HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Achilles' heel of iron-based catalysts during oxygen reduction in acidic medium

Abstract : For catalyzing dioxygen reduction, iron-nitrogen-carbon (Fe-N-C) materials are today the best candidates to replace platinum in proton-exchange membrane fuel cell (PEMFC) cathodes. Despite tremendous progress in their activity and site-structure understanding, improved durability is critically needed but challenged by insufficient understanding of their degradation mechanisms during operation. Here, we show that FeNxCy moieties in a representative Fe-N-C catalyst are structurally stable but electrochemically unstable when exposed in acidic medium to H2O2, the main oxygen reduction reaction (ORR) byproduct. We reveal that exposure to H2O2 leaves iron-based catalytic sites untouched but decreases their turnover frequency (TOF) via oxidation of the carbon surface, leading to weakened O2-binding on iron-based sites. Their TOF is recovered upon electrochemical reduction of the carbon surface, demonstrating the proposed deactivation mechanism. Our results reveal for the first time a hitherto unsuspected key deactivation mechanism during ORR in acidic medium. This study identifies the N-doped carbon surface as Achilles' heel during ORR catalysis in PEMFCs. Observed in acidic but not in alkaline electrolyte, these insights suggest that durable Fe-N-C catalysts are within reach for PEMFCs if rational strategies minimizing the amount of H2O2 or reactive oxygen species (ROS) produced during ORR are developed.
Document type :
Journal articles
Complete list of metadata

Contributor : Frederic Jaouen Connect in order to contact the contributor
Submitted on : Thursday, October 4, 2018 - 1:33:11 PM
Last modification on : Friday, April 1, 2022 - 9:37:01 AM

Links full text




Chang Hyuck Choi, Hyung-Kyu Lim, Min Wook Chung, Gajeon Chon, Nastaran Ranjbar Sahraie, et al.. Achilles' heel of iron-based catalysts during oxygen reduction in acidic medium. Energy & Environmental Science, Royal Society of Chemistry, 2018, 11 (11), pp.3176-3182. ⟨10.1039/C8EE01855C⟩. ⟨hal-01887695⟩



Record views