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Article

Bioinspired wind field estimation—part 1:
Angle of attack measurements through
surface pressure distribution

Nikola Gavrilovic1, Murat Bronz2, Jean-Marc Moschetta1 and
Emmanuel Benard3

Abstract

One of the major challenges of Mini-Unmanned Aerial Vehicle flight is the unsteady interaction with turbulent environ-

ment while flying in lower levels of atmospheric boundary layer. Following inspiration from nature we expose a new

system for angle of attack estimation based on pressure measurements on the wing. Such an equipment can be used for

real-time estimation of the angle of attack during flight or even further building of wind velocity vector with additional

equipment. Those information can find purpose in control and stabilization of the aircraft due to inequalities seen by the

wing or even for various soaring strategies that rely on active control for energy extraction. In that purpose, flying wing

aircraft has been used with totally four span-wise locations for local angle of attack estimation. In-flight angle of attack

estimation from differential pressure measurements on the wing has been compared with magnetic sensor with wind

vane. The results have shown that pressure ports give more reliable estimation of angle of attack when compared to

values given by wind vane attached to a specially designed air-boom. Difference in local angle of attack at four span-wise

locations has confirmed spatial variation of turbulence in low altitude flight. Moreover, theoretical law of energy dissi-

pation for wind components described by Kaimal spectrum has shown acceptable match with estimated ones.
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Introduction

There are strong indications that birds use their feath-

ers for sensing of flow perturbations over their wing-

span. Being fluffy and subjected to fluttering provoked

by small disturbances, birds have natural sensory

system which enables them to “feel” flow disorders

along their wing. Another convenience of their elastic

body structure is capability of using adaptronics for

various turbulent flight regimes. Eventual immediate

action due to surface pressure fluctuations by modify-

ing wing geometry or profile curvature allows quick

and effective response in gusty environment. Some

photographs of Grey Gull shown in Figure 1 provide

a hint on unsymmetrical reactions, possibly due to

unequal disturbances on the wing.
However, for a variety of reasons, it is understood

that identical copies from nature to man-made

technologies are not feasible. Instead, a creative inspi-
ration and conversion into technology is often based on
various steps of abstraction.

MiniUnmanned Aerial Vehicle(UAV) usually fly at
lower levels of atmospheric boundary layer where the
turbulence intensity is significantly increased due to the
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proximity of the ground. Such a complex surrounding

implies intricate interaction between terrains’ geome-

try, physical conditions, and varying meteorology. If

gust length scales were equal or larger than the wing-

span, then flight through such a large gust structure

would result in only pitching and heaving motion.

However, gusts smaller than the wingspan would

result in uneven load distribution along wingspan

implying additional roll and yaw moments on the

wing. These information can be of particular interest

in case of gust energy extraction flight strategy.
The performance of small UAVs being constrained

by onboard energy due to their limited size can be sig-

nificantly enhanced by specific flight strategies accord-

ing to expected atmospheric formations. Most of the

energy harvesting methods rely on active control

system that detects and exploits the energy of atmo-

spheric turbulence through intentional maneuvering

of the aircraft. As a response for such a request, this

paper proposes one of the methods for wind estimation

which could be used as a direct input of control for

energy harvesting strategy. Moreover, such a system

could be replicated on various positions along

wingspan which could provide necessary information

on gust length scales during the flight. The major ben-

efit of such a biologically inspired sensory system is

that the flying vehicle senses the disturbances rather

than its responses to it.
An approach based on unscented Kalman filter is

proposed by Condomines et al.2 for nonlinear wind

estimation in aspect of formation detection of

cumulus-type clouds with a fleet of drones. Review

and suitability of conventional sensors applicable to
small UAVs is performed by Mohamed et al.3 The

use of pressure sensors on the wing as a stabilization

system of a micro UAV for roll axis was demonstrated

by Mohamed et al.4,5 Another way of stabilizing a

small UAV in turbulent conditions has been performed

by Mohamed et al.6 with pitch probes (multihole

probes) located on both sides of the wing. Both ways
promise more effective stabilization of the aircraft

when compared to conventional inertial systems.

Moreover, a correlation between a single pressure tap

on the wing and cord-wise integrated pressure coeffi-

cient was used for roll mitigation of oncoming turbu-

lence by Marino.7,8 Capacitive strip sensors applied on
the airfoil skin were demonstrated by Callegari et al.9

A stabilization system based on surface pressure meas-

urements can be considered as feeling way of turbu-

lence affecting aircraft. They promise more effective

response as opposed to conventional approach of tra-

ditional systems based on inertial sensors. The systems

previously mentioned replicate the function of feathers
and hairs as shown in Figure 2. A flush air data system

intended for wind vector sensing in dynamic soaring

UAVs is presented in Quindlen and Langelaan.10 The

system uses pressure holes on the aircraft nose cone as

inspiration fromWandering Albatross and Giant petrel

nostrils. As opposite to fluffy wing structures, some

birds are also equipped with rigid sensory systems as
explained in previous work. An overall view on biolog-

ically inspired aerodynamic structures and their effect

on performance improvement and flight control has

been presented by Rasuo.1 An overview on aerody-

namic structures for aircraft drag reduction inspired

by wing tips of some natural flyers has been investigat-
ed in Gavrilovic et al.11

The advantage of the principle proposed in this

paper is the capability to estimate the precise value of

angle of attack on the arbitrary chosen locations on the

wing. Those precise information can be further used for

meteorological investigation or as an direct input of
control for energy harvesting flight strategies from

atmospheric phenomena with gliding or powered

flight. The system is particularly interesting for soaring

strategies as it allows aircraft to feel upcoming distur-

bances. It also provides insurance that detected

Figure 1. Local separation control of natural flyers.1
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turbulent structures can be exploitable due to their

magnitude frequency and length scale.

Existing meteorological knowledge

of atmospheric boundary layer

Mini and micro UAVs predominantly fly in the surface

of atmospheric boundary layer, where turbulence is

strongly influenced by surface conditions, both terrain

and temperature. We can differentiate two types of

sources affecting turbulent formation of atmosphere.

Mechanical is caused by friction as air flow masses

move over the earth surface. Appearance of gradients

in velocity will induce the formation of shear layers.

Those shear layers produce rotating air motions or

eddies and their strength is directly proportional to

the magnitude of air velocity. The other sources

could be the roughness and natural obstacles that

deflect air flows. On the other hand, thermal turbulence

is caused by buoyancy effects. Unequal heating of the
ground provoked by the clouds or natural obstacles
such as cliffs, mountains, and valleys generates large
circulation systems called thermals, where warmer air
have a tendency of climbing while being replaced by
cold air from the bottom. Those thermal irregularities
are actually magnifying vertical mixing caused by
mechanical turbulence. These two distinct sources pre-
sent obvious challenge to flight stability and control
but they also provide the opportunity and energy
source for soaring flight strategies.

The measurements of turbulence in lower part of
atmospheric boundary layer (i.e. region influenced by
the frictional effect of surface extending from surface
up to the range of 100 up to 1000 m depending on the
surface and climate conditions) are usually done at
fixed mast locations near wind turbine stations. It is
known that turbulence intensity increases nearing the
ground, strongly influenced by the terrain, thus chang-
ing the conditions comparable with those at high alti-
tudes. Designation of standard deviation Ti of
fluctuating velocity ru divided by mean velocity �Uz

for different altitudes and terrains shows that inhabited
areas have the highest Ti of up to 50%. Although fluc-
tuations are mainly present in the horizontal plane,
vertical components are mainly reduced but still pre-
sent in the last couple of meters.

The average magnitude of wind in Europe measured
in the horizontal plane at 10 m above ground followed
over the period of 44 years (1957–2002) shows a vari-
ation of 2–4 m s�1 depending on the exact location of
region as presented in Peter.12 Recent experiments from
Watkins13 considered measurements of spatial varia-
tion in pitch angle and confirmed statement about spa-
tial variation of turbulence magnitude.

Previously described environment satisfies possible
scenario of MAV flight concerning both altitude
and experienced wind conditions. Moreover, it
proves that atmospheric influence on low altitude
UAV flight is 3D.

Inspiration from nature

Various styles of flight could be noticed while bird-
watching. According to Scott and McFarland14 birds
use several strategies of energy harvesting, which serve
as an inspiration for all the current improvements in
the field of UAV long endurance performance.
Interaction of wind and obstacles such as buildings,
hills, or waves generates an ascending component of
air motion. Many birds with knowledge of soaring
techniques use these updrafts to power their flight
instead of wing flapping. In case of unequal heating
of earth’s surface provoked, for example, by punctured
cloud layer, implies uplift of hot air, known as thermal.

Figure 2. Bionical approach.
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Eagles, condors, vultures, and many other large birds
use these updrafts with a technique called thermal soar-
ing in order to extend their endurance while searching
for a prey. Another example is sweeping flight within
the gust pushed by the waves. Gulls and pelicans use
these gusts to power their flight by flying along the
wave cliffs. Gaining speed while wave slows down,
they are able to pull up and glide to another wave
where the process continues. Some birds such as kes-
trels remain motionless above a point on the ground by
flying into the wind at a speed equal to that of the wind.
This technique is called wind hovering.

There is a dense network of nerves around feather
follicles according to Videler.15 Feathers are actually
connected to the follicles in the skin and they represent
a very complex system of muscles and nerves intercon-
nected. Primary function of such an anatomical config-
uration is mechanoreception. Specialized feathers on
the head and breast have been shown to act as indica-
tors of wind speed and direction. It has been also found
that birds have very sensitive nerve endings (Herbst
corpuscles) in their skin which are able to detect very
high frequencies of vibrations of more than 100 Hz.
Severe turbulent flows will cause the feathers to vibrate
and gyrate wildly. As the feathers are elevated by the
air stream, mechanoreceptors increase their discharge
frequency according to Brown and Fedde.16

Microstructures require much more attention
because they serve a lot of functions. So far under-
standing of flight control in birds is very limited. The
connection between the natural sensory system and
motor pathways involved in complex movements in
soaring flight strategies has not yet been
fully understood.

Algorithm development

Wind model for simulations

From field experiments it is well known that undis-
turbed wind velocity is variable in space and time.
The most adequate method to simulate a turbulent
wind field would be to solve Navier–Stokes equations
of an atmospheric flow bounded from below by an
aerodynamically rough surface. This method requires
enormous computational resources. Alternative could
be large Eddy simulations as an approximate solution
to the Navier–Stokes equations where the smallest
scales are not solved directly but modeled. Still even
simplified alternative requires big computational
power. Therefore, empirical description is generally
used for turbulence representation, using spectral and
coherence functions.

Widely used Dryden and von Karman spectral rep-
resentations describe an average of all conditions for

clear air turbulence. The limitations for those two

models are due to the factors not incorporated into
the spectral representation, such as terrain roughness,

wind shear, and mean wind magnitude. On the con-

trary, Kaimal and Finnigan17 spectra were developed
on measurements over flat homogeneous terrain. The

main finding of Kaimal and Finnigan17 was the jump in

spectral energy density at low frequencies as the stabil-
ity of the atmosphere changed from stable (cooling

from below) to unstable (warming from below).

A model of turbulent wind field suitable for calcula-
tions requires good representation of both temporal

and spatial structure of turbulence. Method for a gen-

eration of a single wind time series from a Kaimal spec-
trum is proposed by Branlard.18 It leads to natural

representation of turbulent flow of high computational

cost compared to alternative large Eddy or Navier–
Stokes simulations. The spectrum used in simulations

is presented by Kaimal and Finnigan17 with its adjust-
able constants that depend on the chosen turbulent

length scales, intensity of turbulence, surface rough-

ness, and Reynolds and Richardson number

Faðk1Þ ¼ A � r2u=k1m
1þ B � ðk1=k1mÞ5=3

(1)

The characteristics of generated profiles are com-

pared with available database on wind characteristics

that can be found in the literature19 with intention
to match the same level of turbulence energy (see

Figure 3 for power spectral density (PSD)). The gener-

ated profile has been made with turbulence intensity,
I ¼ 14%, reference wind speed of 1 m s�1, and length

scale L ¼ 140m. The chosen parameters correspond to
environment that can be found above homogeneous

flat terrain.

Numerical calculations

After the generation of wind profile time series, 2D
computational domain has been built with structured

mesh around an airfoil SD2048. Structured mesh con-

vergence has been studied previously to satisfy required
number of cells for precise representation of boundary

layer and wake formation. The chosen airfoil is a typ-

ical low Reynolds number foil which could be found on
several gliders including SB-XC (mini UAV) used by

NASA.20 The resulting vertical and horizontal wind

profiles generated previously have been used as a
direct input for inlet boundary condition of unsteady

RANS simulations. The time step chosen for unsteady

simulations was 0:5� 10�4 s. The intention was to
investigate the pressure variation on multiple locations

of the airfoil and find a suitable way of achieving

276 International Journal of Micro Air Vehicles 10(3)



coherence with upcoming wind velocity or angle of
attack. Moreover, the position of the pitot tube
ahead of the airfoil was studied for various angles
of attack.

The main goal was to pick a specific pair of pressure
ports where one port is on the upper surface of the
airfoil and the other on the lower surface. Chosen
pair has been selected at 30% of cord with a request
of precise estimation of angle of attack at high mean
angles of attack, even after beginning of stall.
Moreover, the chosen location also had to provide suf-
ficient thickness of the structure for the hardware
mounting. The points on airfoil surface are recording
pressure with time, while the points in front of the air-
foil record dynamic pressure (see Figure 4 for point
location). The information on the pressure difference
is afterward transformed into difference of pressure
coefficients between the chosen ports. The following
relation has been found

DCp12 ¼ Cp1 � Cp2 ¼ p1 � p2
q

(2)

The imposed wind profile at the inlet of the compu-

tational domain will generate additional angle of attack

on the airfoil. The idea is to capture the angle of attack

increments provoked by wind with related pressure

coefficient fluctuations on the airfoil. This is achieved

with polynomial fitting, where the optimization of the

coefficients is performed with method of least squares

a ¼ C0 þ C1 � DCp12 þ C2 � DC2
p12 (3)

The relation claims that we are able to estimate the

angle of attack knowing the pressure difference

between the upper and lower point on the airfoil and

dynamic pressure as shown in Figure 5. Once optimized

for a certain airfoil and position of ports, coefficients of

fitting were tested with various mean angles of attack

and airspeeds. Those tests have shown that impact of

Reynolds number variation does not affect significantly

the angle of attack estimation.
However, for a variety of reasons it is clear that

numerical simulations if posed correctly represent ide-

alistic case where all the information of the flow are

known in every node of the domain. Therefore, we

proceed to realistic study of equipment in the flight test.

Platform

UAV and equipment

To verify the bioinspired sensory system, flight trials

using an open source flight controller Paparazzi21 were

Figure 4. CFD computational domain of SD2048 airfoil with
surface ports measuring pressure difference and forward ports
measuring dynamic pressure.

Figure 3. Generated time series of Kaimal spectrum as an input
for URANS simulations. PSD: Power Spectral Density.

Gavrilovic et al. 277



performed. The chosen flight test vehicle was a flying

wing shown in Figure 6, built in UAV laboratory of
ENAC. The aircraft geometrical parameters are shown

in Table 1. Particular interest of using flying wing config-
uration is sufficient thickness of the wing cord for sensor

and equipment integration. This type of vehicle could be
a representative of a powered drone which has been

loaded with sensors and other payloads. Modifications
to the aircraft were required to house pressure ports and

special custom designed airflow boom.
Pressure sensors are located beneath the Kevlar wing

skin at 30% of cord distance. Small holes of 2 mm diam-
eter were made in the vertical plane of the wing. Totally

four places were chosenmarked as points 1, 2, 3, and 4 in
Figure 6. Points 1 and 4 are located at 75% of the half-

wing span. The distance between points is 40 cm. Each
port pair is connected to a single differential pressure

sensor. A separate device for airspeed and air angles
has been designed in order to have values comparative

to one estimated by the pressure measurements. Carbon
rodhasbeen joined toa3Dprintedhousingon its tip.The

size of the housing was designed in such a way to accept
magnetic encoder, pitot tube, and all necessary wiring

and pressure tubes (see Figure 7). The length of the
carbon rod was previously determined in CFD simula-

tions for a nondisturbed pressure field condition. Small,

3Dprintedflagwas attached to themagnetic encoder.All

of the sensors shown inTable 2 update at frequency of 50

Hz and are being recorded to an onboard data logger,

except for the differential GPS which works at 5 Hz.

Calibration of sensors

Calibration of the pitot tube, pressure sensors, and

magnetic encoder has been performed in a wind

tunnel with installed autopilot board and

Figure 6. Flying wing UAV with equipment for angle of
attack estimation.

Figure 7. Custom design of device for airspeed, angle of attack,
and slide slip angle measurements.

Table 2. Equipment onboard.

Description Details

Autopilot Paparazzi21

Chimera v1.0

IMU MPU-9150 based

DGPS NEO-M8P2

Differential pressure sensor HCLA02X5EB

Magnetic encoder MA3-P12-125-B

Wind vane 3D printed

Pitot tube 10 cm

DGPS: Differential Global Positioning System; IMU: Inertial

Measurement Unit.

Figure 5. Curve fitting between angle of attack and local wing
pressure coefficient for numerical simulations (Re¼ 340,000).

Table 1. Aircraft characteristics.

Description Details

Airfoil Sipkill 1.7/10

Wingspan 1.2 m

Mean aerodynamic cord 0.27 m

Weight 0.75 kg

Cruise speed 12 m s�1

Aspect ratio 7
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accompanying equipment. Reference for the pitot tube
was imposed velocity of the wind tunnel measured with
a hot wire anemometer. Calibration of pressure and
flag sensor was done with respect to the IMU output
from the autopilot, due to the equality of pitch angle
and angle of attack in the wind tunnel, as shown in
Figure 8 . Curve fitting has been performed once
again with least square method in PYTHON and
obtained constant coefficients were used for further
flight tests analysis. One of the drawbacks of this
system is that pressure sensor (for angle of attack esti-
mation) calibration is strictly related to the wing geom-
etry of the pressure port location. Once calibrated,
sensor for chosen aircraft and position is not reusable
for a different wing shape and dimensions. Due to the
required precision, ground and climb speed estimation
could not rely on only GPS output. Especially prob-
lematic estimation of altitude requires combined work
of barometer, differential GPS, and accelerometer.

Analysis of experimental data

Flight data

Our intention is to use available information of flight
parameters for further processing and transformation
into wind components. The process of wind estimation
requires knowledge of pitch angle h coming from IMU
system; angle of attack a coming from pressure or flag
sensors; dynamic pressure q coming from pitot tube;
and finally ground and climb speed coming from
GPS, barometer, and accelerometer combined togeth-
er. With respect to Figures 9 and 10 we write the fol-
lowing equations for wind components

wx ¼ _xi � Vcosðh� aÞ (4)

wz ¼ _zi þ Vsinðh� aÞ (5)

The flight has been started directly in autopilot-
assisted mode. After a short attempt, a small angle of
attack increment was required in order to sustain the
level flight. Due to the fact that ailerons occupy most of
the wingspan, certain modifications in algorithm func-
tion have been made taking into account aile-
ron deflection

a ¼ C0 þ C1 � DCp12 þ C2 � DC2
p12 þ C3 � da (6)

Some intentionally provoked oscillations were made
in order to visualize similarity between the angle of
attack estimated from pressure sensors and wind
vane. The first flight was performed in calm atmo-
sphere (i.e. no wind conditions). Figure 11 shows

acceptable similarity between the two with a slight dif-
ference in magnitude for the highest peak. The differ-
ence is coming due to the fact that 3D printed flag has a
certain inertia and that the boom is of significant length
and mass.

Figure 8. Results of calibration from wind tunnel experiment.
AoA: angle of attack; IMU: Inertial Measurement Unit.

Figure 9. Longitudinal flight dynamics.

Figure 10. Algorithm for wind components estimation. GPS:
Global Positioning System; IMU: Inertial Measurement Unit.

Gavrilovic et al. 279



Further comparison between pressure-based angle
of attack and one delivered by wind vane showed a
significant divergence for small amplitude oscillations
provoked by actuator programmed elevator input. This

flight was performed in turbulent atmosphere. High
level of coherence between the pressure-based angle
estimated at points 1 and 4 (i.e. far left and far right
point) can be seen in Figure 12. However, the spectrum

Figure 11. High-frequency oscillations in flight test provoked by command input in calm atmosphere. AoA: angle of attack.

Figure 12. Comparison between pressure-based angle and one delivered by wind vane in turbulent atmosphere. AoA: angle
of attack.
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for angle delivered by wind vane reveals deviation
when compared to pressure-based angles. It can be
seen on the graph that wind vane did not capture
high-frequency oscillations. The wind tunnel results
shown in Figure 8 proved that there was no noise
from electronic devices. Therefore, the high-frequency
noise is considered to be physical. The reason behind
such a discrepancy can be due to flag inertia or vibra-
tions due to boom length. Hence, we conclude that the
pressure sensors integrated in the wing provide more
reliable and better quality output for angle of attack

estimation. It was demonstrated that pressure-based

angle of attack captures higher frequency response

when compared to wind vane.
Most of the time, flight test resulted with negligible

error between angles estimated by different point loca-

tions (see Figure 13). This is due to the fact that flight

was conducted in relatively calm atmosphere with air-

speed of 12 m s�1. However, there were some parts

where error was considerable. One of them is shown

in Figure 14 where relative difference computed with

respect to point 1 located at far right side of the wing is

highest for point 4 located at opposite side of the wing.

Described discontinuity resulted in roll and yaw

moment regulated by actuators for the auto stabiliza-

tion flight regime. The discontinuity is coming from a

gust of a length scale smaller than the wing span, thus

implying different wind components seen by each side

of the wing locally. Figure 14 illustrates that left side of

the wing (i.e. points 3 and 4) saw higher vertical wind

component as this part of the wing experienced higher

local angle of attack. Locally, angle of attack was drop-

ping in span-wise direction, from point 4 till point

1 with lowest amplitude.
Input for the control stabilization in this case is reg-

ulated from the IMU coming from autopilot. On one

side, IMU acts as a correcting system which responds

to direct consequence of disturbance, while on the

other side local angle of attack estimation promises

Figure 13. Local AoA difference compared to first point. AoA:
angle of attack.

Figure 14. Local AoA difference compared to first point—zone of low coherence. AoA: angle of attack.
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“feeling” of upcoming disturbance pointing toward

more effective way of control.
Advantage of having multiple location angle of

attack sensors can also be found in stall control and

evasion which was demonstrated by Bunge et al.22

The following flight shown in Figure 15 case can be

divided into three phases. First phase represents partial

stall of the right side of the wing as points 1 and 2 first

reached stall limit. This led to an immediate, unrecov-

erable spin of the aircraft. Despite the efforts of auto-

pilot to recover the aircraft from moderately steep spin,

as he was leaving stall several short periods, right part

of the wing was always reaching stall limit which

resulted finally in a crash. The potential of these infor-

mation could be easily implemented into the autopilot

control laws, restricting the exceeding of stall limit on

any part of the wing.
Moreover, wind field estimation can be used as an

input for gust energy harvesting. It can serve as a deci-

sive mechanism for control activation of energy extrac-

tion presented in the work of Gavrilovic et al.23 and as

guarantee for exploitation of length scales equal or

greater than aircraft wing. Accurate estimation of

wind field components depends on precision of all the

elements involved as discussed in the beginning of this

section. So far the estimation relies on integrated equip-

ment where the weakest link is certainly the flight

parameters delivered by GPS. As shown in Figure 16
both vertical and horizontal components follow the
natural law of turbulence dissipation (i.e. power spec-
tral density (PSD)) represented by Kaimal spectrum.17

A time series of estimated wind components for around
90 s is shown in Figure 17. However, convincing state-
ment on accuracy of wind components estimation
requires comparison between estimated wind field by
aircraft and available data from another source (exam-
ple of flying around meteorological mast at different
altitudes) which will be the subject of our further study.

Conclusions

Unlike the majority of the wind field data sets, the tests
presented here are related to a typical mini UAV flying
environment in the low level of atmospheric boundary

Figure 15. Stall, spin, and crash. AoA: angle of attack.

Figure 16. Spectrum from estimated, raw wind components.
PSD: Power Spectral Density.

Figure 17. Filtered wind components for 90 s of flight.
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layer. The presented work shows development of a
system for angle of attack estimation based on pressure
measurements on the wing for further investigation of
meteorological conditions experienced by a small
UAV. The system showed several potential applica-
tions. The current results have concentrated on the spa-
tial variation in angle of attack along an aircraft wing
span. Ability to locally estimate the angle of attack
promises potential for control of upcoming roll
motions of the aircraft before the inertial response, as
information on local angle of attack can be used as
direct input of active control for stabilization. The dif-
ference between the local angles of attack has been
clearly identified during the flight tests. Moreover, the
system can be involved in a stall prevention mechanism
of the autopilot. As critical point of stall on the wing
(i.e. place of maximum local lift coefficient) depends on
its geometry, those locations were used for pressure
ports, thus detecting initial separations. Particular
interest is the implementation of algorithm for wind
field estimation. Beside the knowledge of wind field
components, the system can also provide a decisive
mechanism for actions for power gain in energy har-
vesting flight strategies. Results have also shown
acceptable comparison of measured and theoretical
wind spectra.
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