, Janus-faced molecule in cellular signaling, Cell. Signal, vol.26, pp.483-491

N. Bouquier, S. Fromont, J. Zeeh, C. Auziol, P. Larrousse et al., Aptamer-Derived Peptides as Potent Inhibitors of the Oncogenic RhoGEF Tgat, Chem. Biol, vol.16, pp.391-400, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00392842

N. Bouquier, E. Vignal, S. Charrasse, M. Weill, S. Schmidt et al., A Cell Active Chemical GEF Inhibitor Selectively Targets the Trio/RhoG/Rac1 Signaling Pathway, Chem. Biol, vol.16, pp.657-666, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420529

A. Boureux, E. Vignal, S. Faure, and P. Fort, Evolution of the Rho family of ras-like GTPases in eukaryotes, Mol. Biol. Evol, vol.24, pp.203-216, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00203003

E. Canalis, G. Mazziotti, A. Giustina, and J. P. Bilezikian, Glucocorticoidinduced osteoporosis: pathophysiology and therapy, Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA, vol.18, pp.1319-1328, 2007.

Y. Chang, S. Pownall, T. E. Jensen, S. Mouaaz, W. Foltz et al., The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes, 2015.

F. Chen, L. Ma, M. C. Parrini, X. Mao, M. Lopez et al., Cdc42 is required for PIP(2)induced actin polymerization and early development but not for cell viability, Curr. Biol. CB, vol.10, pp.758-765, 2000.

H. Chikumi, A. Barac, B. Behbahani, Y. Gao, H. Teramoto et al., Homo-and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential, Oncogene, vol.23, pp.233-240, 2004.

P. J. Cimino, Y. Yang, X. Li, J. F. Hemingway, M. K. Cherne et al., Ablation of the microglial protein DOCK2, 2013.

, Alzheimer's disease, Exp. Mol. Pathol, vol.94, pp.366-371

P. Colas, B. Cohen, T. Jessen, I. Grishina, J. Mccoy et al., Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2, Nature, vol.380, pp.548-550, 1996.

D. R. Cook, K. L. Rossman, and C. J. Der, Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease, Oncogene, vol.33, pp.4021-4035, 2014.

M. De-toledo, K. Colombo, T. Nagase, O. Ohara, P. Fort et al., The Rho GTPases in Health and Diseases yeast exchange assay, a new complementary method to screen for Dbl-like protein specificity: identification of a novel RhoA exchange factor, FEBS Lett, vol.480, pp.287-292, 2000.

S. W. Deacon, A. Beeser, J. A. Fukui, U. E. Rennefahrt, C. Myers et al., An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase, Chem Biol, vol.15, pp.322-331, 2008.

A. Debant, C. Serra-pages, K. Seipel, S. O'brien, M. Tang et al., The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains, Proc Natl Acad Sci U A, vol.93, pp.5466-5471, 1996.

O. Defert and S. Boland, Rho kinase inhibitors: a patent review, Expert Opin. Ther. Pat, pp.1-9, 2014.

D. Diviani, F. Raimondi, C. D. Del-vescovo, E. Dreyer, E. Reggi et al., Small-Molecule Protein-Protein Interaction Inhibitor of Oncogenic Rho Signaling, Cell Chem. Biol, vol.23, pp.1135-1146, 2016.

N. Dong, L. Liu, and F. Shao, A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis, EMBO J, vol.29, pp.1363-1376, 2010.

M. T. Drake, Osteoporosis and Cancer, Curr. Osteoporos. Rep, vol.11, pp.163-170, 2013.

P. M. Duquette and N. Lamarche-vane, Rho GTPases in embryonic development, Small GTPases, vol.5, 2014.

P. Fort and E. Théveneau, PleiotRHOpic: Rho pathways are essential for all stages of Neural Crest development, Small GTPases, vol.5, 2014.

B. Frenkel, A. Hong, S. K. Baniwal, G. A. Coetzee, C. Ohlsson et al., Regulation of adult bone turnover by sex steroids, J Cell Physiol, vol.224, pp.305-310, 2010.

G. Gadea and A. Blangy, Dock-family exchange factors in cell migration and disease, Eur. J. Cell Biol, vol.93, pp.466-477, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01274549

Y. Gao, J. B. Dickerson, F. Guo, J. Zheng, and Y. Zheng, Rational design and characterization of a Rac GTPase-specific small molecule inhibitor, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.7618-7623, 2004.

C. Guilluy, J. Brégeon, G. Toumaniantz, M. Rolli-derkinderen, K. Retailleau et al., The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure, Nat. Med, vol.16, pp.183-190, 2010.

M. Jagodic, C. Colacios, R. Nohra, A. S. Dejean, A. D. Beyeen et al., , 2009.

, Sci. Transl. Med, vol.1, pp.10-21

M. Jaiswal, R. Dvorsky, and M. R. Ahmadian, Deciphering the Molecular and Functional Basis of Dbl Family Proteins: A NOVEL SYSTEMATIC APPROACH TOWARD CLASSIFICATION OF SELECTIVE ACTIVATION OF THE Rho FAMILY PROTEINS, J. Biol. Chem, vol.288, pp.4486-4500, 2013.

Y. Lin and Y. Zheng, Approaches of targeting Rho GTPases in cancer drug discovery, Expert Opin. Drug Discov, vol.10, pp.991-1010, 2015.

P. Mallikaratchy, Evolution of Complex Target SELEX to Identify Aptamers against Mammalian Cell-Surface Antigens, Molecules, vol.22, p.215, 2017.

G. Mayer, M. Blind, W. Nagel, T. Bohm, T. Knorr et al., Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers, Proc. Natl. Acad. Sci, vol.98, pp.4961-4965, 2001.

B. L. Montalvo-ortiz, L. Castillo-pichardo, E. Hernández, T. Humphries-bickley, A. De-la-mota-peynado et al., , 2012.

, Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase, J. Biol. Chem, vol.287, pp.13228-13238

B. Niebel, C. I. Wosnitza, and M. Famulok, RNA-aptamers that modulate the RhoGEF activity of Tiam1, Bioorg. Med. Chem, vol.21, pp.6239-6246, 2013.

A. Nishikimi, T. Uruno, X. Duan, Q. Cao, Y. Okamura et al., Blockade of Inflammatory Responses by a Small-Molecule Inhibitor of the Rac Activator DOCK2, Chem. Biol, vol.19, pp.488-497, 2012.

E. Pedersen and C. Brakebusch, Rho GTPase function in development: how in vivo models change our view, Exp. Cell Res, vol.318, pp.1779-1787, 2012.

A. Peyroche, B. Antonny, S. Robineau, J. Acker, J. Cherfils et al., Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain, Mol. Cell, vol.3, pp.275-285, 1999.

K. Redlich and J. S. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention, Nat Rev Drug Discov, vol.11, pp.234-250, 2012.

G. W. Reuther, Q. T. Lambert, M. A. Booden, K. Wennerberg, B. Becknell et al., Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in Rho GTPases in Health and Diseases leukemia, causes transformation by activation of RhoA, J. Biol. Chem, vol.276, pp.27145-27151, 2001.

J. Van-rijssel, J. Kroon, M. Hoogenboezem, F. P. Van-alphen, R. J. De-jong et al., The Rhoguanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation, Mol. Biol. Cell, vol.23, pp.2831-2844, 2012.

K. L. Rossman, D. K. Worthylake, J. T. Snyder, D. P. Siderovski, S. L. Campbell et al., A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange, EMBO J, vol.21, pp.1315-1326, 2002.

K. Sakamoto, Y. Adachi, Y. Komoike, Y. Kamada, R. Koyama et al., Novel DOCK2-selective inhibitory peptide that suppresses B-cell line migration, Biochem. Biophys. Res. Commun, vol.483, pp.183-190, 2017.

S. Schmidt, S. Diriong, J. Méry, E. Fabbrizio, and A. Debant, Identification of the first Rho-GEF inhibitor, TRIPalpha, which targets the RhoA-specific GEF domain of Trio, FEBS Lett, vol.523, pp.35-42, 2002.

A. Sekine, M. Fujiwara, and S. Narumiya, Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase, J. Biol. Chem, vol.264, pp.8602-8605, 1989.

X. Shang, F. Marchioni, N. Sipes, C. R. Evelyn, M. Jerabek-willemsen et al., Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases, Chem. Biol, vol.19, pp.699-710, 2012.

X. Shang, F. Marchioni, C. R. Evelyn, N. Sipes, X. Zhou et al., Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.3155-3160, 2013.

H. Shimokawa, S. Sunamura, and K. Satoh, RhoA/Rho-Kinase in the Cardiovascular System, Circ. Res, vol.118, pp.352-366, 2016.

A. Shutes, C. Onesto, V. Picard, B. Leblond, F. Schweighoffer et al., , 2007.

, Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases, J. Biol. Chem, vol.282, pp.35666-35678

J. T. Snyder, D. K. Worthylake, K. L. Rossman, L. Betts, W. M. Pruitt et al., Structural basis for the selective activation of Rho GTPases by Dbl exchange factors, Nat. Struct. Biol, vol.9, pp.468-475, 2002.

T. R. Stankiewicz and D. A. Linseman, Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration, Front. Cell. Neurosci, vol.8, 2014.

K. Sugihara, N. Nakatsuji, K. Nakamura, K. Nakao, R. Hashimoto et al., Rac1 is required for the formation of three germ layers during gastrulation, Oncogene, vol.17, pp.3427-3433, 1998.

Z. Surviladze, A. Waller, J. J. Strouse, C. Bologa, O. Ursu et al., A Potent and Selective Inhibitor of Cdc42 GTPase, Probe Reports from the NIH Molecular Libraries Program, p.p, 2010.

I. Timmerman, N. Heemskerk, J. Kroon, A. Schaefer, J. Van-rijssel et al., A local VEcadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1, J. Cell Sci, vol.128, pp.3041-3054, 2015.

H. Touaitahuata, A. Blangy, and V. Vives, Modulation of osteoclast differentiation and bone resorption by Rho GTPases, Small GTPases, vol.5, p.28119, 2014.

H. Touaitahuata, G. Cres, S. De-rossi, V. Vives, and A. Blangy, The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth, Dev. Biol, vol.393, pp.57-70, 2014.

M. Uehata, T. Ishizaki, H. Satoh, T. Ono, T. Kawahara et al., Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension, Nature, vol.389, pp.990-994, 1997.

V. Vives, M. Laurin, G. Cres, P. Larrousse, Z. Morichaud et al., The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts, J. Bone Miner. Res, vol.26, pp.1099-1110, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657347

V. Vives, G. Cres, C. Richard, M. Busson, Y. Ferrandez et al., Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation, Nat. Commun, vol.6, p.6218, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01883489

K. N. Weilbaecher, T. A. Guise, and L. K. Mccauley, Cancer to bone: a fatal attraction, Nat Rev Cancer, vol.11, pp.411-425, 2011.

J. Yang, Z. Zhang, S. M. Roe, C. J. Marshall, and D. Barford, Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor, Science, vol.325, pp.1398-1402, 2009.

N. Yoshizuka, R. Moriuchi, T. Mori, K. Yamada, S. Hasegawa et al.,