Skip to Main content Skip to Navigation
Conference papers

Unmixing multitemporal hyperspectral images accounting for smooth and abrupt variations

Pierre-Antoine Thouvenin 1 Nicolas Dobigeon 1 Jean-Yves Tourneret 1
1 IRIT-SC - Signal et Communications
IRIT - Institut de recherche en informatique de Toulouse
Abstract : A classical problem in hyperspectral imaging, referred to as hyperspectral unmixing, consists in estimating spectra associated with each material present in an image and their proportions in each pixel. In practice, illumination variations (e.g., due to declivity or complex interactions with the observed materials) and the possible presence of outliers can result in significant changes in both the shape and the amplitude of the measurements, thus modifying the extracted signatures. In this context, sequences of hyperspectral images are expected to be simultaneously affected by such phenomena when acquired on the same area at different time instants. Thus, we propose a hierarchical Bayesian model to simultaneously account for smooth and abrupt spectral variations affecting a set of multitemporal hyperspectral images to be jointly unmixed. This model assumes that smooth variations can be interpreted as the result of endmember variability, whereas abrupt variations are due to significant changes in the imaged scene (e.g., presence of outliers, additional endmembers, etc.). The parameters of this Bayesian model are estimated using samples generated by a Gibbs sampler according to its posterior. Performance assessment is conducted on synthetic data in comparison with state-of-the-art unmixing methods.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Thursday, October 4, 2018 - 3:33:08 PM
Last modification on : Friday, January 29, 2021 - 2:06:18 PM
Long-term archiving on: : Saturday, January 5, 2019 - 4:07:57 PM


Files produced by the author(s)


  • HAL Id : hal-01887901, version 1
  • OATAO : 19070


Pierre-Antoine Thouvenin, Nicolas Dobigeon, Jean-Yves Tourneret. Unmixing multitemporal hyperspectral images accounting for smooth and abrupt variations. 25th European Signal Processing Conference (EUSIPCO 2017), Aug 2017, Kos island, Greece. pp. 1-5. ⟨hal-01887901⟩



Record views


Files downloads