Challenges for fully-integrated resonant switched capacitor converters in CMOS technologies
Yasser Moursy, Anthony Quelen, Gaël Pillonnet

To cite this version:

HAL Id: hal-01887175
https://hal.archives-ouvertes.fr/hal-01887175
Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Challenges for fully-integrated resonant switched capacitor converters in CMOS technologies

Yasser Moursy, Anthony Quelen and Gaël Pillonnet
1CEA-LETI, Grenoble, France
Yasser.moursy@cea.fr

Abstract—Switched capacitor (SC) converters inherent losses limit the achievement of high efficiencies at high power densities for on-chip context. Hence, techniques are being investigated to enhance the deficient capacitance energy utilization. The resonant switched capacitor (ReSC) converters showed up as a promising candidate for efficient, dense, granular on-chip power supplies. In this paper, we discuss the design of ReSC converter employing integrated on-chip inductance in CMOS technology. We focus on a 2-2:1 ReSC converter with single inductor. We discuss the practical constraints on using the on-chip air-core inductor and how it is going to affect the area of the converter. Using different inductor implementations, we compare the performance of the ReSC and SC converters of the same area. The results point towards the advantage of ReSC converter over the SC converter in case of using an inductor with relatively small area and negligible contact resistance which could be obtained in the 3D technology.

I. INTRODUCTION

The power delivery networks (PDN) to the integrated circuits become a bottleneck in the modern technologies. The monolithic integration of power supplies is increasingly attractive to divide the power conversion into multi-stages that consequently reduce the required number of converters and the power consumption of PDNs. Switched capacitor (SC) converters have been considered as the best candidate for the integrated power supplies as on-chip capacitors have a relatively high energy densities compared to inductance counterparts [1]. Also, the modern technologies allow the miniaturization of the capacitances while increasing the capacitance density [2]. However, the SC converters suffer from inherent charge-sharing losses and its switching frequency is considerably high to lower the output resistance.

Resonant switched capacitor (ReSC) converters are recently investigated in power on-chip context [3], [4]. They employ the same topology of the SC converter but comprise an inductor placed in the charging and discharging paths to create an adiabatic energy transfer which improves the efficiency. The resonance operation allows the reduction of switching losses by adopting the zero current switching and working at significantly lower frequencies with respect to SC converters with the same area while having the same output resistance [5]. In [6], [7], the ReSC converters are implemented with discrete inductors attached to the top of the die. Since the performance of ReSC depends on the inductance quality factor (Q), the usage of the discrete inductor with quality factor about 10-20 would be an optimal solution. However, in [6], two discrete 1.9 nH 0403HQ inductors were used to implement a two phase resonant switched capacitor converter. Due to the die-attaching, the equivalent series resistance with the inductor was increased from 0.038 Ω to about 0.2 Ω. This indicates that the inductor quality (L/R) has been degraded from 50 to 10. In addition to the contact resistance, an extra manufacturing step for mounting the inductor could be a burdensome and an expensive process for mass production that could limit the interests in these type of converters in fully integrated context.

This paper investigates the design of a fully integrated ReSC converter in 130 nm SOI technology to quantify the achievable performance. The fully integrated inductor could alleviate the external high contact resistance even if it suffers from an inherent low quality. We implement a 2-2:1 ReSC converter with only one inductor to reduce the area overhead and inductor resistance.

The paper is organized as follows, Section II discusses the operation of the resonance switched capacitor converters. Section III illustrate the challenges in the implementation of the integrated inductor. Transistor-level simulation results are reported in Section IV.

II. RESONANT SWITCHED CAPACITOR CONVERTER OPERATION

The 2:1 ReSC converters topologies can be generally categorized into single-ended and multiphase topologies. In each category, the circuits can be classified based on the inductor position [6]. In presence of a large parasitic inductance, which results from the bonding wires, large supply input current variations fluctuate the supply voltage of the single-ended topology that degrades the overall system efficiency. In order to solve this issue, the multiphase topology is used. A two phases ReSC converter is shown in Fig. 1 [8]. The phase shift between the two phases is 180°. The current drawn from the supply (I_s) is relatively constant (I_s ≈ I_load/2) which reduces the supply voltage variations in the presence of parasitic inductors.

Such architecture is of interest since it employs only one inductor for two phases, hence, the number of integrated magnetic components is reduced. The resonance frequency can be expressed as follows:
where L_x and C_x are the inductor and flying capacitor occupying an area A. m is the damping factor of the circuit which is defined as:

$$m = \frac{R_{tot}}{2} \sqrt{\frac{N \times C_x}{L_x}}$$

where N is the number of parallel phases which is 2 in this case and R_{tot} is the total resistance in the charging or discharging paths which can be expressed as:

$$R_{tot} = \frac{2R_{SW}}{N} + \frac{R_{cx}}{N} + R_x$$

where R_{SW} is the on-resistance of the switches, R_{cx} is the capacitor C_x equivalent series resistance, and R_x is the inductor series resistance. The converter’s output resistance can be expressed as follows:

$$R_{eff} = \frac{\pi R_{tot}}{4\sqrt{1 - m^2}} \cdot \tanh\left(\frac{\pi m}{2\sqrt{1 - m^2}}\right)$$

$$\approx \frac{\pi^2}{8} \cdot R_{tot}$$

R_{eff} models the conduction losses in the converter. The approximations in (4) consider that m is relatively small ($m<0.2$).

The efficiency of the converter can be expressed as:

$$\eta = 1 - \frac{P_{cond}}{P_{in}} - \frac{P_{sw}}{P_{in}} - \frac{I_{DC}}{V_{oNL}} \cdot R_{eff} - \frac{4N \cdot C_{sw} \cdot V_g^2 \cdot f_x}{I_{DC} \cdot v_{oNL}}$$

where P_{in} is the input power, P_{cond} and P_{sw} are the conduction and switching losses in the converter, v_{oNL} is the no-load output voltage, I_{DC} is the DC output current, C_{sw} is the gate capacitance of switches, and V_g is the switches’ gate voltage swing. From (5), the sizes of switches are inversely proportional to the conduction loss and directly proportional to the switching loss.

Hence, for a certain load current, the sizes of the switches have to be optimized in order to balance switching and conduction losses and hence maximize the efficiency at this load current.

III. INTEGRATED INDUCTOR DESIGN

Since the ReSC conduction loss is a function of the total resistance in the charging or discharging paths as shown in (5), the inductor resistance should be minimized. The integrated air-core planar inductance depends on its area [9], hence, the inductor’s area should be maximized in order to increase the inductance. When scaling the inductor area by a factor α, while maintaining the same geometrical aspect ratio, the inductance is scaled by $\sqrt{\alpha}$ while the resistance remains unchanged. Consequently, the damping factor is increased by $\alpha^{1/4}$. Thus, the chip should comprise the minimum number of inductors with minimum resistance in order to achieve a relatively low damping factor and reduce the mutual coupling between the on-die inductors.

Using a thick metal option of 3 μm thickness in 130 nm technology, assuming an area of 2 mm^2 dedicated for the implementation of an inductor, a 1.6 nH square planar air-core inductance is realized as depicted in Fig. 2. Using Momentum-Virtuoso for post-layout inductance characterization, we compare between this planar air-core inductor without MIM capacitors underneath it, on-die solenoid with magnetic core [10], and discrete air-core inductor with 0302 CS package as depicted in Table I. The damping factors of the integrated inductors are relatively high compared to the discrete one. However, the main issue concerning the discrete inductor is its mounting process and the access resistance and capacitance in addition to the pinout increase. The integrated magnetic core inductors have a higher scalability and can be realized on ultra-thin package dies. Also, it would be better from the volume power density point of view. However, we are not going to use the typical CMOS technology and the current is limited by the saturation current. It also should be noted that the metal thickness used in the magnetic core inductor is about two times larger than the one used in the air core inductor [10].

Table I: Comparison between different inductors around operating frequency 70 MHz.

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>L2 [10]</th>
<th>Discrete</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance</td>
<td>1.6</td>
<td>1.5</td>
<td>1.7</td>
<td>nH</td>
</tr>
<tr>
<td>AC impedance</td>
<td>180</td>
<td>250*</td>
<td>38**</td>
<td>mΩ</td>
</tr>
<tr>
<td>Area</td>
<td>2</td>
<td>0.1*</td>
<td>0.46</td>
<td>mm²</td>
</tr>
<tr>
<td>Metal trace width</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>µm</td>
</tr>
<tr>
<td>Metal trace thickness</td>
<td>3</td>
<td>6 and 12</td>
<td>-</td>
<td>µm</td>
</tr>
<tr>
<td>Unloaded damping factor</td>
<td>0.125</td>
<td>0.125</td>
<td>0.017–0.025</td>
<td>-</td>
</tr>
</tbody>
</table>

* Parameters are given at frequency of 100 MHz and the area is estimated from the given data in [10].

** Measured in frequency range of 20–40 MHz [3]

In order to minimize the area overhead and increase the power density, the inductor should occupy the same area as the full chip. The MIM capacitors used in the implementation of the the flying and bypass capacitors lays underneath the
inductance. To evaluate this proposition, simulations are done with and without MIM capacitors in order to estimate the inductance and its parasitic resistance. For the simulation purposes, we reduce the complexity of the layout, as shown in Fig. 2. Illustration for the layout of the planar inductor with MIM capacitors underneath it at 50% overlap configuration. The capacitor plates are not to scale.

Fig. 2, by only including an inductor implemented on thick metal (M6), a shield for the inductance implemented on metal M5, not shown in figure, and metal elements representing the top plate of the MIM on metal M4.

In Fig. 3, the Momentum-Virtuoso results show the inductance and resistance values of the integrated inductor versus the frequency. There is a significant increase in the inductance’s resistance when the MIM capacitors are totally overlapped with the inductance. This resistance increase comes from the magnetic field lines that have to cross the metal layers underneath resulting in eddy currents that generate magnetic field oppose the original one. Hence, the inductance value is reduced and its parasitic resistance is increased. Consequently, the full overlap of the induc
tor and capacitance area is not feasible from the efficiency point-of-view. When 50% overlap is used, the percentage increase of the inductor’s resistance relative to its original value is 29% at frequency of 70 MHz. However, this ratio is about 130% in case of the 100% overlap case at the same frequency. Therefore, if we assumed 50% overlap then the total design area becomes 2mm2 for ReSC converter. However, for the SC, the design area is the same with the additional 1mm2 dedicated for the implementation of extra flying capacitors.

Fig. 3. Post-layout simulation comparison between planar inductor value with and without MIM capacitors underneath.

IV. TRANSISTOR-BASED SIMULATION RESULTS

The design specifications of the proposed converters are shown in Table II. The die area is shared between the bypass and flying capacitors. All the capacitors are considered to be implemented using double MIM capacitors with capacitance density of 4 fF/μm2.

TABLE I: Comparison between different inductors around operating frequency 70 MHz.

<table>
<thead>
<tr>
<th>Vin</th>
<th>1.8 V</th>
<th>Vo (min.)</th>
<th>0.7 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>2 – 3 mm2</td>
<td>Max. Inductor area</td>
<td>2 mm2</td>
</tr>
<tr>
<td>CFly ReSC</td>
<td>2 x 2 nF</td>
<td>CBP ReSC</td>
<td>2x2 nF</td>
</tr>
<tr>
<td>CFly SCC1</td>
<td>2x2 nF</td>
<td>Switching freq.</td>
<td>65 MHz</td>
</tr>
<tr>
<td>CFly SCC2</td>
<td>2x3 nF</td>
<td>CBP SCC</td>
<td>2x2 nF</td>
</tr>
</tbody>
</table>

Fig. 4 shows the simulation results of the efficiency versus the power density at different load resistances using several inductors. The first case, we assume the presence of an inductor with small form factor similar to the integrated magnetic core inductor previously shown. The area of the chip is 2mm2 hence, the flying capacitor is 2 nF. The ReSC converter has a peak efficiency of 72% at 70 mW/mm2 while the SC converter has an efficiency of 60% at the same power density. The second case, if we used an on-chip inductance is realized with 50% overlap with the capacitance, hence, the total area of the chip is 3mm2. In order to achieve a fair comparison, the flying capacitor in the SC converter is assumed to occupy the additional area of the inductor. Consequently, the flying capacitor in the SC is 3 nF per stage. In this case, the SC converter outperforms the ReSC since it has a lower output
resistance compared to the SC converter at the same operating frequency. These results highlight the importance of having an inductor with relatively small dimensions compared to the chip.

V. CONCLUSION

The implementation of the resonant switched capacitor (ReSC) converters has been discussed. The key to achieve high efficiency along with high power densities is the inductance implementation and its resistance. Thus, several inductance implementations are considered to compare their areas and resistances. First, using discrete inductor which has a high quality factor mounted on-chip in spite of it that suffers from high resistance due to bonding connections and high cost due to the extra-manufacturing step. Secondly, using on-chip air-core inductor that eliminates the manufacturing complexity yet it increases the area and has a relatively poor quality factor. Finally, using modern integrated magnetic technologies to realize compact inducers with relatively small area which could be of interest to achieve high efficiencies at high power densities. The results shown illustrated the effect of the additional inductor area on the power density and how it moves the ReSC converter to lower power densities using standard CMOS technology. The salient features of the ReSC converters require an efficient inductor with relatively small area which would feasible in the 3D technology.

REFERENCES