Bias correction in conditional multivariate extremes

Abstract : We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01887925
Contributeur : Armelle Guillou <>
Soumis le : jeudi 4 octobre 2018 - 15:39:33
Dernière modification le : mardi 30 octobre 2018 - 14:08:11

Fichier

L-unbiased.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01887925, version 1

Collections

Citation

Mikael Escobar-Bach, Yuri Goegebeur, Armelle Guillou. Bias correction in conditional multivariate extremes. 2018. 〈hal-01887925〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

12