = 1$, and $\nu(2) = 2$. If $t(\ell)$ is defined for the literal ℓ, then set $\nu(\ell) = t(\ell)$ (identifying 0 with F and 1 with T). If ℓ is a literal-coding vertex in G_0 on which t is not defined, then set $\nu(\ell) = 1$ if ℓ is a positive literal and set $\nu(\ell) = 0$ if ℓ is a negative literal. For each clause $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$ in C_0, extend ν to a 3-coloring of G_0 by coloring each widget $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ according to the algorithm implicit in the proof of Lemma 5.11 (i). The hypothesis of Lemma 5.11 (i) is satisfied because t satisfies C_0, so for each clause $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$ in C_0, there is an $i < n$ such that $\ell_i = \nu c_i$. Overlapping widgets $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ and $D(s_0, s_1, \ldots, s_{m-1})$ are colored consistently because the colors of the shared vertices depend only on the colors of the literal-coding vertices corresponding to the longest common prefix of the two clauses.

Apply RCOLOR$_3$ to G to get an infinite homogeneous set H. We may assume that H contains exactly one of the truth value-coding vertices 0, 1, or 2. Call this vertex c.

Consider a vertex $w \in H$ that is not c. The vertex w appears in some widget $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$, and, by Lemma 5.12, from w we can compute an $i < n$ and a $c_i \in \{0, 1\}$ such that $\ell_i = \nu c_i$ whenever ν is a 3-coloring of $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ in which $w = \nu c$. Moreover, for each literal ℓ_i, we can compute a bound on the number of vertices w in the graph whose color determines the color of ℓ_i. Still by Lemma 5.12, if w appears in an $R(i, i'_1)$ sub-widget or a $U(i'_1, u_{i-1}, u_i)$ sub-widget, then the color of w determines either the color of ℓ_i or the color of ℓ_{i-1}. Thus the vertices whose colors determine the color of ℓ_i only appear in $R(\ell_i, i'_1)$, $U(i'_1, u_{i-1}, u_i)$, $R(i+1, i'_1, e_{i+1})$, and $U(i+1, i'_1, u_{i+1})$ sub-widgets. The fact that C is a 2-branching set of clauses and our protocol for overlapping the $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ widgets together imply that, for every $j > 0$, there are at most $2j$ sub-widgets of the form $R(\ell_j, i'_j)$ and at
most 2^j sub-widgets of the form $U^j(\ell', u_{j-1}, u_j)$. This induces the desired bound on the number of vertices whose colors determine the color of ℓ_j.

Thus from H we can compute an infinite set H' of pairs (ℓ, c_ℓ), where each ℓ is a literal-coding vertex and each c_ℓ is either 0 or 1, such that every finite subgraph of G is 3-colorable by a coloring ν such that $(V(\ell, c_\ell) \subseteq H')(\ell \mapsto \nu(c_\ell))$. Modify H' to contain only pairs (a, c_a) for positive literal-coding vertices a by replacing each pair of the form $(\langle a, c_a \rangle)$ with $(\langle a, 1-c_a \rangle)$. Now apply the infinite pigeonhole principle to H' to get an infinite set H'' of positive literal-coding vertices a and a new $c \in \{0, 1\}$ such that the corresponding c_a is always c. We identify a positive literal-coding vertex a with the corresponding atom and show that H'' is homogeneous for C.

Let $C_0 \subseteq C$ be finite. Let G_0 be the finite subgraph of G containing $\{0, 1, 2\}$, the literal-coding vertices whose atoms appear in the clauses in C_0, and the $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$ widgets for the clauses $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$ in C_0. By the homogeneity of H'' for G, there is a 3-coloring ν of G_0 such that $a = \nu(c)$ for every $a \in H''$. From ν, define a truth assignment t on atoms(C_0) by $t(a) = T$ if $a = \nu 1$ and $t(a) = F$ if $a = \nu 0$. This truth assignment satisfies every clause $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$ in C_0. The 3-coloring ν must color the widget $D(\ell_0, \ell_1, \ldots, \ell_{n-1})$, so by Lemma 5.11 (ii), it must be that $\ell_i = \nu 1$ for some $i < n$. Then $t(\ell_i) = T$ for this same i, so t satisfies $\ell_0 \lor \ell_1 \lor \cdots \lor \ell_{n-1}$. Moreover, $t(a)$ is the truth value coded by c for every $a \in H''$, so H'' is indeed an infinite homogeneous set for C.

It follows that RWKL, RCOLOR_k, and LRCOLOR_k are equivalent for every fixed $k \geq 3$.

Corollary 5.14. For every $k \in \omega$ with $k \geq 3$, $\text{RCA}_0 \vdash \text{RWKL} \leftrightarrow \text{RCOLOR}_k \leftrightarrow \text{LRCOLOR}_k$.

Proof. Fix $k \in \omega$ with $k \geq 3$. $\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{LRCOLOR}_k$ by Lemma 5.3, and clearly $\text{RCA}_0 \vdash \text{LRCOLOR}_k \rightarrow \text{RCOLOR}_k$. It is easy to see that $\text{RCA}_0 \vdash \text{RCOLOR}_k \rightarrow \text{RCOLOR}_3$. Given a locally 3-colorable graph G, augment G by a clique C containing $k-3$ fresh vertices, and put and edge between every vertex in C and every vertex in G. The resulting graph G' is locally k-colorable, and every infinite set that is k-homogeneous for G' is also 3-homogeneous for G. Finally, $\text{RCA}_0 \vdash \text{RCOLOR}_3 \rightarrow \text{RWKL}$ by Theorem 5.13.

The question of the exact strength of RCOLOR_2 remains open. We are unable to determine if RCOLOR_2 implies RWKL or even if RCOLOR_2 implies DNR.

Question 5.15. Does $\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{RWKL}$?

Question 5.16. Does $\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{DNR}$?

However, we are able to show that RCOLOR_2 and LRCOLOR_2 are equivalent.

Theorem 5.17. $\text{RCA}_0 \vdash \text{RCOLOR}_2 \leftrightarrow \text{LRCOLOR}_2$.

Proof. $\text{RCA}_0 \vdash \text{LRCOLOR}_2 \rightarrow \text{RCOLOR}_2$ is clear. We show that $\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{LRCOLOR}_2$.

RCA_0 suffices to prove that a finite graph is 2-colorable if and only if it does not contain an odd-length cycle. Thus the condition that every finite subset of vertices of a graph induces a 2-colorable subgraph is equivalent to the condition that the graph does not contain an odd-length cycle. Moreover, if $G = (V, E)$ is a graph such that every finite subset of V induces a 2-colorable subgraph, then, for any $H \subseteq V$, every finite $V_0 \subseteq V$ induces a subgraph that is 2-colorable by a coloring that colors every $v \in V_0 \cap H$ color 0 if and only if no two elements of H are connected by an odd-length path. Thus, over RCA_0, we immediately have the following two equivalences:
where

To finish the proof, we show that, in G, thus there is an infinite set H such that no two vertices of H are connected by an odd-length path.

LRCOLOR_2 is equivalent to the statement “for every infinite graph $G = (V, E)$ and every infinite $X \subseteq V$, if G does not contain an odd-length cycle, then there is an infinite $H \subseteq X$ such that no two vertices of H are connected by an odd-length path.”

Let $G = (V, E)$ be an infinite graph that does not contain an odd-length cycle, and let $X \subseteq V$ be infinite. If there is a bound m such that

$$(\forall x, y \in X)(x \text{ and } y \text{ are connected by an odd-length path } \rightarrow x, y < m),$$

then we may take $H = \{x \in X : x > m\}$. So suppose instead that there are infinitely many distinct pairs (x, y) of vertices in X that are connected by odd-length paths, let $((x_n, y_n))_{n \in \mathbb{N}}$ enumerate this collection of pairs, and let $(p_n)_{n \in \mathbb{N}}$ enumerate a collection of odd-length paths such that the endpoints of p_n are x_n and y_n.

Define a graph $G' = (V', E')$ by

$$V' = X \cup \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}$$

$$E' = \{(x, a_n), (a_n, b_n), (b_n, y) : x, y \in X \land x < y \land x \text{ and } y \text{ are the endpoints of } p_n\}.$$

G' does not contain an odd-length cycle. To see this, suppose for a contradiction that G' does contain an odd-length cycle. This cycle must be of the form

$$x_0, c_{m_0}, d_{m_0}, x_1, c_{m_0}, d_{m_0}, x_2, \ldots, x_{n-1}, c_{m_{n-1}}, d_{m_{n-1}}, x_0,$$

where n is odd and, for each $i < n$, $x_i \in X$ and $\{c_{m_i}, d_{m_i}\} = \{a_{m_i}, b_{m_i}\}$. Thus, for each $i < n-1$, p_{m_i} is an odd-length path with endpoints x_i and x_{i+1}, and also $p_{m_{n-1}}$ is an odd-length path with endpoints x_{n-1} and x_0. Therefore the path in G obtained by starting at x_0, following p_{m_0} to x_1, following p_{m_1} to x_2, and so on, finally following $p_{m_{n-1}}$ from x_{n-1} back to x_0, is an odd-length cycle in G, a contradiction.

Hence by RCOLOR$_2$, there is an infinite $H_0 \subseteq V'$ such that no two vertices of H_0 are connected by an odd-length path. In G', infinitely many vertices of X are connected to H_0. Clearly this holds if $X \cap H_0$ is infinite. Otherwise, H_0 contains infinitely many vertices of the form a_n or b_n, and these must be connected to infinitely many vertices in X because

$$(\forall m)(\exists n_0)(\forall n > n_0)(\text{some endpoint of } p_n \text{ is } > m),$$

and therefore

$$(\forall m)(\exists n_0)(\forall n > n_0)(a_n \text{ and } b_n \text{ are connected to an } x \in X \text{ with } x > m).$$

Thus there is an infinite set $H \subseteq X$ such that, in G', either every $x \in H$ is connected to a vertex in H_0 by an even-length path, or every $x \in H$ is connected to a vertex in H_0 by an odd-length path. To finish the proof, we show that, in G, no two vertices in H are connected by an odd-length path. Suppose for a contradiction that $x, y \in H$ are connected by an odd-length path. Then there is an n such that x and y are the endpoints of p_n, and therefore x and y are connected by an odd-length path in G' via the vertices a_n and b_n. Now, in G', x is connected to some $u \in H_0$, y is connected to some $v \in H_0$, and the witnessing paths from x to u and from y to v either both have even length or both have odd length. In either case, the path in G' from u to x to y to v has odd length. Thus u and v are two vertices in H_0 connected by an odd-length path in G', which is a contradiction. \square
6. The strength of Ramsey-type graph 2-coloring

In this section, we prove various non-implications concerning RWK, and RCA₂. The main result is that RCA₀ + WWKL ⊬ RCA₂ (Theorem 6.11). From this it follows that RCA₀ + DNR ⊬ RWK, which answers Flood’s question of whether or not RCA₀ ⊢ DNR → RWK from [9]. We also show that RCA₀ + CAC ⊬ RCA₂ (Theorem 6.9). Note that it is immediate that RCA₀ + CAC ⊬ RWK because RCA₀ + RWK ⊢ DNR (by [9]) but RCA₀ + CAC ⊬ DNR (by [15]). We do not know if RCA₀ ⊢ RCA₂ → DNR, so we must give a direct proof that RCA₀ + CAC ⊬ RCA₂.

In summary, the situation is thus. WKL and RT² each imply RWK and therefore each imply RCA₂. However, if WKL is weakened to WWKL, then it no longer implies RCA₂. Similarly, if RT² is weakened to CAC, then it no longer implies RCA₂.

We begin our analysis of RCA₂ by constructing an infinite, recursive, bipartite graph with no infinite, recursive, homogeneous set. It follows that RCA₀ ⊬ RCA₂. The graph we construct avoids potential infinite, i.e., homogeneous sets in a strong way that aids our proof that RCA₀ + CAC ⊬ RCA₂.

Definition 6.1. Let \(G = (V, E) \) be an infinite graph. A set \(W \subseteq V^2 \) is column-wise homogeneous for \(G \) if \(W[x] \) is infinite for infinitely many \(x \) (where \(W[x] = \{ y : (x, y) \in W \} \) is the \(x \)-th column of \(W \)), and \(\forall x \forall y (y \in W[x] \rightarrow \{x, y\} \) is homogeneous for \(G \)).

Lemma 6.2. There is an infinite, recursive, bipartite graph \(G = (\omega, E) \) such that no r.e. set is column-wise homogeneous for \(G \).

Proof. The construction proceeds in stages, starting at stage 0 with \(E = \emptyset \). We say that \(W_e \) requires attention at stage \(s \) if \(e < s \) and there is a least pair \((x, y) \) such that

- \(e < x < y < s \),
- \(y \in W_{[x]}[x] \),
- \(x \) and \(y \) are not connected to each other, and
- neither \(x \) nor \(y \) is connected to a vertex \(\leq e \).

At stage \(s \), let \(e \) be least such that \(W_e \) requires attention at stage \(s \) and has not previously received attention. \(W_e \) then requires attention by letting \((x, y) \) witness that \(W_e \) requires attention at stage \(s \), letting \(u \) and \(v \) be the least isolated vertices \(> s \), and adding the edges \((x, u), (u, v), \) and \((v, y) \) to \(E \).

This completes the construction.

We verify the construction. We first show that \(G \) is acyclic by showing that it is acyclic at every stage. It follows that \(G \) is bipartite because a graph is bipartite if and only if it has no odd cycles. All vertices are isolated at the beginning of stage 0, hence \(G \) is acyclic at the beginning of stage 0. By induction, suppose that \(G \) is acyclic at the beginning of stage \(s \). If no \(W_e \) requires attention at stage \(s \), then no edge is added at stage \(s \), hence \(G \) is acyclic at the beginning of stage \(s + 1 \). If some least \(W_e \) requires attention at stage \(s \), then during stage \(s \) we add a length-3 path connecting the connected components of the \(x \) and \(y \) such that \((x, y) \) witnesses that \(W_e \) requires attention at stage \(s \). This action does not add a cycle because by the definition of requiring attention, \(x \) and \(y \) are not connected at the beginning of stage \(s \). Hence \(G \) is acyclic at the beginning of stage \(s + 1 \).

We now show that, for every \(e \), if there are infinitely many \(x \) such that \(W_{[x]}[x] \) is infinite, then there are an \(x \) and a \(y \) with \(y \in W_{[x]}[x] \) and \(\{x, y\} \) not homogeneous for \(G \). If \(W_e \) receives attention, then there is a length-3 path between an \(x \) and a \(y \) with \(y \in W_{[x]}[x] \), in which case \(\{x, y\} \) is not homogeneous for \(G \). Thus it suffices to show that if \(W_{[x]}[x] \) is infinite for infinitely many \(x \), then \(W_e \) requires attention at some stage.
Suppose that $W_e^{[x]}$ is infinite for infinitely many x, and suppose for a contradiction that $W_e^{[x]}$ never requires attention. Let s_0 be a stage by which every W_i for $i < e$ that ever requires attention has received attention. The graph contains only finitely many edges at each stage, so let x_0 be an upper bound for the vertices that are connected to the vertices $≤ e$ at stage s_0. Notice that when some W_i receives attention, the vertices connected at that stage are not connected to vertices $≤ i$. Therefore once all the W_i for $i < e$ that ever require attention have received attention, no vertex that is not connected to a vertex $≤ e$ is ever connected to a vertex $≤ e$. In particular, no vertex $≥ x_0$ is ever connected to a vertex $≤ e$. Now let $x > x_0$ be such that $W_e^{[x]}$ is infinite, and let $s_1 > s_0$ be a stage by which every W_i for $i < x$ that ever requires attention has received attention. Let y_0 be an upper bound for the vertices that are connected to x and the vertices $≤ e$ at stage s_1, and again note that no vertex $≥ y_0$ is ever connected to x or a vertex $≤ e$. As $W_e^{[x]}$ is infinite, let $s > s_1$ be a stage at which there is a $y > y_0$ with $x < y < s$ and $y \in W_e^{[x]}$. This y is not connected to x, and neither x nor y is connected to a vertex $≤ e$, so W_e requires attention at stage s, a contradiction. □

Proposition 6.3. $\text{RCA}_0 \not\vdash \text{RCOLOR}_2$.

Proof. Consider the ω-model of RCA_0 whose second-order part consists of exactly the recursive sets. The graph G from Lemma 6.2 is in the model because G is recursive. However, the model contains no homogeneous set for G because if H were an infinite, recursive, homogeneous set, then $\{(x, y) : x, y \in H\}$ would be a recursive, column-wise homogeneous set, thus contradicting Lemma 6.2. □

The notion of **restricted** Π^1_2 **conservativity** helps separate Ramsey-type weak König’s lemma and the Ramsey-type coloring principles from the following weak principles.

- COH (cohesiveness; see Definition 2.2).
- CRT^2 (cohesive Ramsey’s theorem for pairs and two colors; see [15] for the definition).
- CADS (cohesive ascending or descending sequence; see [15] for the definition).
- Π^0_1G (Π^0_1-generic; see [16] for the definition).
- AMT (atomic model theorem; see [16] for the definition).
- OPT (omitting partial types; see [16] for the definition).
- FIP (finite intersection principle; see [7] for the definition).
- $\bar{D}_2\text{IP}$ (\bar{D}_2 intersection principle; see [7] for the definition).

Definition 6.4 (see [15, 16]).

- A sentence is **restricted** Π^1_2 if it is of the form $\forall \Theta(A) \rightarrow \exists B(\Phi(A, B))$, where Θ is arithmetic and Φ is Σ^0_3.
- A theory T is **restricted** Π^1_2 **conservative** over a theory S if $S \vdash \varphi$ whenever $T \vdash \varphi$ and φ is restricted Π^1_2.

Theorem 6.5.

- ([15]) $\text{RCA}_0 + \text{COH}$ is restricted Π^1_2 conservative over RCA_0.
- ([16]) $\text{RCA}_0 + \Pi^0_1G$ is restricted Π^1_2 conservative over RCA_0.

RCOLOR_2 is a restricted Π^1_2 sentence, so we immediately have that neither COH nor Π^0_1G implies RCOLOR_2 over RCA_0. Consequently, over RCA_0, the following principles are all incomparable with RWKL and with RCOLOR_2: COH, CRT^2, CADS, Π^0_1G, AMT, OPT, FIP, and $\bar{D}_2\text{IP}$.
Theorem 6.6. RWKL is incomparable with each of COH, CRT2_2, CADS, Π^0_1G, AMT, OPT, FIP, and $\bar{\Delta}_2$IP over RCA$_0$. RCOLOR$_2$ is incomparable with these principles over RCA$_0$ as well.

Proof. Over RCA$_0$, we have the implications COH \rightarrow CRT2_2 \rightarrow CADS [4, 15], Π^0_1G \rightarrow AMT \rightarrow OPT [16], and Π^0_2G \rightarrow FIP \rightarrow $\bar{\Delta}_2$IP \rightarrow OPT [7]. Thus we need only show that neither RCA$_0$ + COH nor RCA$_0$ + Π^0_1G proves RCOLOR$_2$ and that RCA$_0$ + RWKL proves neither CADS nor OPT. Observe that RCOLOR$_2$ is a restricted Π^1_1 sentence, so we have that neither RCA$_0$ + COH nor RCA$_0$ + Π^0_1G proves RCOLOR$_2$ by Proposition 6.3 and Theorem 6.5. RCA$_0$ + RWKL proves neither CADS nor OPT because RCA$_0$ + WKL proves RCA$_0$ + RWKL and RCA$_0$ + WKL proves neither CADS [15] nor OPT [16]. □

We now adapt the proof that RCA$_0$ + CAC $\not\propto$ DNR in [15] to prove that RCA$_0$ + CAC $\not\propto$ RCOLOR$_2$. We build an ω-model of RCA$_0$ + SCAC + COH that is not a model of RCOLOR$_2$ by alternating between adding chains or antichains to stable partial orders and adding cohesive sets without ever adding an infinite set homogeneous for the graph from Lemma 6.2.

Lemma 6.7. Let X be a set, let $G = (V, E)$ be a graph recursive in X such that no column-wise homogeneous set for G is r.e. in X, and let P = (P, \leq_p) be an infinite, stable partial order recursive in X. Then there is an infinite $C \subseteq P$ that is either a chain or an antichain that such no column-wise homogeneous set for G is r.e. in X \oplus C.

Proof. For simplicity, assume that X is recursive. The proof relativizes to non-recursive X. As P is stable, assume for the sake of argument that P satisfies $(\forall i \in P)(\exists s)((\forall j > s)(j \in P \rightarrow i \leq_p j) \lor (\forall j > s)(j \in P \rightarrow i > j))$. The case with \geq_p in place of \leq_p is symmetric. Also assume that there is no recursive, infinite antichain $C \subseteq P$, for otherwise we are done.

Let $U = \{i \in P : (\exists s)(\forall j > s)(j \in P \rightarrow i \leq_p j)\}$. The fact that there is no recursive, infinite antichain in P implies that U is infinite. Let $F = (F, \subseteq)$ be the partial order consisting of all $\sigma \in U^{<\omega}$ that are increasing in both $<$ and \leq_p, where $\tau \subseteq \sigma$ if $\tau \geq \sigma$. Let H be sufficiently generic for F, and notice that H (or rather, the range of H, which is computable from H as H is increasing in $<$) is an infinite chain in P. Suppose for a contradiction that W^H_e is column-wise homogeneous for G. Fix a $\sigma \leq H$ such that

$$\sigma \models \forall x \forall y. (y \in (W^H_e)^{[x]} \rightarrow \{x, y\} \text{ is homogeneous for } G).$$

Define a partial computable function $\tau : \omega^2 \rightarrow P^{<\omega}$ by letting $\tau(x, i) \in P^{<\omega}$ be the string with the least code such that $\tau(x, i) \supseteq \sigma$, that $\tau(x, i)$ is increasing in both $<$ and \leq_p, and that $(|W^\tau(x, i)|^{[x]}| > i$.

From here there are two cases.

Case 1: There are infinitely many pairs (x, i) such that $\tau(x, i)$ is defined and there is a $y \in (W^\tau(x, i))^{[x]}$ with $\{x, y\}$ not homogeneous for G. The last element of such a $\tau(x, i)$ is in $P \setminus U$ because otherwise $\tau(x, i) \in F$ and $\tau(x, i) \preceq \sigma$, contradicting that $\sigma \models \forall x \forall y. (y \in (W^H_e)^{[x]} \rightarrow \{x, y\} \text{ is homogeneous for } G)$. Thus the set C consisting of the last elements of such strings $\tau(x, i)$ is an infinite r.e. subset of $P \setminus U$. As elements i of $P \setminus U$ have the property $(\exists s)(\forall j > s)(j \in P \rightarrow i \leq_p j)$, we can thin C to an infinite r.e. antichain in P and hence to an infinite recursive antichain in P, a contradiction.

Case 2: There are finitely many pairs (x, i) such that $\tau(x, i)$ is defined and there is a $y \in (W^\tau(x, i))^{[x]}$ with $\{x, y\}$ not homogeneous for G. In this case, let x_0 be such that if $x > x_0$ and $\tau(x, i)$ is defined, then $(\forall y \in (W^\tau(x, i))^{[x]})(\{x, y\} \text{ is homogeneous for } G)$. Notice that if $|W^H_e)^{[x]}| > i$, then there is a τ with $\sigma \leq \tau \leq H$ such that $(|W^\tau_e)^{[x]}| > i$. Hence if $|W^H_e)^{[x]}$ is infinite, then $\tau(x, i)$ is defined for all
Then there is an infinite set C that is cohesive for G, a contradiction.

Thus there is no column-wise homogeneous set for G that is r.e. in H. Therefore (the range of) H is our desired chain C.

Lemma 6.8. Let X be a set, let $G = (V, E)$ be a graph recursive in X such that no column-wise homogeneous set for G is r.e. in X, and let $R = (R_i)_{i \in \omega}$ be a sequence of sets uniformly recursive in X. Then there is an infinite set C that is cohesive for R such that no column-wise homogeneous set for G is r.e. in $X \oplus C$.

Proof. For simplicity, assume that X is recursive. The proof relativizes to non-recursive X.

We force with recursive Mathias conditions (D, L), where $D \subseteq \omega$ is finite, $L \subseteq \omega$ is infinite and recursive, and every element of D is less than every element of L. The order is $(D_1, L_1) \leq (D_0, L_0)$ if $D_0 \subseteq D_1, L_1 \subseteq L_0$, and $D_1 \setminus D_0 \subseteq L_0$. Let H be sufficiently generic. Then H is an infinite cohesive set for R (as in, for example, Section 4 of [4]).

Suppose for a contradiction that W^H_e is column-wise homogeneous for G. Let (D, L) be a condition such that $D \subseteq H \subseteq L$ and

$$(D, L) \Vdash \forall x \forall y (y \in (W^H_e)^{[x]} \rightarrow \{x, y\} \text{ is homogeneous for } G).$$

Let

$$W = \{ \langle x, y \rangle : \exists E (E \text{ is finite } \land D \subseteq E \subseteq L \land (x, y) \in W^E_e) \}.$$

W is an r.e. set, and $\forall x \forall y (y \in W^{[x]} \rightarrow \{x, y\} \text{ is homogeneous for } G)$. To see the second statement, suppose there is a $\langle x, y \rangle \in W$ such that $\{x, y\}$ is not homogeneous for G, and let E witness $\langle x, y \rangle \in W$. Then $(E, L \setminus E) \leq (D, L)$, but $(E, L \setminus E) \Vdash (y \in (W^H_e)^{[x]} \land \{x, y\} \text{ is not homogeneous for } G)$, a contradiction. Finally, $W \supseteq W^H_e$ because if $\langle x, y \rangle \in W^H_e$, then there is a finite E with $D \subseteq E \subseteq L$ such that $\langle x, y \rangle \in W^E_e$, in which case $\langle x, y \rangle \in W$. Thus W is an r.e. set that is column-wise homogeneous for G. This contradicts the lemma’s hypothesis. Therefore no column-wise homogeneous set for G is r.e. in H, so H is the desired cohesive set.

Theorem 6.9. $\text{RCA}_0 + \text{CAC} \not\vdash \text{RCOLOR}_2$

Proof. Iterate and dovetail applications of Lemma 6.7 and Lemma 6.8 to build a collection of sets \mathcal{S} such that $(\omega, \mathcal{S}) \vDash \text{RCA}_0 + \text{SCAC} + \text{COH}$, the graph G from Lemma 6.2 is in \mathcal{S}, and no set that is r.e. in any set in \mathcal{S} is column-wise homogeneous for G. Then $(\omega, \mathcal{S}) \vDash \text{CAC}$ by [15], and $(\omega, \mathcal{S}) \not\vdash \text{RCOLOR}_2$ by the same argument as in Proposition 6.3.

We conclude by proving that $\text{RCA}_0 + \text{DNR} \not\vdash \text{RWKL}$, thereby answering Question 9 of [9]. In fact, we prove the stronger result $\text{RCA}_0 + \text{WWKL} \not\vdash \text{RCOLOR}_2$. This is accomplished by building a recursive bipartite graph G such that the measure of the set of oracles that compute homogeneous sets for G is 0. It follows that there is a Martin-Löf random X that does not compute a homogenous set for G, and a model of $\text{RCA}_0 + \text{WWKL} + \neg \text{RCOLOR}_2$ is then easily built from the columns of X.

Recall that, in the context of a bipartite graph $G = (V, E)$, a set $H \subseteq V$ is 2-homogeneous for G if no two vertices in H are connected by an odd-length path in G. Here we simply say that such an H is G-homogeneous (or just homogeneous). Likewise, if $H \subseteq V$ contains two vertices that are connected by an odd-length path in G, then H is G-inhomogeneous (or just inhomogeneous).
Theorem 6.10. There is a recursive bipartite graph $G = (\omega, E)$ such that the measure of the set of oracles that enumerate homogeneous sets for G is 0.

Proof. By Lebesgue density considerations (see, for example, [27] Theorem 1.9.4), if a positive measure of oracles enumerate infinite homogeneous sets for a graph G, then

$$(\forall \varepsilon > 0)(\exists \delta)[\mu\{X : W_\varepsilon^X \text{ is infinite and } G\text{-homogeneous}\} > 1 - \varepsilon].$$

Thus it suffices to build G to satisfy the following requirement R_e for each $e \in \omega$:

$R_e : \mu\{X : W_\varepsilon^X \text{ is infinite and } G\text{-homogeneous}\} \leq 0.9.$

Let us first give a rough outline of the construction. Observe our construction must necessarily produce a graph G that does not contain an infinite connected component. If G has an infinite connected component, then that component contains a vertex v such that infinitely many vertices are connected to v by an even-length path. These vertices that are at an even distance from v can be effectively enumerated, and they form a homogeneous set. Thus our graph G must be a union of countably many finite connected components. Each stage of the construction adds at most finitely many edges, and thus at each stage of the construction all but finitely many vertices are isolated. For each e, our plan is the following. We monitor the action of W_ε^X for all oracles X until we see a sufficient measure of X’s produce enough vertices (in a sense to made precise). Then, the idea is to satisfy R_e by adding edges to these vertices in a way that defeats about half (in the measure-theoretic sense) of the oracles X. This is done by a two-step process. Requirement R_e acts by either type I or type II actions, the second type following the first type. In a type I action, R_e locks some finite number of vertices, thereby preventing lower priority requirements from adding edges to these locked vertices. In a type II action, R_e merges finitely many of G’s connected components into one connected component by adding some new edges while maintaining that G is a bipartite graph. This merging is made in a way which ensures that for a sufficient measure of oracles X, W_ε^X is inhomogeneous for the resulting graph.

We now present the construction in full detail. At stage s, we say that

$- R_e \text{ requires type I attention} \iff R_e$ has no vertices locked and there are strings of length s witnessing that

$\mu\{X : (\exists x \in W^X_\varepsilon)(x \text{ is not connected to any } v \text{ locked by } R_k \text{ for any } k < e)\} > 0.9;$

$- R_e \text{ requires type II attention} \iff$ it currently has locked vertices due to a type I action, has never acted according to type II, and there are strings of length s witnessing that

$\mu\{X : (\exists y \in W^X_\varepsilon)(y \text{ is not connected to any } v \text{ locked by } R_k \text{ for any } k \leq e)\} > 0.9;$

$- R_e \text{ requires attention} \iff R_e$ requires type I attention or requires type II attention.

At stage 0, $E = \emptyset$, and no requirement has locked any vertices.

At stage $s + 1$, let $e < s$ be least such that R_e requires attention (if there is no such e, then go on to the next stage). If R_e requires type I attention, let $x_0, x_1, \ldots, x_{n-1}$ be vertices that are not connected to any v locked by R_k for any $k < e$ and such that the strings of length s witness that $\mu\{X : (\exists i < n)(x_i \in W^X_\varepsilon)\} > 0.9$. R_e locks the vertices $x_0, x_1, \ldots, x_{n-1}$. All requirements R_k for $k > e$ unlock all of their vertices.

If R_e requires type II attention, let $y_0, y_1, \ldots, y_{m-1}$ be vertices that are not connected to any v locked by R_k for any $k \leq e$ and such that the strings of length s witness that $\mu\{X : (\exists j < m)(y_j \in W^X_\varepsilon)\} > 0.9$. This process continues.
Let \(x_0, x_1, \ldots, x_{n-1} \) be the vertices that are locked by \(R_e \). First we merge the connected components of the \(x_i \)'s into a single connected component and the connected components of the \(y_j \)'s into a single connected component. To do this, let \(a, b, c, d > s \) be fresh vertices, and add the edges \((a, b)\) and \((c, d)\). The graph is currently bipartite, so for each \(i < n \) add either the edge \((x_i, a)\) or \((x_i, b)\) so as to maintain a bipartite graph. Similarly, merge the connected components of the \(y_j \)'s by adding either the edge \((y_j, c)\) or \((y_j, d)\) for each \(j < m \). The component of the \(x_i \)'s is disjoint from the component of the \(y_j \)'s because the \(y_j \)'s were chosen not to be connected to the \(x_i \)'s. Thus both the graph \(G_1 \) obtained by adding the edge \((a, c)\) and the graph \(G_2 \) obtained by adding the edge \((a, d)\) are bipartite. Each pair \(\{x_i, y_j\} \) is homogeneous for exactly one of \(G_1 \) and \(G_2 \), and the strings of length \(s \) witness that

\[
\mu\{X : (\exists i < n)(\exists j < m)(x_i \in W^X_{e,s} \land y_j \in W^X_{e,s})\} > 0.8
\]

and therefore that

\[
\mu\{X : W^X_{e,s} \text{ is either } G_1\text{-inhomogeneous or } G_2 \text{ inhomogeneous}\} > 0.8.
\]

Thus the strings of length \(s \) either witness that

\[
\mu\{X : W^X_{e,s} \text{ is } G_1\text{-inhomogeneous}\} > 0.4,
\]

in which case we extend to \(G_1 \) by adding the edge \((a, c)\), or that

\[
\mu\{X : W^X_{e,s} \text{ is } G_2\text{-inhomogeneous}\} > 0.4,
\]

in which case we extend to \(G_2 \) by adding the edge \((a, d)\). This completes the construction.

To verify the construction, we first notice that \(G \) is bipartite because it is bipartite at every stage. Furthermore, \(G \) is recursive because if an edge \((u, v)\) is added at stage \(s \), either \(u > s \) or \(v > s \). Thus to check whether an edge \((u, v)\) is in \(G \), it suffices to check whether the edge has been added by stage \(\max(u, v) \).

We now verify that every requirement is satisfied. Suppose that \(R_e \) acts according to type II at some stage \(s + 1 \). Then \(R_e \) is satisfied because we have ensured that

\[
\mu\{X : W^X_{e,s} \text{ is } G\text{-inhomogeneous}\} > 0.4
\]

and thus that

\[
\mu\{X : W^X_{e,s} \text{ is } G\text{-inhomogeneous}\} \leq 0.6.
\]

We prove by induction that, for every \(e \in \omega \), \(R_e \) is satisfied and there is a stage past which \(R_e \) never requires attention. Consider \(R_e \). If \(\mu\{X : W^X_{e} \text{ is infinite}\} \leq 0.9 \), then \(R_e \) is satisfied and \(R_e \) never requires attention. So assume that \(\mu\{X : W^X_{e} \text{ is infinite}\} > 0.9 \). By induction, let \(s_0 \) be a stage such that no \(R_k \) for \(k < e \) ever requires attention at a stage past \(s_0 \). If \(R_e \) has locked vertices at stage \(s_0 \), then these vertices remain locked at all later stages because no higher priority \(R_k \) ever unlocks them. If \(R_e \) does not have locked vertices at stage \(s_0 \), then let \(s_1 \geq s_0 \) be least such that the strings of length \(s_1 \) witness that \(R_e \) requires type I attention. Such an \(s_1 \) exists because \(\mu\{X : W^X_{e} \text{ is infinite}\} > 0.9 \) and because the finite set of vertices that are connected to vertices locked by the \(R_k \) for \(k < e \) have stabilized by stage \(s_0 \). \(R_e \) then requires and receives type I attention at stage \(s_1 \), and the vertices that \(R_e \) locks at stage \(s_1 \) are never later unlocked. So there is a stage \(s_1 \geq s_0 \) by which \(R_e \) has locked a set of vertices that are never unlocked. If \(R_e \) has acted according to type II by stage \(s_1 \), then \(R_e \) is satisfied and never requires attention past stage \(s_1 \). If \(R_e \) has not acted according to type II by stage
s, let \(s_2 \geq s_1 \) be least such that the strings of length \(s_2 \) witness that \(R_e \) requires type II attention. Such an \(s_2 \) exists because \(\mu\{X : W^X_e \text{ is infinite}\} > 0.9 \) and because, past stage \(s_1 \), no requirement except \(R_e \) can act to connect a vertex to a vertex locked by an \(R_k \) for a \(k \leq e \). \(R_e \) then requires and receives type II attention at stage \(s_2 \). Hence \(R_e \) is satisfied, and \(R_e \) never requires attention at a later stage. This completes the proof. \(\square \)

Theorem 6.11. RCA\(_0 \)+WWKL \(\nvdash \) RCOLOR\(_2 \).

Proof. Let \(G \) be the recursive graph from Theorem 6.10. There are measure 1 many Martin-Löf random sets, but only measure 0 many sets compute homogeneous sets for \(G \). Thus let \(X \) be a Martin-Löf random set that does not compute a homogeneous set for \(G \), and let \(\mathcal{M} \) be the structure whose first-order part is \(\omega \) and whose second-order part is \(\{Y : \exists k(Y \leq \bigoplus_{i<k} X^{[i]}\} \). It is well-known that \(\mathcal{M} \vDash \text{RCA}_0 + \text{WWKL} \), which one may see by appealing to van Lambalgen’s theorem (see [6] Section 6.9) and the equivalence between WWKL and 1-RAN. Moreover, \(\mathcal{M} \nvdash \text{RCOLOR}_2 \) because \(\mathcal{M} \) contains the bipartite graph \(G \), but it does not contain any homogeneous set for \(G \). \(\square \)

It now follows that \(\text{RCA}_0 + \text{DNR} \nvdash \text{RWKL} \). This has been proved independently by Flood and Towsner [11] using the techniques introduced by Lerman, Solomon, and Towsner [22]. Recently, Patey [30] enhanced the separation of DNR and RWKL by proving that for every recursive order \(h \), there is an \(\omega \)-model of the statement “for every \(X \) there is a function that is DNR relative to \(X \) and bounded by \(h \)” that is not a model of RCOLOR\(_2 \). This answers a question in [11].

Corollary 6.12. \(\text{RCA}_0 + \text{DNR} \nvdash \text{RWKL} \).

Proof. This follows from Theorem 6.11 because \(\text{RCA}_0 \vdash \text{WWKL} \rightarrow \text{DNR} \) and \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{RCOLOR}_2 \). \(\square \)

7. Summary and open questions

In this section, we briefly recall the remaining open questions surrounding the Ramsey-type combinatorial principles.

By Avigad, Dean, and Rute [2], \(\text{RCA}_0 + 2\text{-WWKL} \vdash B\Sigma^0_2 \), but by Slaman [35], \(\text{RCA}_0 + 2\text{-RAN} \nvdash B\Sigma^0_2 \). Thus we ask whether or not \(\text{RCA}_0 + 2\text{-RWWKL} \) proves \(B\Sigma^0_2 \).

Question 3.9. Does \(\text{RCA}_0 + 2\text{-RWWKL} \vdash B\Sigma^0_2 \)?

We readily see that \(\text{RCA}_0 \vdash \forall k (\text{SRT}^2_k \rightarrow \text{RWKL}_k) \) and therefore that \(\text{RCA}_0 \vdash \forall k \text{SRT}^2_k \rightarrow \forall k \text{RWKL}_k \). However, the use of \(\forall k \text{SRT}^2_k \) may not be strictly necessary.

Question 3.28. Does \(\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \forall k \text{RWKL}_k \)?

We proved that the Ramsey-type graph \(k \)-coloring problems are equivalent to RWKL over \(\text{RCA}_0 \) for all \(k \in \omega \) with \(k \geq 3 \) (Corollary 5.14). However, we do not know if the \(k = 2 \) case has the same strength as the \(k \geq 3 \) cases.

Question 5.15. Does \(\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{RWKL} \)?

By Theorem 6.11, there is an \(\omega \)-model of DNR (and even of WWKL) which is not a model of RCOLOR\(_2 \). Therefore DNR does not imply RCOLOR\(_2 \) over \(\text{RCA}_0 \). However, we are unable to determine whether or not the converse holds. The combinatorics of RCOLOR\(_2 \) differ enough from the combinatorics of RWKL so that it is not possible to directly adapt Flood’s proof that \(\text{RCA}_0 \vdash \text{RWKL} \rightarrow \text{DNR} \) to a proof that \(\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{DNR} \).
Question 5.16. Does $\text{RCA}_0 \vdash \text{RCOLOR}_2 \rightarrow \text{DNR}$?

Of course, a negative answer to Question 5.16 would also provide a negative answer to Question 5.15.

The following ‘before/after’ diagrams summarize the progress made in this paper towards the development of the reverse mathematics zoo below RT^2_2. Double arrows indicate strict implications, single arrows indicate implications not known to be strict, and dotted arrows indicate non-implications. All implications and non-implications are over RCA_0.

![Diagram of reverse mathematics zoo before RT2_2.](image-url)
We thank François Dorais, Emanuele Frittaion, and our anonymous reviewer for helpful comments on the drafts of this work.

REFERENCES

LIRMM, CNRS & Université de Montpellier, 161 rue Ada, 34095 Montpellier cedex 5
E-mail address: laurent.bienvenu@computability.fr
URL: http://www.lirmm.fr/~bienvenu

Department of Mathematics, University of California, Berkeley, CA 94720, USA
E-mail address: ludovic.patey@computability.fr
URL: http://www.ludovicpatey.com

Department of Mathematics, Ghent University, Krijgslaan 281, S22, 9000 Ghent, Belgium
E-mail address: paul.shafer@ugent.be
URL: http://cage.ugent.be/~pshafer/