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Abstract

Interactive Database Exploration (IDE) is the process of exploring a database
by means of a sequence of queries aiming at answering an often imprecise user
information need. In this paper, we are interested in the following problem:
how to automatically assess the quality of such an exploration. We study this
problem under the following angles. First, we formulate the hypothesis that the
quality of the exploration can be measured by evaluating the improvement of the
skill of writing queries that contribute to the exploration. Second, we restrict to
a particular use case of database exploration, namely OLAP explorations of data
cubes. Third, we propose to use simple query features to model its contribution
to an exploration. The first hypothesis allows to use the Knowledge Tracing,
a popular model for skill acquisition, to measure the evolution of the ability
to write contributive queries. The restriction to OLAP exploration allows to
take advantage of well known OLAP primitives and schema. Finally, using
query features allows to apply a supervised learning approach to model query
contribution. We show on both real and artificial explorations that automatic
assessment of OLAP explorations is feasible and is consistent with the user’s
and expert’s viewpoints.

1 Introduction

Interactive Data Exploration support addresses the development of tech-
niques that allow users to interactively explore their data and help them to
better gain insights. Many approaches have recently been developed to support
IDE, as illustrated by a recent survey of the topic [1]. Typically, an exploration
includes several queries where the result of each query triggers the formulation of
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the next one. OLAP analysis of data cubes is a particular case of IDE, that takes
advantage of simple primitives like drill-down or slice-and-dice for the naviga-
tion. Given the exploratory nature of OLAP analysis of multidimensional data
(see e.g., [2, 3]), many exploration techniques have been specifically developed
in the context of interactive OLAP exploration of data cubes. However, while
there exists many benchmarks recognized by the database community as rele-
vant for evaluation and comparison of performance of database systems, such
as the benchmarks from TPC organization, there is yet no commonly agreed
upon method for evaluating to what extent interactive explorations conducted
with such systems are indeed successful.

In this paper, we propose an approach for automatically evaluating inter-
active OLAP explorations. This evaluation is based on the concept of query
contribution, which represents the degree to which a query contributes to the
success of an exploration, in terms of user experience. Intuitively, a query is
contributive if it is related to an underlying information need, if it refines or
generalizes previous queries, if it allows to investigate related data perspectives,
if it returns new data not previously analyzed or allows to highlight unexpected
data, briefly, if in some way it allows to increase user knowledge about the stud-
ied phenomenon. We remark that there is currently no formal and commonly
agreed definition of query contribution, and that writing contributive queries
can be seen as a form of procedural knowledge. Procedural knowledge is the
knowledge about how to do something. Different from declarative knowledge,
that is often verbalized, application of procedural knowledge may not be eas-
ily explained [4]. However, models exist to automatically evaluate procedural
knowledge acquisition [5].

These observations motivate two important choices we made in our approach.
First, we represent the procedural knowledge related to writing contributive
queries as a supervised machine learning problem that automatically learns
a model of query contribution. More precisely, we formalize the problem as
a binary classification task. We start from a set of explorations over a data
warehouse, where each query composing an exploration is both described with
a set of features and analyzed by an expert. Each feature corresponds to a score
and the expert analysis corresponds to a binary label. Using the expert label as
the target variable, we use a classifier to build a model of query contribution as a
linear combination of the query features. This model allows to not only identify
whether a query contributes or not to an exploration, but also to estimate the
degree of its contribution and to understand the relative importance of each
feature. Our second choice is to give an overall score to the exploration that
corresponds to the probability that the skill of writing contributive queries is
mastered by the analyst. We use a classical model of skill acquisition, called
Bayesian Knowledge Tracing [5], that estimates the probability that a skill is
mastered from a collection of opportunities to use the skill. In our context,
each query corresponds to an opportunity to contribute to the exploration. We
note that a similar principle has been used recently to score sequences of book
reviews [6].

Our approach builds upon our previous work that aimed at characterizing
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focus in OLAP explorations [7]. In addition to using a model of skill acquisition
for assessing explorations, we develop a robust method to produce the model
of query contribution, adding extra features to the feature set defined in [7],
studying feature correlation, and balancing datasets. We evaluate our approach
on three different datasets, two real ones and an artificial one.

Many practical benefits of the proposed assessment technique can be envi-
sioned. As it puts the user and their skills in the center of the data analysis
activity, it can be seen as an important driver in the design of systems supporting
Interactive Data Exploration [1], as well as the corner stone of the development
of benchmarks for such systems [8, 9].

The outline of the paper is the following. Next section presents the formal
background of this work, including the Bayesian Knowledge Tracing, OLAP
explorations and linear SVM classification. Section 3 defines the query features
used to model the contribution of a query to an exploration and Section 4
describes the procedure for learning this model. Section 5 details the application
of Knowledge Tracing in our context to assess explorations quality. Section 6
presents the tests done to validate our approach. Section 7 discusses related
work. Finally, Section 8 concludes and draws future work.

2 Background

This section presents the concepts underlying our approach. We start by
presenting the Knowledge Tracing model for skill acquisition. We formalize the
notion of OLAP explorations. Finally, we describe the classification scheme
used.

2.1 Bayesian Knowledge Tracing

As mentioned in the introduction, procedural knowledge is the knowledge
about how to do something, which application may not be easily explained [4].
Many models exist to evaluate procedural knowledge acquisition. One of the
most popular and successful models is Bayesian Knowledge Tracing [5]. An
individual’s grasp of the procedural knowledge is expressed as a binary variable,
L, expressing whether the corresponding skill has been mastered or not. The
knowledge of an individual cannot be directly observed, but can be induced by
the individual answering a series of questions (or opportunities to exercise the
skill) to guess the probability distribution of knowledge mastering. Measuring
the skill mastery is noted P (Li), which corresponds to the probability that the
skill L is mastered after answering i questions. Observation variables, Xi, are
also binary: the answer to the question is either correct and wrong.

Specifically, the Knowledge Tracing model has four parameters, namely, two
learning parameters, P (L0) and P (T ), and two performance parameters, P (G)
and P (S). P (L0) is the probability that the skill has been mastered before
answering the questions. P (T ) is the knowledge transformation probability:
the probability that the skill will be learned at each opportunity to use the skill
(i.e., the transition from not mastered to mastered). P (G) is the probability
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of guessing: in the case of knowledge not mastered, the probability that the
individual can still answer correctly. P (S) is the probability to slip, i.e., to fail
while the skill is already mastered. The model uses these parameters to calculate
the learning probability after each question to monitor individual’s knowledge
status and predict their future learning probability of knowledge acquisition
using a Bayesian Network.

The probability that the skill L at opportunity n is mastered, P (Ln), is the
probability the skill is learned at step n − 1, or not learned at step n − 1 but
learned at this step n:

P (Ln|Xn = xn) = P (Ln−1|Xn = xn) + (1− P (Ln−1|Xn = xn))× P (T ) (1)

where:

P (Ln−1|Xn = 1) =
P (Ln−1)(1− P (S))

P (Ln−1)(1− P (S)) + (1− P (Ln−1))P (G)
(2)

P (Ln−1|Xn = 0) =
P (Ln−1)P (S)

P (Ln−1)P (S) + (1− P (Ln−1))(1− P (G))
(3)

with Xn = 1 (resp. 0) means problem n has been solved (resp. not solved).
Due to its predictive accuracy, Corbett and Anderson’s Bayesian Knowledge

Tracing is one of the most popular models. However, several challenges, includ-
ing identifiability, local minimum, degenerate parameters and computational
costs during fitting, still exist. Hawkins et al. proposed a fitting method avoid-
ing these problems while achieving a similar predictive accuracy, and evaluated
it against one of the most popular fitting methods: Expectation-Maximization
(EM) [10]. In this extension, the parameters are fitted by estimating the most
likely opportunity at which each individual learned the skill. Learner’s perfor-
mance is thus annotated with an estimate of when the skill is learned, assuming
that a known state can never be followed by an unknown state. This annotation
is used to construct knowledge sequences, that when compared with the actual
performance sequence allows to empirically derivate the model’s four parame-
ters.

As aforementioned, traditionally, the performance of an individual is pre-
sented in binary value, correct or wrong, which does not account for all the
cases of skill learning situation. Wang et al. proposed to extend the Knowl-
edge Tracing model by replacing the discrete binary performance node with
continuous partial credit node [11]. In this extension, it is assumed that Guess
and Slip follow two Gaussian distributions, that are described respectively by
their means and standard deviations. Prediction of the performance node also
follows a Gaussian distribution, in which the mean value is used for the predic-
tion. Noticeably, the standard deviation contains the information of how good
the prediction is. Experiments with this extension show that by relaxing the
assumption of binary correctness, the predictions of an individual’s performance
can be improved.
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These two improvements of the Knowledge Tracing model (in the fitting
method and the use of partial credits) were used successfully in sequencing ed-
ucational content to students [12]. We conclude this subsection by noting that
other models exist for predicting a learner’s skill. Specifically, Performance Fac-
tor Analysis [13] uses standard logistic regression with the student performance
as dependent variable. Interestingly, it is shown in [14] that Knowledge Tracing
can achieve comparable predictive accuracy as Performance Factor analysis. Fi-
nally, Deep Knowledge Tracing [15] uses Recurrent Neural Networks to model
student learning, with the advantage of not having to set explicit probabilities
for slip and guess. However these models need very large datasets to learn the
latent state from sequences, and most importantly, the encoding of the input
vectors depends on an upper bound on the number of exercises which does not
directly fit our context.

2.2 OLAP explorations

In order to keep the formalism simple, we consider cubes under a ROLAP
perspective, described by a star schema [16]. For convenience, we consider that
a dimension consists of a unique hierarchy, and we consider simple hierarchies
without branches, i.e., consisting of chains of levels.

Let A be a set of attributes called levels, and for L ∈ A, a member is an
element of Dom(L). Given two levels Lj and Lk, we define Rollup(Lj) = Lk

and Drilldown(Lk) = Lj if there exists a functional dependency Lj → Lk. A
hierarchy hi is a set Lev(hi) = {L0, . . . , Ld} of levels together with a roll-up
total order �hi

of Lev(hi), which is such that, for any Lj and Lk in Lev(hi),
Lk �hi Lj if Rollup(Lj) = Lk. For each hierarchy hi, the bottom level L0 of the
order determines the finest aggregation level for the hierarchy. Conversely, the
top level Ld has a single possible value and determines the coarsest aggregation
level.

Definition [Multidimensional Schema] A multidimensional schema (or, briefly,
a schema) is a triple S = 〈A,H,M〉 where:

• A is a finite set of levels, whose domains are assumed pairwise disjoint,

• H = {h1, . . . , hn} is a finite set of hierarchies, such that {Lev(h1), . . . , Lev(hn)}
defines a partition of A;

• M is a finite set of measure attributes, each M ∈ M being defined on a
numerical domain Dom(M).

A group-by set includes one level for each hierarchy, and defines a possible
way to aggregate data. A reference (or coordinate) of a group-by set is a point
in the n-dimensional space defined by the levels in that group-by set.

Definition [Group-by Set, reference, cells] Given a schema S = 〈A,H,M〉,
H = {h1, . . . , hn}, let Dom(H) = Lev(h1)× . . .×Lev(hn); each G ∈ Dom(H) is
called a group-by set. Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1)× . . .×
Dom(akn

); each g ∈ Dom(G) is called a reference (or a coordinate) of G. A cell
is a tuple c = 〈g,M,m〉 where g is a reference over S, M ∈M is a measure and
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m ∈ dom(M) is the value of the measure. An empty cell is a cell whose value
is equal to Null.

A cube instance I over a schema S is defined as a set of non empty cells
over S.

The queries considered in this paper are multidimensional queries modeled
as a collection of fragments extracted from the query expression, as in [17].

Definition [OLAP query] A query over schema S = 〈A,H,M〉 is a triple
q = 〈G,P,M〉 where:

1. G ∈ Dom(H) is the query group-by set;

2. P = {p1, . . . , pk} is a set of Boolean predicates, at most one for each
hierarchy, whose conjunction defines the selection predicate for q; they are
of the form l = v, or l ∈ V , with l a level, v a value, V a set of values.

3. M ⊆M is the measure set whose values are returned by q.

In practice, it is useful to handle only the detailed levels of a group by set
(i.e. excluding the ones that are top levels in some hierarchies). In addition,
in predicates of the form l ∈ V , it is useful to handle the individual filters of
the form l = v for all v ∈ V . We define the functions Levels and Filters for
simplifying both cases, as follows: Given a group by set G = 〈ak1

, . . . , akn
〉

of a query over a schema S = 〈A,H,M〉, let Levels(G) = {Lj ∈ {ak1 , . . . ,
akn}|∃Lk ∈ A, Lk �hi Lj}. Given a set of predicates P of a query over a
schema S, let Filters(P ) = {”l = v” ∈ P} ∪ {”l = v”|”l ∈ V ” ∈ P, v ∈ V }.

Given a cube instance I, the answer to a query q, denoted answer(q), is
the set of non empty cells of I whose coordinates are defined by the query
group by set, the selection predicates and the measures. In a given query result,
we distinguish between base cells and aggregated cells. Base cells are tuples
〈〈l1, . . . , ln〉,m, v〉 where the li are taken in Dom(L0

i ) for all i (L0
i being the bot-

tom level of the ith hierarchy), m is a measure and and v is a value. Aggregated
cells are tuples 〈〈l1, . . . , ln〉,m, v〉 where there exists one li not in Dom(L0

i ), m
is a measure and v is a value. In what follows, we note accessArea(q) the set
of base cells used by a query q to produce answer(q).

Finally, we define explorations to be sequences of OLAP queries.
Definition [Exploration] Let I be a cube instance over a schema S. An

exploration s over I is a triple 〈e, bts, ats〉, where e = 〈q1, . . . , qp〉 is a sequence
of p OLAP queries over S, bts is a function that gives for a query the timestamp
before its execution and ats a function that gives for a query the timestamp after
its execution. We note q ∈ e if a query q appears in the exploration e.

2.3 Linear SVM classification

In this work, we formalize the problem of modeling the contribution of a
query to an exploration as a supervised classification task. Assuming that
queries are described with a set of features fi, our objective is to learn a lin-
ear combination of the features that separates contributing queries from non
contributing ones. Restricting to linear combination allows for the model to
remain interpretable, while adopting a supervised approach results in a model
indirectly embedding human expertise.
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The expected contribution model is, for a query q:

contrib(q) = w0 +

n∑
i=1

wifi(q) (4)

where n is the number of features, w0 is the bias, wi is the weight of feature
i and fi(q) is the value for feature i for query q. This formula represents the
estimated contribution of query q.

An SVM classifier learns the weights w0 . . . wn by considering two sets of
data (in our case, the set of contributive queries and the set of non-contributive
queries) as n-dimensional vectors, that should be separated with a (n-1)-dimen-
sional hyperplane. The hyperplane is constructed so that the distance between
the hyperplane and the nearest point from either group is maximized. In our
case, the resulting hyperplane is our model contrib(q), which can be used to
classify any query q based on its features values.

Both contrib(q) and each weight wi can be interpreted according to two
aspects that we call polarity and intensity. The polarity of contrib(q) is rep-
resented by its sign and indicates the class of q, i.e., a query that contributes
(resp. does not contribute) to the exploration. The intensity of contrib(q) is rep-
resented by its absolute value, and indicates the intensity to which q contributes
or not to the exploration. The polarity of a weight wi is represented by its sign
and indicates the impact of fi on contrib(q). A positive (resp. negative) value
of wi means that an increase of fi will increase (resp. decrease) contrib(q). The
intensity of wi is represented by its absolute value and indicates the sensitivity
of contrib(q) regarding fi.

3 Descriptive model of OLAP queries

In this section, we define the set of features used in our model of query con-
tribution. We represent an OLAP query as a set of simple descriptors computed
from the query and its context, and covering a maximum of aspects of a query.
For the sake of presentation, we categorize these descriptors as follows: i) intrin-
sic descriptors, i.e., only related to the query itself, ii) relative descriptors, i.e.,
also related to the query’s predecessor in the exploration, and iii) contextual
descriptors, i.e., related to the whole exploration, providing more context to the
descriptor. Table 1 presents an overview of descriptors.

For all of the definitions given in this section, let qk = 〈Gk, Pk,Mk〉 be the
query occurring at position k in exploration e over instance I of schema S, and
let Q (resp. E) be the set of all possible queries (resp. explorations) over S.
All the queries we considered are supposed to be well formed, and so we do not
deal with query errors. Also, for the sake of readability, we do not include the
schema S and instance I as descriptors inputs, while actually they are implicitly
used in some descriptors.
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Intrinsic descriptors
NoM Number of measures, that appear in the query text
NoL Number of levels, in the group-by set
NoF Number of filters (filtering predicates)
LDepth Level depth (depth of each group-by set level in its hierarchy)
FDepth Filter depth (depth of levels appearing in filters)
NoC Number of cells, in query answer
QoI Quantity of information, contained in query answer
ExecTime Execution time

Relative descriptors
NCM Number of common measures, with previous query
NCL Number of common levels, with previous query
NCF Number of common filters, with previous query
RED Relative edit distance (effort to express a query starting

from the previous one)
RI Relative identity (whether the query is identical to the

previous one)
RR Relative recall (recall of cells in query answer w.r.t.

previous answer)
RP Relative precision (precision of cells in query answer w.r.t.

previous answer)
IsRefine Is refinement (whether the query is a refinement of the

previous one)
IsRelax Is relaxation (whether the query is a relaxation of the

previous one)
Contextual descriptors

CpQ Clicks per query (number of successor queries that differ in
at most 1 operation)

ClickDepth Click depth (length of the sequence of successor queries
that differ in at most 1 operation)

IVA Increase in view area (number of cells in query answer that
were not seen previously)

NoQ Number of queries (absolute position of the query)
QRP Query relative position
ElapsedTime Elapsed time (from the starting of the exploration)
QF Query frequency (number of queries per unit of time)
ConsTime Consideration time (time spent in analyzing query answer)

Table 1: Query descriptors

3.1 Intrinsic descriptors

Intrinsic descriptors are those that can be computed only considering the
query qk, independently of the exploration e and other queries in e. In other
words, these descriptors will give the same score to qk, independently of e.
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Number of Measures -. NoM(qk) represents the number of measures that ex-
plicitly appears in the text of qk. If no measure has been explicitly written by
the user, the default behavior of OLAP systems is to use a default measure. In
that case, NoM(qk) is equal to 1.

NoM(qk) =

{
card(Mk) if Mk 6= ∅
1 otherwise

(5)

Number of Levels -. NoL(qk) represents the number of levels (excluding top
levels) in the group-by set Gk. By definition, Gk contains at most one level per
hierarchy.

NoL(qk) = card(Levels(Gk)) (6)

Number of Filters -. NoF(qk) represents the number of filtering predicates in
Pk.

NoF(qk) = card(Filters(Pk)) (7)

Level Depth -. LDepth(qk) measures the granularity of qk in terms of the depth
of each level in its hierarchy. It can be seen as the number of drills down nec-
essaries for obtaining Gk from the most aggregated group-by set. Let depth(li)
be the depth of level li in the hierarchy hi to which it belongs (ranging from 0
if li is the top level of hi to card(Lev(hi))− 1 if li is the bottom level of hi):

LDepth(qk) =
∑

li∈Levels(Gk)

depth(li) (8)

Filter Depth -. FDepth(qk) measures the filtering granularity of qk, i.e. the
depth of levels appearing in filters.

FDepth(qk) =
∑

”li=vi”∈Filters(Pk)

depth(li) (9)

Number of Cells -. NoC(qk) represents the number of cells in answer(qk).

NoC(qk) = card(answer(qk)) (10)

Quantity of Information -. QoI(qk) measures the quantity of information con-
tained in answer(qk). We measure it with an entropy inspired metric, computed
as follows:

QoI(qk) = 1− (interest(answer(qk))) (11)

where interest(C) measures the interestingness degree of a set of cells C as
a simple normalized entropy, defined by:

interest(C) =
(−

∑m
i=1 p(i) log(p(i)))

log(m)
(12)

with |C| = m, C(i) is the ith value of the set C and p(i) = C(i)∑m
i=1 C(i)
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Execution Time -. ExecTime(qk) is a measure of the computation time for qk.
ExecTime assumes all the queries are executed on the same system, with the
same technical performances.

ExecTime(qk) = ats(qk)− bts(qk) (13)

where ats(qk) and bts(qk) are respectively the timestamps after and before
qk execution.

3.2 Relative descriptors

Relative descriptors are those that are computed comparing the query qk to
the previous query in the exploration e. Let qk−1 = 〈Gk−1, Pk−1,Mk−1〉 be the
previous query, being undefined for the first query of e (i.e. q1). Each descriptor
provides a default score for this limit case.

Number of Common Measures -. NCM(qk, qk−1) counts the number of common
measures of qk relatively to qk−1. The default value is 0 for q1.

NCM(qk, qk−1) =

{
card(Mk ∩Mk−1) if k > 1

0 otherwise
(14)

Number of Common Levels -. NCL(qk, qk−1) counts the number of common
levels of qk relatively to qk−1 (excluding top levels). The default value is 0 for
q1.

NCL(qk, qk−1) =

{
card(Levels(Gk) ∩ Levels(Gk−1)) if k > 1

0 otherwise
(15)

Number of Common Filters -. NCF(qk, qk−1) counts the number common filters
of qk relatively to qk−1. The default value is 0 for q1.

NCF(qk, qk−1) =

{
card(Filters(Pk) ∩ Filters(Pk−1)) if k > 1

0 otherwise
(16)

Relative Edit Distance -. RED(qk, qk−1) represents the edition effort, for a user,
to express the current query starting from the previous one. It is strongly re-
lated to OLAP primitives operations, and computed as the minimum number of
atomic operations between queries, by considering the operations of adding/re-
moving a measure, drilling up/down, and adding/removing a filter. The con-
sidered cost for each observed difference (adding/removing) is the same.

RED(qk, qk−1) = card(Mk −Mk−1) + card(Mk−1 −Mk)

+ nbDrills(Gk, Gk−1) + card(Filters(Pk)− Filters(Pk−1))

+ card(Filters(Pk−1)− Filters(Pk))

(17)

where nbDrills(Gk, Gk−1)) denotes the number of changes in query aggre-
gation level (drills). RED(qk, qk−1) = 0 if k = 1.
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Relative Identity -. RI(qk, qk−1) checks whether qk is identical to qk−1, i.e. if
both queries have the very same measures, group-by set and predicates.

RI(qk, qk−1) =

{
1 if qk = qk−1

0 otherwise
(18)

Relative Recall -. RR(qk, qk−1) is computed as a classical recall of cells in
answer(qk) w.r.t. cells in answer(qk−1). We give a default neutral score of
0.5 for q1

RR(qk, qk−1) =

{
answer(qk)∩answer(qk−1)

answer(qk−1)
if k > 1

0.5 otherwise
(19)

Relative Precision -. RP(qk, qk−1) is computed as a classical precision of cells
in answer(qk) w.r.t. cells in answer(qk−1). We give a default neutral score of
0.5 for q1

RP(qk, qk−1) =

{
answer(qk)∩answer(qk−1)

answer(qk)
if k > 1

0.5 otherwise
(20)

Is Refinement -. IsRefine(qk, qk−1) checks whether qk is a refinement of qk−1.
Intuitively, a refinement happens when the access area of qk is included in the
access area of qk−1. When a user first opens a system for starting an exploration,
the default query is the one that aggregates the whole cube. Therefore, for q1,
we give a default score of 1.

IsRefine(qk, qk−1)


1 if k = 1

1 if (accessArea(qk) ⊆ accessArea(qk−1))

0 otherwise

(21)

Is Relaxation -. IsRelax(qk, qk−1) checks whether qk is a relaxation of query
qk−1. This happens when the access area of qk includes the access area of qk−1.
For the same reason as above, for q1, we give a default score of 0.

IsRelax(qk, qk−1) =


0 if k = 1

1 if (accessArea(qk) ⊇ accessArea(qk−1))

0 otherwise

(22)

3.3 Contextual descriptors

Contextual descriptors are exploration dependent and make sense only in the
context of an exploration. The same query qk occurring in different explorations
may be given different scores for descriptors in this category.
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Clicks Per Query -. CpQ is a classical measure used in web search to evaluate
search engines through their Search Engine Results Pages (SERP). Given a
SERP, CPQ represents the number of links in this page that have been clicked by
the user. We adapt it by considering a click as obtaining a new query that differs
in one operation from the current query. This model allows to capture typical
user behaviors in front of OLAP systems. Formally, we measure CpQ(qk, e) by
counting the number of queries occurring after qk in the exploration e that are
at a distance of at most 1 operation from qk (measured in terms of relative edit
distance - RED , as defined in Subsection 3.2).

CpQ(qk, e) = card({qp ∈ e | p > k ∧ RED(qk, qp) ≤ 1}) (23)

Click Depth -. In web search, ClickDepth evaluates the number of pages visited
by successively following hyper links, starting from the SERP and ending when
the user breaks the chain by, for example, submitting new keywords. We adapt
ClickDepth by calculating, the length of the query sequence starting from qk
such as each query is at a distance of 1 from its predecessor.

ClickDepth(qk, e) = length(Skp) (24)

where Skp is the longest subsequence of queries in exploration e starting at
query qk and ending at query qp inclusive, such that ∀qi, qi+1 ∈ Skp,RED(qi, qi+1) ≤
1.

Increase in View Area -. IVA(qk, e) characterizes the increase in terms of new
cells in answer(qk) compared to all the cells seen during the previous queries of
the exploration.

IVA(qk, e) =
card(answer(qk) \

⋃
i∈[1,k−1] answer(qi))

card(
⋃

i∈[1,k] answer(qi))
(25)

Number of Queries -. NoQ(qk, e) counts the absolute position of query qk in e.

NoQ(qk, e) = k (26)

Query Relative Position -. QRP(qk, e) measures the position of query qk rel-
atively to the exploration e. It is computed as the rank of the query in the
exploration, normalized by the size of the exploration:

QRP(qk, e) =
k

length(e)
(27)

Elapsed Time -. ElapsedTime(qk, e) measures the absolute time elapsed from
the starting of e to the time right after the execution of qk.

ElapsedTime(qk, e) = ats(qk)− bts(q1) (28)

where ats(q) and bts(q) are respectively the timestamps right after and right
before the execution of q.
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Query Frequency -. QF(qk, e) measures the number of queries submitted per
unit of time.

QF(qk, e) = NoQ(qk)/ElapsedTime(qk) (29)

Consideration Time -. ConsTime(qk, e) measures how long a user has spent in
analyzing answer(qk). We compute it as the time period between the end of
the query execution and the submission of the next query. We fixed ConsT ime
to a neutral value (the average of all the previous considerations times) for the
last query of the exploration.

ConsTime(qk, e) =


lts(qk+1)− ets(qk) if k < length(e)

avg({lts(qk+1)− ets(qk) |
k ∈ [1, length(e)− 1]}) otherwise

(30)

4 Model of query contribution

This section presents the procedure for learning the model of query contribu-
tion. The 25 features described in Section 3 provide a quantitative description
of the queries of an OLAP exploration. Our model is constructed using a su-
pervised classification approach based on this description. To keep the model
understandable, we chose a model representing the contribution of a query as a
linear combination of the features describing the query.

4.1 Normalization and selection of the set of features

We first remark that these features have highly different magnitudes. For
instance, QRP (Query Relative Position) scores are normalized in [0, 1], while
ConsTime (Consideration Time) scores have no theoretical limit. Such differ-
ences have an undesired impact on the weights that the classifier learns, since
for instance a feature with higher values may be penalized by the classifier with
a low weight. As a result, we would loose the interpretability of features weights,
which is not desirable. In order to harmonize the feature scores, we assume that
these scores are normally distributed, and we use the z-score, which is the signed
number of standard deviations by which the value of an observation exceeds the
mean value of what is being measured. Formally, let X be a set of elements, µ
its mean, σ its standard deviation, and x an element of X. The z-score of x,
denoted z(x), is computed as:

z(x) =
x− µ
σ

(31)

Each feature score is then replaced with its z-score.
To validate our choice of features, we study the pairwise correlation of the

features and perform feature selection. For the latter, we use an automatic
recursive feature elimination procedure, with a 10-fold cross validation over the
entire dataset, and accuracy as a target. The least important features, in terms
of the weights learned, are progressively pruned and the accuracy is computed
for all resulting feature-sets. The optimal number of features corresponds to the
set achieving the best accuracy.
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4.2 Learning the classifier

To train and evaluate our classifier, we asked experts to independently label
explorations, by deciding for each query if it contributes (label C) or not (label
N) to its exploration. For the sake of simplifying the experts task and to be
less sensitive to experts subjectivity, we restrict the annotation task to binary
labels. In order to obtain reliable labels, when labels are given by 2 experts,
we computed the agreement between experts. We then include in the training
dataset only the queries on which the experts agreed.

In case of unbalanced dataset (one class of queries being significantly more
present in the dataset than the other), we compared several methods on the basis
of their respective accuracy and F1-measure, over a 10-fold cross-validation:
either random undersampling of majority class, or oversampling of minority
class. In the last case, several heuristics have been tested: random oversampling,
3 variants of SMOTE (with different approaches to sample borderline points
between classes) or ADASYN [18]. We finally favor oversampling to ensure the
model is learned over a balanced set of classes while not pruning too much the
size of our datasets.

To learn our model, we trained a linear SVM classifier on the dataset of
queries described by their label and the set of select features, standardized using
a z-score. When testing over a single dataset, the model is learned on 80% of
the corpus, using 10-fold cross validation to choose its best hyperparameter. We
kept the remaining 20% as a test set for model evaluation. When cross-testing
with two datasets, the model is learned using 10-fold cross validation over the
entire first dataset and then tested over the entire second one.

5 Assessing the overall quality of an exploration

We recall the primary hypothesis underlying our approach: the quality of
an exploration can be assessed by measuring to what extent the skill of writing
queries that contribute to the exploration is mastered by the user.

The model presented in the previous section allows to give a score contrib(q)
to each query q of an exploration e. This score can be interpreted as the con-
tribution of the query q to its exploration. Each exploration e can then be seen
as a sequence of scores contrib(q) for each q in e. In other words, each step of
an exploration can be treated as an opportunity to exercise the skill of writing
a contributive query. Therefore, a Knowledge Tracing (KT) model can be used,
based on these contribution scores, to predict the skill of writing contributive
queries for a specific user. To do so, as our contrib(q) scores are real valued,
we propose to use the extension of the KT model to continuous partial credits
[11]. Other, more simple, modeling choices could have been made, such as set-
ting a binary KT model based on the contribution scores polarity alone, but as
recalled in Section 2, the continuous KT extension has been proven to evaluate
skills more precisely than the binary KT.

We recall from Section 2 that in this extension, P (G) and P (S) are assumed
to follow a Gaussian distribution, and as such, these two quantities are repre-
sented by a mean value and a standard deviation. As a consequence, and as
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opposed to the binary KT, the prediction P (Ln) also follows a Gaussian distri-
bution, whose mean is used as the value of the prediction and whose standard
deviation expresses the confidence attached to this prediction.

To learn the 6 parameters of the continuous KT, we extend the approach
proposed by Hawkins et al. [10] so that it outputs estimates of P (G) and
P (S) described by a mean and a standard deviation. Then, based on these
6 parameters, the estimation of each skill acquisition P (Ln) is performed by
running 100 tests with each time randomly generated values for P (G) and P (S)
following their respective distribution. From these 100 P (Ln) estimates, we
compute a mean and a standard deviation following the normal hypothesis. In
the end, the mean P (Ln) is the overall score of the exploration and the standard
deviation is the confidence in this prediction.

It is important to note that we apply the KT on each exploration inde-
pendently, even if the KT parameters are learned from a representative set of
explorations.

6 Experiments

6.1 Experimental setup

The experiments have been conducted on three datasets, two with real data
and real explorations, and one with artificial data and artificial explorations.

Real explorations on open data. The first dataset consists of navigation traces
collected in the context of a French project on energy vulnerability. To consti-
tute our corpus, we used three cubes instances built from open data, concern-
ing expenses in mobility and heating. In the main cube, called MobPro, facts
represent people trips between home and workplace, and dimensions allows to
characterize a trip according to various characteristics of the worker (e.g. age,
gender, level of studies), home (e.g. location, family size), job (e.g. location,
branch), transport mode, traveled distance, energy used, etc. The cube is orga-
nized as a star schema with 19 dimensions, 68 (non-top) levels, and 24 measures.
37,149 trips are recorded in the fact table. The other cubes are organized in a
similar way.

To obtain explorations, we logged the OLAP sessions of 8 volunteer students
of a Master’s degree in Business Intelligence, answering some fuzzy information
needs defined by their lecturer. Students were asked to find some interesting
behaviors and to perform the exploration. However, students were not aware
that skills acquisition tests would be performed on the basis of their anonymized
queries, not to perturbate their behavior and bias our experiment. During their
task, students investigated some relations among data, for example, “Which
profiles of workers, having low revenues, expend the most in mobility” and tested
some popular hypothesis like “Executives make longer home-work trips than
people with other professions”. To explore the cube, the students used Saiku1,

1http://meteorite.bi/products/saiku
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a web application that allows to navigate OLAP databases in a user-friendly
manner, and generates MDX code from graphical manipulations. The students
were quite familiar with this OLAP tool, but not necessarily with the data in
the cube.

From this experiment, we could gather 39 explorations from the system
logs. In total, these explorations represent 1608 queries, with an average of 41
queries per exploration. A particularity of some third party OLAP tools, like
Saiku, is that their user interface submits a new query for each user action (in-
cluding intermediate drag-and-drops), resulting in very long explorations in the
log. Nevertheless, there were some extremely short explorations (7 explorations
counting less than 10 queries), which mainly correspond to incomplete studies.

A subset of 1114 queries were labeled independently by two experts (interns
working on OLAP exploration under the supervision of a lecturer), using a label-
ing tool specifically designed for that purpose. Both experts agreed at 67, 59%
on the 1114 queries, which represents a total of 753 queries. On the agreed
queries, 649 have been labeled C (contributive) and 104 N (non contributive).
In order to avoid any side effect due to the classes distribution, we balanced our
dataset using oversampling, as explained in Section 4.

Real explorations on enterprise data. The second dataset consists in navi-
gation traces of 14 volunteers of SAP in the context of a previous study on
discovering user intents [19]. Analysts covered a range of skills in data explo-
ration, classed, based on their position in the company, in two expertise groups:
beginners and expert users. We set 10 business needs (named Q1 to Q10), each
corresponding to a specific user interest. Users were asked to analyze some of
the 7 available data sources to answer each of the 10 business needs, using a
SAP prototype that supports keyword-based BI queries2. The business needs
were grouped in different business cases like: “For each European country, de-
tect which genres of films did not reach the expected sales” or “In which Income
Group would you classify a candidate country with a GDP of $6 billion?”.

As users enter keywords, the BI system suggests, on the fly, further tokens
to complete the current ones, letting the user choose among them, as in web
search engines. The underlying idea is that a suggestion completes the original
BI question in order to obtain a well-formed query over a database. Then,
conversely to Saiku tool, SAP prototype only evaluates final queries, after all
keywords were entered and a formal query was selected. In this context, average
exploration length is around 5 queries. Another difference on this dataset, is
the absence of timestamps in the log. We re-executed the queries in order to
compute execution times, but we have no information about consideration time,
which had to be excluded from the model. Finally note that elapsed time is
only computed in the basis of execution time. All these technical differences, in
addition to working with different types of users and different information needs,

2Patent Reference: 14/856,984 : BI Query and Answering using full text search and key-
word semantics

16



provide a good opportunity for testing our approach in different configurations.
To this aim, our experiments also discuss the ability of our model to adapt to
such configurations.

In total, this dataset contains 103 user explorations, accounting for 525
queries. Table 2 describes, for each business need, its difficulty, estimated by an
expert (in terms of time, number of queries and exploited sources expected in
its resolving), the number of explorations devised for solving it, the number of
queries and the number of queries perceived as relevant by users in their own
activity. For the sake of confidentiality, the 525 queries were labeled by only one
expert, who is one of the authors of this paper. Interestingly, 52% of queries
were labeled C (contributive), which results in no need for balancing in this
case.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Difficulty low med med med low high low low med high
Nb. interac-
tions

19 11 10 10 10 8 9 9 9 8

Nb. queries 84 65 58 41 50 43 58 51 26 49
Nb. relevant
queries

34 26 30 16 26 10 27 24 24 9

Queries / in-
teraction

4.4 5.9 5.8 4.1 5.0 5.4 6.4 5.7 2.9 6.1

Relevant
queries

1.8 2.4 3.0 1.6 2.6 1.25 3.0 2.7 2.7 1.1

/ interaction

Table 2: Analysis of business needs

Artificial explorations. The third dataset, with artificial data, comes from the
Star Schema Benchmark [20], and was used with artificial explorations. The
Star Schema Benchmark (SSB) is a variation of TPC-H, a popular benchmark
from the Transaction Processing Performance Council (TPC). SSB cube consists
of a relational database under the form of a star schema, with one fact table
and 4 dimension tables. We used the SSB generator to generate data with a
scale factor of 1, corresponding roughly to 1 Gb of data. We used the PDGF
data generator [21] to generate a realistic instance with skew data.

Instead of using the rather limited SSB workload, we generated artificial
explorations using CubeLoad [22], a tool for generating realistic explorations
over star schemas. CubeLoad takes as input a cube schema and creates the
desired number of explorations according to templates modeling various user
exploration patterns. Templates available in Cubeload simulate: (Goal Ori-
ented) users with limited OLAP skills pursuing a specific analysis goal, (Slice
And Drill and Slice All) more advanced users navigating with a sequence of
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slice and/or drill operations, (Exploratory) users tracking unexpected results
with exploratory sessions. We generated a collection of 100 explorations, each
one containing between 30 and 70 dimensional queries. Noticeably, explorations
were generated before the generation of the cube instance, which enabled us to
take advantage of the most frequent selection predicates in the explorations to
produce data skew in the most queried zones of the cube.

Environment. All experiments were run on a 64 bits Windows 8.1 Operating
System, featuring a Intel(R) Xeon(R) CPU E3-1241 v3 @3.50GHZ and 16GB of
RAM. Cubes are stored using the MonetDB database for SSB and SQL Server
for MobPro. Our prototype is written in Java 8 and Python 3, with Scikit-learn
and Imbalanced-learn [23] packages.

6.2 Feature scores computation

Our first experiment consists in computing the feature scores for all queries
in both open and enterprise datasets. In Tables 3 and 4, we report for each
descriptor its range, average value and standard deviation. In Table 3 we also
report the average time needed for the computation.

A first observation is that computation remains in interactive time, in the
sense that it does not exceed few hundred milliseconds. In average, the com-
putation of all the feature scores for a query is 152 milliseconds, which is low,
especially given that the average consideration time for a query result is 29, 371
milliseconds.

A second observation is the ranges of values that show important variations
from one feature to another, which justifies the standardization done before
training the SVM.

Concerning the comparison among datasets, there are some major differences
in the range of feature values. First, students use more filters (features NoF ,
FDepth et NCF ) than analysts. This can be explained by the size of the cubes
(bigger in the open dataset) and the nature of informations needs (student
analyzed specific phenomena in portions of the cubes while analyst analyzed
the overall data). Second, execution times are considerably higher in the open
dataset because of the underlying BI system, which impacts features ExecTime,
QF and ElapsedTime. Finally, Saiku interface causes explorations to be longer
(feature NoQ) as previously discussed.

6.3 Feature correlation analysis

Our second test aimed at validating the choice of features. We analyzed
the pairwise correlation of feature scores, using Pearson’s correlation coefficient,
over each corpus of queries independently. We report the result in the heat maps
of Figure 1 that represents for each pair of features the correlation between them
with a specific color code. As expected, correlation is maximal on the diagonal
which represents the correlation of a feature with itself. Correlation values range
between -1 (maximal negative correlation) and 1 (maximal positive correlation),
with 0 indicating no correlation. In the heat map, the more intense the yellow

18



Feature Min Max Avg StdDev CT (ms) stdev(CT)

Intrinsic descriptors

NoM 1 6 1.472 0.748 0.002 0.007
NoL 0 6 2.237 1.034 0.002 0.007
NoF 0 48 1.968 4.720 0.004 0.010
LDepth 0 12 3.536 1.972 3.849 2.978
FDepth 0 185 4.352 14.484 0.003 0.008
NoC 0 12438 156.756 662.932 33.814 57.829
QoI 0 1 0.221 0.200 34.056 58.765
ExecTime(ms) 0 82.061 0.465 3.391 0.001 0.004

Relative descriptors

RED 0 47 1.479 3.170 2.045 2.135
NCM 0 5 1.326 0.808 0 0
NCL 0 6 1.981 1.113 1.868 1.947
NCF 0 48 1.637 4.125 2.085 2.001
RI 0 1 0.406 0.491 0.003 0.008
RR 0 1 0.573 0.469 68.574 117.447
RP 0 1 0.582 0.467 71.877 129.544
IsRefine 0 1 0.207 0.406 0.023 0.024
IsRelax 0 1 0.118 0.323 0.0217 0.033

Contextual descriptors

CpQ 0 22 1.945 3.067 0.570 0.836
ClickDepth 0 23 3.219 4.144 9.179 9.765
IVA 0 1 0.005 0.042 152.792 181.939
NoQ 1 165 37.218 33.025 0.748 0
QRP 0.006 1 0.510 0.289 0.748 0
QF 0.005 1.970 0.076 0.153 0.001 0.005
ElapsedTime(ms) 0 6975.457 1207.484 1523.829 0.001 0.005
ConsTime(ms) 0 889178 29371 65622 0 0

Table 3: Range, average, standard deviation and computation time for the 25 features on the
open dataset

color, the greater the positive correlation, the darker the blue color, the greater
the negative correlation. Medium tones indicate correlation close to 0. As an
example, in the symmetric correlation matrix used to plot the heat map for
the open dataset, the highest value (diagonal excluded) is 0.95 while the lowest
value is -0.54. Out of the 300 coefficients, only 10 values are lower than -0.3 and
only 18 values are greater than 0.6.

A first general observation is that the vast majority of coefficients show
no significant correlation. Interestingly, similar trends of correlation happen
in both datasets. We detail the most significant correlations. Unsurprisingly,
NoQ (number of Queries) is correlated with both ElpasedTime and QRP (query
relative position). The features related to some specific fragments of a query are
correlated, which was expected. For instance, the highest correlation is between
NoF (number of filers) and FDepth (filter depth), and NoL (number of levels) is
correlated with LDepth (level depth). Similarly, we also observed correlations
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Feature Min Max Avg StdDev
Intrinsic descriptors
NoM 1 5 1.170 0.441
NoL 0 3 1.023 0.645
NoF 0 3 0.720 0.712
LDepth 0 1 0.170 0.224
FDepth 0 5 0.146 0.343
NoC 0 7790 194.507 665.205
QoI 0 0.641 0.132 0.139
ExecTime(ms) 0.083 0.264 0.101 0.015
Relative descriptors
RED 0 7 1.381 1.671
NCM 0 3 0.770 0.571
NCL 0 3 0.550 0.671
NCF 0 7 0.476 0.807
RI 0 1 0.220 0.402
RR 0 1 0.432 0.490
RP 0 1 0.341 0.414
IsRefine 0 1 0.164 0.370
IsRelax 0 1 0.084 0.277
Contextual descriptors
CpQ 0 7 0.622 1.145
ClickDepth 0 13 0.851 1.550
IVA 0 1 0.041 0.149
NoQ 0 23 4.305 3.613
QRP 0.043 1 0.599 0.292
QF 1 12 8.199 3.633
ElapsedTime(ms) 0.083 2.655 0.442 0.384

Table 4: Range, average and standard deviation for the 24 features on the enterprise dataset
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Figure 1: Feature correlation heat maps: (i) open dataset, (ii) enterprise dataset

open dataset enterprise dataset

Figure 2: Recursive selection of features for open (left) and enterprise (right) datasets. For
each number of features the plot indicates the accuracy of the linear SVM classifier.

between relative descriptors and the intrinsic descriptors related to a specific
query fragment. Finally, medium correlations can be observed between relative
recall (resp., relative precision) and relative identity, which again was expected.

In general, we believe that this level of correlation is acceptable. Neverthe-
less, we experimented with a feature selection method, as explained in Section
4 and whose results are reported in Figure 2.

From Figure 2-left it can be seen that selecting and removing features from
the 25 original features decreases the accuracy of the classifier in the case of the
open dataset. This trend is clearly less pronounced for the enterprise dataset in
Figure 2-right, that shows a decrease, but has a second high accuracy score for
8 features. This conducts to observe some variability for the enterprise dataset
in the number of features to select. As a consequence and as in both datasets,
the model with the whole set of features provides a high accuracy, we decide to
keep all the features in the model in the experiments hereafter.
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Accuracy Precision Recall Training set size

Random Over
Sampler

0.883 ± 0.005 0.967 ± 0.004 0.897 ± 0.005 1034 ± 0

SMOTE regular 0.887 ± 0.006 0.972 ± 0.007 0.896 ± 0.005 1034 ± 0
SMOTE border-
line1

0.887 ± 0.005 0.968 ± 0.006 0.901 ± 0.004 1034 ± 0

SMOTE border-
line2

0.879 ± 0.008 0.973 ± 0.004 0.887 ± 0.009 1033.6 ± 0.49

SMOTE svm 0.879 ± 0.006 0.963 ± 0.005 0.897 ± 0.008 1033.6 ± 0.49
ADASYN 0.890 ± 0.006 0.976 ± 0.008 0.896 ± 0.003 1057 ± 0
Random Under
Sampler

0.836 ± 0.003 0.980 ± 0.003 0.829 ± 0.004 170 ± 0

Table 5: Comparative results of different sampling strategies for the open dataset. ADASYN
performs better and is used throughout the paper for the open dataset.

6.4 Contribution model for the open dataset

In the following test, we use the subset of queries that were labeled similarly
by the two experts, as explained in Subsection 6.1. This represents a corpus
of 753 queries. We used 10-fold validation, with 80% of the corpus for training
and 20% for test. The training set was balanced by oversampling, as explained
in Section 4. Table 5 presents the different strategies that we compared to bal-
ance the 2 classes of our dataset, either by over-sampling the minority class
or under-sampling the majority class. It can be seen that all results are very
close, but ADASYN provides the best results along with SMOTE regular. How-
ever, ADASYN has the advantage of providing a slightly larger dataset (1057
tuples) for our experiments after resampling. We decide to use ADASYN as an
oversampling strategy for the open dataset.

The model we obtained is presented in Table 6, which shows, for each query
feature, its importance in the definition of contribution to an exploration. The
model of contribution was evaluated on the test set; results are reported in Table
7. It achieved an accuracy of 0.88. We note that this is close to the accuracy
obtained during the training phase.

A first general observation is that the importance of a feature is fairly related
to the features dimensions and/or categories. No dimension or category should
be ignored, in the sense that all of them include metrics having relatively high
weights. A general trend is that the features taken from relative descriptors have
a high impact on the query contribution. Moreover, most of them have a positive
impact, which means that the contribution of a query is mostly determined by
the consistency of the moves around that query. Features from intrinsic and
contextual categories are quite balanced, each one containing almost half of the
features with positive weights.

The model fits some intuitions one can have of a contributive query. It
can be assumed that analysts pay more attention to contributive queries, and
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Intrinsic features Relative features Contextual features
Feature Weight Feature Weight Feature Weight

Bias w0 = 0.076
NoM 0.294 NCM -0.167 CpQ 0.043
NoL 0.289 NCL 0.243 ClickDepth 0.247
NoF 0.406 NCF 0.241 IVA 0.032
LDepth -0.133 RED -0.025 NoQ -0.057
FDepth -0.431 RI 0.568 QRP -0.099
NoC -0.117 RR 0.108 QF 0.006
QoI -0.021 RP 0.184 ElapsedTime -0.211
ExecTime -0.235 IsRefine 0.421 ConsTime 0.142

IsRelax 0.174

Table 6: Model of query contribution on the open dataset

dataset accuracy precision recall

open 0.880 0.960 0.902

Table 7: Accuracy, precision and recall of the open data model

investigate them more than non contributing ones. A typical behavior is to ask
for the same query but with different points of view, by pivoting it in another
cross-table, or to explore the direct neighborhood of the query in order to check
or explain a result, by using roll-up or drill-down operations. This behavior is
represented in the model by the positiveness and high intensity given to features
like ConsTime (consideration time) that represents the time taken to inspect the
query result, or RI (relative identity), IsRefine (is refinement), NCL (number
of common levels), NCF (number of common levels) and ClickDepth, that are
relative features indicating the proximity of two successive queries in terms of
their expression.

The model also acknowledges that queries with a high contribution are more
complex and more selective than other queries. This characteristic is recognized
by the model by giving a high positive intensity to features NoM (number of
measures), NoF (number of filters) or NoL (number of levels). On the contrary,
queries which are too much detailed contain a very high number of cells and
are not of high utility to the analyst. Analysts usually do not pay too much
attention to these queries, and quickly write another one in order to reduce the
size of the query answer. The model identifies this well by weighting negatively
features like NoC (number of cells), FDepth (filter depth), LDepth (level depth)
and ExecTime (execution time).

Surprisingly, while ConsTime (consideration time) is relatively important in
query contribution, features QoI (quantity of information) and IVA (increase in
view area) have a weak intensity, despite their relatively complex nature. This
could mean that even more complex features are needed to better account for
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the user’s inspection of query results. Interestingly, ElapsedTime is weighted
negatively, and NoQ (number of queries) is weighted weakly. This means that
contributive queries are not necessarily located in specific places in the explo-
ration, but tend to be less frequent when the duration of the exploration is
high.

6.5 Contribution model for the enterprise dataset

The next experiment aims at investigating whether the contribution model
is sensible to the application context. To this end, we repeat the previous
experiment for the enterprise dataset (corpus of 525 queries), building a second
contribution model.

Many of the differences between the datasets were introduced in Subsection
6.1: different types of users (students vs. analysts); different types of informa-
tion needs (fuzzy information needs to be extended by students vs. predefined
information needs); different characteristics of underlying data (large cubes with
tens of dimensions and measures vs. small cubes with specific data); different
query tools (Saiku vs. SAP prototype).

Another important difference is that queries in each dataset were labeled by
different experts. This is a major issue as the concept of query contribution (as
the notion of quality itself) is fuzzy and highly dependent on the evaluator. For
example, the experts labeling the open dataset indicated that queries providing
the same measures, levels and filters (i.e. identical in our query model) but pre-
senting results in a different way (swapping columns-rows, different charts) were
highly contributive, because they showed the analysis of a specific phenomenon
around these data. On the other hand, the expert labeling the enterprise dataset
preferred queries providing new information and in relation to the user need.
Repetitive queries were judged as non contributive.

The model we obtained is presented in Table 8, which shows, for each query
feature, its importance in the definition of contribution to an exploration. The
model of contribution was evaluated on the test set; results, reported in Table
9, are similar to the ones obtained for the open dataset.

A first general observation is that the importance of the features is substan-
tially different compared to the model obtained on the open dataset. Features
that have the highest weights in one model, have negative polarity in the other
(ex. RI (relative identity) and IsRefine), and features that have the lowest
weights in one model have positive or insignificant weight in the other (ex.
FDepth (filter depth), RI (relative identity), RR (relative recall), RP (relative
precision), QRP (query relative position)). In addition, 15 out of 24 common
features have opposite polarity.

The model captures the differences on the underlying datasets. For example,
open data cubes being very large, many contributive queries are quite aggre-
gated and have many filters for focusing in a specific portion of a cube. This
explains the substantial weight of NoF (number of filters) and the quite high
weights of NoL (number of levels) and NoM (number of measures). On the
other hand, enterprise data sources being simpler, both in the number of di-
mensions and levels, and users tend to analyze the entire dataset (less filters),
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Intrinsic features Relative features Contextual features
Feature Weight Feature Weight Feature Weight

Bias w0 = 0.364
NoM 0.034 NCM 0.151 CpQ -0.015
NoL 0.604 NCL -0.009 ClickDepth 0.042
NoF 0.001 NCF -0.070 IVA -0.086
LDepth 0.569 RED -0.025 NoQ 0.027
FDepth -0.109 RI -0.694 QRP -0.890
NoC 0.000 RR -0.621 QF -0.038
QoI 1.130 RP -0.399 ElapsedTime 0.133
ExecTime 0.004 IsRefine 0.118

IsRelax -0.141

Table 8: Model of query contribution on the enterprise dataset

dataset accuracy precision recall

enterprise 0.800 0.817 0.831

Table 9: Accuracy, precision and recall of the enterprise data model

but at specific data granularity (ex. media shops, countries, years) as required
in their information needs. In this context, NoL (number of levels) and LDepth
(level depth) had more substantial weights than NoF (number of filters) and
FDepth (filter depth).

The model also captures labeling differences. For example, on the open
dataset, the substantial weight of RI (relative identity) and in general of al-
most all relative features, reflect the expert’s taste of contributive queries being
similar to previous ones. On the contrary, on the enterprise dataset, the very
high weight of QoI (quantity of information) as well as negative weights for rel-
ative features, translate expert’s opinion of contributive queries providing new
information instead of repeated one.

As a conclusion of this experiment, our learning approach allows the learning
of a definition of query contribution (difficult to be verbalized) that captures
the characteristics of the underlying dataset and respects experts’ judgment.

6.6 Cross-evaluation of contribution models on real datasets

A common objective of machine learning oriented techniques is to be gen-
eralizable to any kind of context. The tests reported in previous two sections
indicate that, when properly trained on queries related the objective at hand,
our method produces good and explainable results. The following test aims at
pushing one step further the experiment and at investigating if a model learned
for a data set can predict on a completely different data set. It is expected that
the results are not as good as previous experiments because of all the differences
between datasets and annotation listed in Section 6.5.
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Tests Learning Testing Accuracy Precision Recall

1 Open Enterprise 0.408 0.345 0.064
2 Enterprise Open 0.860 0.862 0.998

Table 10: Results of cross-evaluation between the two real datasets (Open and Enterprise)

Our experimental protocol is as follows. Two tests are conducted: the first
one consists of training the model on the open dataset and testing on the enter-
prise dataset, and the second one consists of performing the other way around.
In each test, 100% of the tuples of the learning dataset are used to train the
contribution model, this model being tested on 100% of tuples from the second
test dataset.

Table 10 presents for each test configuration the classification results ob-
served. Although, the results seem very contrasted, with good results observed
in the second test, this experiment shows that our approach is not able, in this
context and because of the inherent limits presented before, to learn a single
contribution model that can be applied on all our datasets. Indeed, the model
learned on the open dataset fails to capture the nature of contributive queries
in the enterprise dataset as traduced by a very low recall score. In the second
test, the results seem more promising but are biased due to the unbalance of
the classes in the open dataset. Indeed, the model learned on the well-balanced
enterprise datasets only predicts the majority class. This majority class is the
one that we want to predict, hence the good results.

As a concluding remark, this experiment shows that our method may be
ready to produce generalizable models as soon as we are able to annotate
datasets with some consistency among human experts. However, a second gen-
eralization test is described in this paper based on synthetic queries as explained
in the next section.

6.7 Validation on artificial explorations

Besides validating the model performance in terms of accuracy and inter-
pretability, we also evaluated the generalization of our model on artificial ex-
plorations. In this case, it is not possible to train a new model, neither is it
possible to compute traditional accuracy of our model since we have no ground
truth about the contribution of each query. However, the choice of CubeLoad as
a generative tool for the explorations makes it possible to evaluate qualitatively
our model of contribution against its predefined navigation templates. Indeed,
these templates directly relate to the level of expertise of the simulated user and
thus correlates with the proportion of possible contributive queries.

For example, following the definition of these templates, we could expect
Goal Oriented explorations to have a high number of contributive queries, as
they model users who know what they are looking for. Similarly, Exploratory
explorations are expected to contain contributive queries because of the diversity
in the queries and the increase in information novelty.
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Templates Exploratory Goal Slice Slice All
oriented & Drill

# of explorations 23 23 27 27
avg contribution 1.704 0.422 0.650 -0.508
stdev contribution 2.286 1.125 1.158 1.078
min contribution -1.241 -2.836 -2.085 -3.441
max contribution 8.397 3.756 3.139 3.142
% of contributive queries 87.5 64.9 66.3 24.4

Table 11: Average contribution of queries for each CubeLoad template

Table 11 presents, per exploration template, different statistics on the contri-
bution of the queries forming the explorations. The second line corresponds to
the average of the contribution of the requests as predicted by the model learned
on the real dataset. The next three lines respectively represent the standard
deviation, the minimum and the maximum of contribution a query can reach
within the pattern. First, it can be observed that queries from the Slice All
template are mostly non contributive queries (25% of them are contributive)
with a negative average contribution score of −0.508. This can be explained
by the relative simplicity of this pattern which consists solely in making slices
on a single level of the cube during the entire exploration. As a consequence,
the exploration is purely horizontal and unidirectional. The negative contri-
bution score can therefore be explained by the fact that the queries in these
explorations have a very low score for most of the features of the relative cate-
gory that have positive weights (like NCF, RI, RR, RP), while a high score is
achieved for features like NCM or RED that have a negative weight.

Second, it is worth noticing that the Goal Oriented and Slice and Drill tem-
plates produce relatively equally contributive explorations on average as denoted
by their strong proximity between mean, min and max contribution. That can
be explained by the fact that the Slice and Drill pattern can be seen as a spe-
cial case of the Goal Oriented pattern. Indeed, Goal Oriented simulates a user
navigating from a random query to a particular target query. An efficient way
to reach this target query is often to use slice and drill sequences. As a conse-
quence of these more complex exploration schemes, the average contribution of
each of these templates is much important than the previous Slice All template.
The explanation for the better score is the inverse as for the Slice All template:
for these templates, a high score is expected for features whose positive weight
accounts for an exploratory behavior, like NoM, NoL, NoF, NCL, NCF, RI, RR,
RP, IsRefine, IsRelax and ClickDepth.

Finally, the Exploratory template provides by far the most contributive
queries with an average of 1.704 and a maximum contribution above 8 which is
more than two times the second most contributive template. The high standard
deviation value observed is typical of this behavior that goes from very focused
queries in some areas of the cube that contribute a lot to answering the problem,
to low-focus phases where the user searches for new ways of explorations that
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may be very different from what was previously analyzing. This Exploratory
behavior favors a high number of distinct filters, measures and levels visited
as well as the novelty with pronounced differences between consecutive queries
hence increasing many of the features that are highly and positively related to
the contribution score. This explains in turn that our model considers that
87.5% of the queries of this template are contributive.

6.8 Model vs. User expertise

In general, an analyst with high level of expertise performs explorations
of better quality, with more contributing queries and also queries with higher
contribution. The objective of this experiment is to verify that our model is
able to confirm this intuition.

To this aim, we conducted this experiment on the open dataset where each
exploration has been tagged by professors with A, B or C labels, depending
on analyst’s skills. Label A corresponds to good explorations, clearly following
an information need, investigating it and containing coherent queries. Students
producing such explorations are considered to have analysis skills. Contrarily,
label C denotes those of the students that produced poor explorations, with
less contributive queries, typically switching topics, with no clear information
need. Label B corresponds to students that are learning analysis skills, but still
produce middle-quality explorations.

A specific protocol has been settled: using the learned model, the contri-
bution score of each query of these explorations has been computed. In order
to relate the labels of the explorations to the contribution scores of each query,
we have defined an aggregated score for each exploration as the average of its
queries’ contribution scores. After matching exploration contribution scores and
exploration labels, we verify that our model predictions are correct. Results are
presented in Table 12.

Analyst skills A B C
Ratio of contributive queries 59.17 53.22 0.25
avg contribution 0.172 0.028 -0.548
stdev contribution 1.042 1.091 0.857

Table 12: Query contribution vs. analyst’s skill.

From this table, it is easy to identify that classes A and C are clearly dis-
tinguished by their average scores of contribution. Explorations conducted by
users who have been labeled as skilled are more contributive than others in av-
erage. Regarding classes A and B, we can see that they are correctly ordered
when considering the ratio of contributing queries and their average contribu-
tion. However, as their scores are close to each other and standard deviation is
large, the difference may not be significant. As a consequence, we conducted two
complementary experiments in order to figure out how the contributive queries
of each class, A and B, are distributed along the explorations.
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Figure 3: Distribution of ratio of contrib(q) per expertise level

The first complementary experiment aims at verifying that the best ana-
lysts produce queries that contribute more. Figure 3 presents, for each level
of expertise, the distribution of the ratio of query scores (i.e. contrib(q)). For
example, in this chart, we can see that 25% of the queries produced by analysts
in C have a contribution between −0.5 and 0. More generally, we can see that
users in C produce a majority of non contributive queries. The small amount
of contributive queries they produce still have a weak contribution compared
to analyst in A and B. In general, analysts in A produce less queries of low
contribution, and more queries with high contribution, compared to analysts
in B. For example, analysts in A produce almost 10% of their queries with a
contribution between 1.5 and 2, whereas analysts in B produce only 5% of their
queries with such contribution.
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Figure 4: Distribution of ratio of contrib(q) per QRP

The second complementary experiment we conducted aims at observing how
the queries contribution distributes along the exploration for analysts of cate-
gories A and B. Figure 4 represents the distribution of the average computed
contribution of the queries w.r.t. the query relative position (QRP) in the ex-
ploration. For obtaining this figure, we split each exploration in 8 parts and
compute the average contribution of queries in each part. From this chart, we
can read that analysts in B produce queries with an average contribution of
0.302 in the first parts of their explorations. More generally, analysts in B are
supposed to have an intermediate level of expertise, and this is corroborated
by the fact that the first half of their explorations has a negative contribution
in average. However, the average contribution of their queries increases with
the query position and starts to be positive approximately at the second half of
their explorations. They generally even reach pretty good contribution scores
at the end of their explorations. On the contrary, analysts in A master the skill
of writing contributing queries from the beginning of their explorations. This
is traduced by positive average contribution scores all along their explorations,
with some locally low contributions that may correspond to low-focus phases of
exploratory navigation behaviors.

6.9 Assessing OLAP explorations

The objective of this last experiment is to validate our primary hypothesis:
assuming that expert users are more likely to develop better explorations, we
claim that the quality of an exploration can be measured by evaluating the skill
of writing contributive queries. To this aim, we relate the scores provided by
our continuous Knowledge Tracing (KT hereafter) prediction model to the labels
given by the experts on the explorations on the open and enterprise datasets
(both sets of explorations were labeled as explained in the previous subsection).
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In order to learn the KT model, we started by learning KT parameters, as
explained in Section 5. It can be seen from Table 13 that the initial probability
of writing a contributive query P (L0) is very low, which can be directly related
to the fact that explorations have been performed by master students who knew
very little about the data beforehand. Interestingly, and expectedly, Table 14
shows a higher P (L0) for enterprise users. However, in both cases users have
a sound theoretical background on OLAP exploration which in turn explains
the relatively good probability P (T ), i.e., the probability to acquire the skill at
each step of the exploration. Finally, the exploratory nature of OLAP analysis,
combined with limited knowledge of the dataset, translates in the explorations
by a lot of trials and errors that increased significantly the average probability
and standard deviation of P (G) and P (S).

P(L0) 0.085
P(T) 0.243
mean(P(G)) 0.320
variation(P(G)) 0.307
mean(P((S)) 0.323
variation(P(S)) 0.273

Table 13: Main parameters of continuous KT as learned on the open dataset.

P(L0) 0.238
P(T) 0.360
mean(P(G)) 0.331
variation(P(G)) 0.297
mean(P((S)) 0.330
variation(P(S)) 0.278

Table 14: Main parameters of continuous KT as learned on the enterprise dataset.
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Figure 5: KT prediction of analysts skills vs. experts evaluation for the open dataset

Figure 6: KT prediction of analysts skills vs. experts evaluation for the enterprise dataset

Figures 5 and 6 represent on the horizontal axis all the explorations consid-
ered for the experiment (39 for open dataset and 103 for enterprise dataset),
and on the vertical axis the prediction of the level of expertise of the user pro-
vided by our KT model. The colors represent the assessments made by human
experts. For the open dataset, it appears clearly that our model provides con-
sistent evaluations, giving users a rating that corresponds to the assessment
made by the expert. The distinction between competent analysts (A and B)
and non-competent analysts (C) is clearly marked, in contrast to the distinction
between A and B which is less pronounced. This can be explained by the fact
that it is difficult for an expert to distinguish between a good analyst and a very
good one. However, the distinction between a good and an unqualified analyst
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is intuitively much easier. The result is more nuanced on the enterprise dataset,
even though we retrieve a quite good distinction between competent and non-
competent analysts (C-labeled explorations tend to cluster on the right of the
chart, which corresponds to low scores). Interestingly, if only one third of the
explorations obtain a score greater than 0.9 for the open dataset, it is slightly
more than 50% for the enterprise dataset, which reflects the average expertise
of enterprise users. In other words, the KT model was able to correctly retrieve
that enterprise users were rather skilled compared to students who explored the
Mobpro cube.

Finally, we evaluate our continuous KT based on a traditional RMSE score.
RMSE has been shown to be the strongest performance indicator for binary KT
with significantly higher correlation than Log Likelihood and Area Under Curve
[24]. In our case, this RMSE score is computed as the difference between the
expected contribution of each query in an exploration and the value predicted
by the continuous KT for each of these queries. Our KT model obtains a RMSE
score of 0.291 with a standard deviation of 0.181 for the open dataset, and 0.238
with a standard deviation of 0.270 for the enterprise dataset. Consistently with
the literature on KT, we consider that this score are rather good and we conclude
that our model is effective at assessing if the skill “writing a contributive query”
is acquired.

7 Related Works

7.1 Interactive database exploration

Supporting Interactive Data Exploration (IDE) attracts a lot of attention
these days [1]. In their survey, Idreos et al. adopt a top-down viewpoint and
classify the existing approaches in three main categories: user interaction, mid-
dleware and database layer. Techniques range from visual optimization (like
query result reduction [25]), automatic exploration (like query recommenda-
tion [26]), assisted query formulation (like data space segmentation [27]), data
prefetching (like result diversification [28]) and query approximation [29]. One
of the conclusion of this survey is that data navigation systems should be able
to optimize exploration tasks, with user profile and navigation histories as cor-
ner stones of this optimization. We believe that our work contributes in this
direction.

OLAP exploration of data warehouses is a particular use case of database
exploration that enables to work with simplifying assumptions. Precisely, the
multidimensional star schema or the regularities of multidimensional queries (as
presented in Section 2) make possible the definition of simple, intuitive features
like level depth, relative edit distance, etc. (see Section 3).

Many approaches have been specifically developed to support OLAP ex-
ploration. For example, the PROMISE pre-fetching approach [30] predicts a
query based on a Markov Model constructed out of the server’s log. Sarawagi
[2] proposes an advanced OLAP operator based on entropy maximization to
detect surprising cells of a cube, based on the user’s current exploration. Col-
laborative recommendation techniques have been used to recommend OLAP
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explorations based on the user’s histories and a user’s current navigation [31].
Some approaches also give an important place to the presentation of the data,
like Cinecubes [32] that builds a user-friendly sequence of explanation queries,
to analyze a given query result. We remark that, if these approaches share the
same goal of reducing the tediousness of the exploration, they vary a lot in the
technique adopted. Noticeably, no commonly agreed upon framework exist to
position theses approaches from the user’s standpoint.

7.2 Assessing database exploration

The database community enjoys a variety of popular benchmarks to as-
sess and compare the performance of database systems. The TPC consortium3

proposes benchmarks that include metrics covering time, performance, price,
availability or energy consumption. However, while TPC acknowledges the im-
portance of the explorative nature of decision support queries (see e.g., the
OLAP interactive queries in the TPC-DS benchmark), none of the existing TPC
metrics are appropriate for measuring database exploration support. In other
words, the existing benchmarks adopt a system-centric viewpoint, measuring
the efficiency of data retrieval, and are not appropriate to measure exploration
efficacy under a user-centric angle.

Recently, Eichmann et al. discuss the need for new, user-centric benchmarks
[9]. They propose some tracks to investigate the building of such a benchmark.
Considering that IDE’s main objective is to gain insights about the data, they
propose the use of number of insights per minute as a primary metric for evalu-
ating systems. They raise the challenges in defining such a metric, like defining
user-specific insights and measuring the complexity of an insight. This work is
complementary to ours in the sense that insight extraction can be incorporated
as one additional feature in our framework.

In a previous work, we propose a framework for benchmarking exploratory
OLAP support systems [8]. We showed that such a benchmark can be imple-
mented using state-of-the-art techniques for data and user traces generation,
and for metrics definition. We have validated the benchmark by proving that
it correctly ranked a set of exploration strategies for which the behavior is well
known. The focus of this present work is different in that it treats user explo-
rations, and not systems, as a first class citizen. Additionally, in the present
work we use the KT as a systematic way of assessing explorations.

In [7], we propose an approach to detect focus in OLAP explorations. As in
the present work, we used supervised learning and feature based description of
OLAP queries. This present work can be seen as a generalization of [7], with
a more detailed model for query contribution and the use of the KT to score
explorations.

3See http://www.tpc.org/ for details
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7.3 Analyzing web search sessions

Interestingly, other domains, like Information Retrieval and more particu-
larly Web Search, have a longer history of understanding the successfulness of
an exploration and processing traces for getting more insight about users.

Analyzing user sessions has been studied for many years in web search.
Recent works aim at characterizing the difficulty of search tasks and detecting
variations in sessions. For instance, in [33], Athukorala et al. proposed a method
for distinguishing between exploratory phases and lookup phases in the context
of Information Retrieval. Their idea consists in experimentally discovering fea-
tures that can be used for this distinction. They submitted several tasks to
participants: some of them require exploration while other require more sim-
ple lookups. Based on objective measurements, they could identify that query
length, completion time, and maximum scroll depth (in the browser), are the
most distinctive indicators for distinguishing between exploratory/lookup tasks.

A recent trend in web search is to analyze web search sessions by means of
machine learning, and more particularly with classifiers. The goal of authors
in [34] is to discover new intent and obtain content relevant to users long-term
interests. They develop a classifier to determine whether two search queries
address the same information need. This is formalized as an agglomerative
clustering problem for which a similarity measure is learned over a set of de-
scriptive features (the stemmed query words, top 10 web results for the queries,
the stemmed words in the titles of clicked URL, etc.). In [35], Odijk et al.
worked on characterizing user struggling during web searches. They propose
a method for distinguishing between users exploring search results from those
struggling for satisfying a given information need. The methodology they use
is very similar to the one we adopt. They use a bunch of keyword features,
and using a large real set of explorations, they trained a machine learning al-
gorithm for learning how to differentiate between the two aforementioned types
of explorations.

Measuring the quality of exploration has attracted a lot of attention in the
field of Exploratory Search [36]. Exploratory search can be defined as a search
paradigm centered on users and the evolution of their knowledge. This paradigm
aims at a better support for information understanding by moving beyond the
traditional query-browse-refine paradigm. The basic model of exploration dis-
tinguishes two main phases. In a first phase, called exploratory browsing, users
are likely to explore the space, as well as better defining and understanding their
problem. At this stage, the problem is being limited, labeled, and a framework
for the answer is defined. Over time, the problem becomes more clearly defined,
and the user starts to conduct more targeted searches. In this second phase,
called focused phase, users (re)formulate query statements, examine search re-
sults, extract and synthesize relevant information. Being particularly driven by
the quality of users experience, it has been proposed that Exploratory Search
systems should be evaluated based on the 5 following categories of metrics:
i)Engagement and Enjoyment measures the ”degree to which users are engaged
and are experiencing positive emotions”. It includes ”the amount of interaction
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required during exploration”, the ”extent to which the user is focused on the
task”. ii) Task Success assesses ”whether the user reaches a particular target”
and finds a ”sufficient amount of information and details” along the way. iii)
Information Novelty measures the ”amount of new information encountered”.
iv) Task Time measures the ”time spent to reach a state of task completeness”.
v) Learning and Cognition measures the ”attainment of learning outcomes”,
”the amount of the topic space covered” and ”the number of insights acquired”.

Our work is largely inspired by the Exploratory Search framework. In par-
ticular, the features of OLAP queries were defined based on the 5 categories
proposed for the evaluation of exploratory search systems.

8 Conclusion

In this work, we have proposed an approach to automatically assess the qual-
ity of interactive OLAP explorations of data cubes. Our approach is based on a
model of query contribution built using supervised learning and the assessment
of the exploration relates to the user’s skill of writing queries that contribute
to the exploration. The tests conducted on both real and artificial explorations
showed the validity of our approach.

Our future works will first investigate the refinement of our model of query
contribution, in particular by including complex features like Sarawagi’s ad-
vanced OLAP operators [2]. Another short term goal is to relax the assumption
of multidimensional schema and query language, and target SQL explorations
over less normalized databases. We identified SQLShare [37]) as a promising
dataset to work with. Finally, a challenging direction will be to switch to un-
supervised learning in the approach, to avoid the need for manual labeling and
the strong dependency on human expert annotation variability.
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