The True Concurrency of Herbrand’s Theorem

Abstract : Herbrand's theorem, widely regarded as a cornerstone of proof theory, exposes some of the constructive content of classical logic. In its simplest form, it reduces the validity of a first-order purely existential formula to that of a finite disjunction. In the general case, it reduces first-order validity to propositional validity, by understanding the structure of the assignment of first-order terms to existential quantifiers, and the causal dependency between quantifiers. In this paper, we show that Herbrand's theorem in its general form can be elegantly stated and proved as a theorem in the framework of concurrent games, a denotational semantics designed to faithfully represent causality and independence in concurrent systems, thereby exposing the concurrency underlying the computational content of classical proofs. The causal structure of concurrent strategies, paired with annotations by first-order terms, is used to specify the dependency between quantifiers implicit in proofs. Furthermore concurrent strategies can be composed, yielding a compositional proof of Herbrand's theorem, simply by interpreting classical sequent proofs in a well-chosen denotational model.
Type de document :
Communication dans un congrès
27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Sep 2018, Birmingham, United Kingdom. 〈10.4230/LIPIcs.CSL.2018.5〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01886968
Contributeur : Pierre Clairambault <>
Soumis le : mercredi 3 octobre 2018 - 14:22:21
Dernière modification le : vendredi 5 octobre 2018 - 01:16:32

Fichier

LIPIcs-CSL-2018-5.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Aurore Alcolei, Pierre Clairambault, Martin Hyland, Glynn Winskel. The True Concurrency of Herbrand’s Theorem. 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), Sep 2018, Birmingham, United Kingdom. 〈10.4230/LIPIcs.CSL.2018.5〉. 〈hal-01886968〉

Partager

Métriques

Consultations de la notice

52

Téléchargements de fichiers

11